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ABSTRACT Fault detection is quite important for discrete event systems.We investigateK -codiagnosability
of Petri nets in this paper under the framework that some local sites monitor the operation of the system
using their own masks. They exchange information with a coordinator while do not communicate with
each other. A fault is detected when there exists a site can diagnose it. We recall the notion of Modified
Verifier Nets (MVNs), and prove that K -codiagnosability can be verified looking at some special cycles
in the reachability or coverability graph of the MVN. In particular, the proposed approach is available for
bounded and unbounded nets. Finally, we give an algorithm to compute the minimum value of K .

INDEX TERMS Petri nets, fault detection, K -codiagnosability.

I. INTRODUCTION
Any abnormal behavior can be viewed as a fault, and is
unavoidable in discrete event systems (DESs). Performing
diagnosability analysis of DESs is to confirm whether faults
can be diagnosed after finite steps. The diagnosability prob-
lem was extensively researched in a centralized framework
and a series of approaches has been proposed [1]–[11]. How-
ever, a lot of large DESs are usually physically decentralized,
and the centralized approaches are not available for this case.
Therefore, in recent years some decentralized approaches are
developed [12]–[18].

Debouk et al. [12] first propose the definition of diagnos-
ability in a decentralized framework and introduce three dif-
ferent protocols, which are the extensions of the results in [1].
Qiu and Kumar [13] first give the notion of codiagnosability
under the protocol that some local sites exchange information
with a coordinator while do not communicate with each other.
A fault is diagnosed if there exists a site is able to detect it.

Petri nets (PNs) are extensively used in the problems
of supervisory control [19]–[21], performance optimization
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[22]–[25] and codiagnosability analysis. Cabasino et al. [14]
first prove that a PN is codiagnosable, under the same proto-
col as [13], if and only if it contains arbitrarily long failure
ambiguous sequences (FASs). Note that a failure sequence
is said to be failure ambiguous if it is faulty for some
sites and non-faulty for other sites. A special PN struc-
ture, called Modified Verifier Net (MVN), was constructed
as the synchronization of given system with the nonfailure
part with respect to (w.r.t.) all sites. Therefore, the exis-
tence of FASs can be computed using the reachability graph
of the MVN. However, this approach may be unfeasible
in real situations since its complexity may grow exponen-
tially in the worst case. In order to deal with this limita-
tion, some authors of this paper [15] analyze codiagnosabil-
ity of bounded PNs taking advantage of Basis Markings,
which allows ones to look for FASs without enumerating the
entire state space. This approach can also be used to analyze
K -codiagnosability of bounded PNs. In [16], Basile et al.
analyze K -codiagnosability dealing with integer linear pro-
gramming (ILP) problems. Although its complexity is NP-
complete, it can be solved by some off-the-shelf tools such as
LINGO and GUROBI. In particular, a common assumption
of acyclicity of unobservable transitions is not required.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 185055

https://orcid.org/0000-0002-5097-7173
https://orcid.org/0000-0001-6901-0301
https://orcid.org/0000-0001-7326-2528
https://orcid.org/0000-0003-2486-1246
https://orcid.org/0000-0001-9990-6715
https://orcid.org/0000-0002-8998-0433
https://orcid.org/0000-0001-5876-3711


N. Ran et al.: K-Codiagnosability Verification of Labeled Petri Nets

In this paper, we study K -codiagnosability of labeled
PN systems (LPNSs) employing the notion of MVN pro-
posed in [14]. We first investigate the relationship between
codiagnosability and K -codiagnosability, and show that
the approach in [14] is not applicable for the case of
K -codiagnosability. Then a necessary and sufficient condi-
tion for K -codiagnosability is presented, and some proce-
dures to verifyK -codiagnosability are given for both bounded
and unbounded LPNSs. Finally, a method to compute the
minimum value of K is given.

II. PRELIMINARIES
We recall some basic knowledge in this section. For more
details, we refer to [26].

A. LABELED PETRI NETS
A Petri net (PN) is a four-tuple N = (P,T ,F,W ). P is the
set of places and T is the set of transitions, where they are
represented by circles and bars respectively. The connected
relation between the places and transitions is described by F .
The mapping W attaches a nonnegative number to each arc:
W (a, b) > 0 if (a, b) ∈ F and W (a, b) = 0 if (a, b) /∈ F ,
where a, b ∈ P ∪ T . The notation [N ] is used to denote the
incidence matrix.

The postset of a is indicated as

a• = {b ∈ P ∪ T | (a, b) ∈ F},

and the preset of a is indicated as

•a = {b ∈ P ∪ T | (b, a) ∈ F},

where a is a node of P ∪ T .
A marking m assigns a nonnegative number to each place.

A transition t is called enabled at the marking m if it holds
that

∀p ∈ •t, m(p) ≥ W (p, t), (1)

and is written as m[t〉. If a new marking m′ is reached by the
firing of t , then it is

∀p ∈ P, m′(p) = m(p)+ [N ](p, t)

and written as m[t〉m′. L(N ,m0) is used to denote the set of
transition sequences that are enabled at the initial marking
m0, i.e.,

L(N ,m0) = {σ ∈ T ∗ | m0[σ 〉}.

In addition, ε denotes the empty sequence.R(N ,m0) is used to
denote the set of markings that are reachable from the initial
marking m0, i.e.,

R(N ,m0) = {m | m0[σ 〉m, σ ∈ L(N ,m0)}.

Let σ ∈ L(N ,m0) be a transition sequence and T ′ ⊆ T be
a set of transitions.We denote by π (σ ) the Parikh vector of σ .
The fact that a transition t is contained in σ is written as t ∈ σ .
Furthermore, we use T ′ ∩σ 6= ∅ to denote that there exists at

least a transition in T ′ contained in σ , and use T ′ ∩ σ = ∅ to
denote that there exist no transitions in T ′ contained in σ .
Definition 1 ( [5]): Given a reachable marking m1, a tran-

sition sequence s ∈ L(N ,m0) is called a repetitive sequence
if it is able to fire infinitely at m1, i.e., it holds that

m1[s〉m2[s〉m3[s〉 . . . (2)

where m2, m3, . . . are reachable markings.
Let s be a repetitive sequence that satisfies (2). s is called

a stationary sequence if it holds that mi = mi+1, called an
increasing sequence if it holds that mi � mi+1, where i =
1, 2, . . ..
Given a PN N , a subnet N ′ = (P,T ′,F ′,W ) is called

the T ′-induced subnet of N if T ′ is a subset of T , where
F ′ ∈ F denotes the connected relation. We can compute N ′

by removing the transitions in T \ T ′.
A labeled PN system (LPNS) is a triple (N ,m0,L), where

L is a labeling functionL : T → A∪{ε}, and A is an alphabet.
We indicate as Tu and To the set of unobservable transitions

and the set of observable transitions, respectively.
We extend the function L:
(1) L(ε) = ε;
(2) L(t) = l, where t ∈ To and l ∈ A;
(3) L(t) = ε, where t ∈ Tu;
(4) L(σ t) = L(σ )L(t), if σ ∈ T ∗ and t ∈ T .
Furthermore, given an observed sequence w ∈ A∗, the set

of sequences that correspond to w is written as L−1(w),
namely, it is

L−1(w) = {s ∈ L(N ,m0) | L(s) = w}.

Two transition sequences s and s′ producing the same
observation, i.e., L(s) = L(s′), are said to be undistinguish-
able. Otherwise, they are said to be distinguishable.
The post-language of K after σ is written as K/σ , namely,

it is

K/σ = {σ ′ ∈ T ∗| σσ ′ ∈ K },

where K ⊆ T ∗ is a language.

B. COVERABILITY GRAPH
Coverability Graphs (CGs) are used for the analysis of
unbounded PNs. Every node is attached with a |P| dimen-
sional vector, in which every entry is either a nonnegative
number or a symbol ω that denotes ‘‘arbitrarily large’’. It
should be notice that ω > n and ω ± n = ω, where n is
a nonnegative number. Every arc is attached with (t,L(t)),
where L is the labeling function. An ω-marking is a marking
that contains ω-places.

A Coverability Tree is constructed using Algorithm 1,
which is detailed in Fig. 1. Then the CG can be obtained by
merging identical nodes in the tree.
Remark 1: In the CG, a cycle may correspond either to a

non-repetitive sequence or a repetitive sequence. It is able to
fire infinitely if it corresponds to a repetitive sequence. On
the other hand, if it corresponds to a non-repetitive sequence,
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FIGURE 1. Algorithm 1: Construction of a coverability tree.

FIGURE 2. An unbounded PN.

it must contains ω-markings (otherwise it corresponds to a
repetitive sequence), which means that the PN contains an
increasing sequence whose firing can put an indeterminate
amount of tokens in ω-places [5]. Hence, the cycle is able to
fire until all tokens in those places are consumed. This fact
can be illustrated using Example 1.
Example 1: Fig. 2 shows an unbounded PN, where m0 =

(1 0 0)T . Its CG is shown in Fig. 3. The cycle (sequence)
σ1 = t4 is a repetitive sequence since it can fire infinitely
starting from (0 0 1)T or from (0 ω 1)T . The cycle σ2 = t3 is a
non-repetitive sequence since it cannot fire infinitely starting
from any marking. In fact, t3 can fire at most as many times
as t1 due to the fact that t3 cannot fire when the tokens in p2
are consumed.

III. PROBLEM FORMULATION
The set of unobservable transitions Tu is partitioned as fol-
lows:

Tu = Tf ∪ Treg,

where Tf denotes the set of faults, and Treg denotes the set
of faulty-free transitions. Furthermore, the set Tf contains r

FIGURE 3. CG of the PN of Example. 1.

types of faults, i.e.,

Tf =
r⋃
i=1

T if ,

where T if denotes the i-th type of faults.
Let T ′ = T \ Tf . (N ′,m0,L′) indicates the nonfailure

subnet of (N ,m0,L), where N ′ is the T ′-induced subnet and
L′ is the corresponding labeling function.

In this paper, we perform K -codiagnosability analysis
under the protocol that the net is observed by some sites
J = {1, 2, . . . , ν}. They observe the PN’s evolution, but have
no communication with each other. It should be noted that
such a protocol is identical with the one in [15].

We indicate as To,j ⊆ To the set of observable transitions
for j ∈ J , and Tu,j = T \ To,j the set of unobservable
transitions for j ∈ J . Every observable transition can be
monitored by at least one site, i.e.,

To =
⋃
j∈J

To,j.

We denote by Aj ⊆ A the alphabet for the j-th site, and

Lj(t) =
{
L(t), if L(t) ∈ Aj
ε, otherwise

(3)

the labeling function with respect to the j-th site.
The following assumption is adopted in this paper:
(A1) The LPNS is not dead after the occurrence of a fault.
This assumption is common in the research of diagnosabil-

ity, which avoids dealing with the technicality that PNs may
be dead after the occurrence of faults.

Hereinafter,9(T if ) indicates the set of transition sequences
in which the last transition is a fault in T if , where i = 1, . . . , r .
Definition 2: An LPNS (N ,m0,L) that satisfies Assump-

tion A1 is codiagnosable w.r.t. T if if

(∀s ∈ 9(T if )), (∃K ∈ N), (∀σ ∈ L(N ,m0)/s), |σ | ≥ K

⇒ (∃j ∈ J ), (∀σ ′ ∈ L−1j (Lj(sσ ))),T if ∩ σ
′
6= ∅.

ByDefinition 2, an LPNS is codiagnosable w.r.t. T if if there
exists a site that is able to diagnose the firing of a fault in T if
after a sequence of finite length.
Definition 3: An LPNS (N ,m0,L) that satisfies Assump-

tion A1 is K-codiagnosable w.r.t. T if if ∃K ∈ N such that

(∀s ∈ 9(T if )), (∀σ ∈ L(N ,m0)/s), (|σ | ≥ K )

⇒ (∃j ∈ J ), (∀σ ′ ∈ L−1j (Lj(sσ ))),T if ∩ σ
′
6= ∅.
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By Definition 3, an LPNS is K -codiagnosable w.r.t. T if
if there exists a site that is able to diagnose the firing of
a fault in T if after at most K transitions. Given a number
K ′ > K , an LPNS is obviously K ′-codiagnosable if it is
K -codiagnosable.

The objective of the paper is to analyze K -codiagnosable
of LPNSs under Assumption A1.

IV. MAIN RESULT
This section will show that K -codiagnosability of an LPNS
can be analyzed using a structure, calledModified Verifier Net
(MVN), which is defined as the synchronization of the LPNS
with its nonfailure subnets w.r.t. all local sites, where the
composition is performed on the alphabet A. In this section,
we assume that there exists a single fault type Tf in the LPNS.

A. MODIFIED VERIFIER NET (MVN)
Definition 4: A sequence σ ∈ L(N ,m0) that satisfies

Tf ∩ σ 6= ∅ is called a failure ambiguous sequence (FAS) if
the LPNS contains ν transition sequences s1, s2, . . . , sν that
satisfies:

Tf ∩ sj = ∅ and Lj(s) = Lj(sj),

where j ∈ {1, 2, . . . , ν}.
By Definition 4, a faulty sequence σ is failure ambiguous

if it is faulty for some sites and non-faulty for other sites.
It has been proved in [14] that an LPNS is codiagnosable

if and only if it contains no FASs with arbitrary length.
Therefore, codiagnosability can be studied by finding some
cycles in the R/CG of the MVN. For the sake of simplicity,
the formal notion and construction algorithm of MVNs are
not recalled here.

Given an LPNS, we denote by G its MVN. A node in the
R/CG of G is called faulty if it can be reached via a path in
which there exists at least a fault. The set of all faulty nodes
is written as F(G).
Proposition 1 ( [14]): Let G be the MVN of an LPNS and

F(G) be the set of faulty nodes. The LPNS is codiagnosable
iff starting from any faulty node, the R/CG of G contains no
cycles corresponding to repetitive sequences.
Example 2: Fig. 4 shows an unbounded LPNS, where

To = {t1, t3, t5, t6, t8, t9}, Tu = {t2, t4, t7}, Tf = {t4} and
m0 = (0 1 0 0 0)T . Let L(t1) = a, L(t5) = L(t8) = b,
L(t6) = c, L(t9) = d and L(t3) = e. Assume that the LPNS
is locally monitored by two sites, where A1 = {a, b, c, e} and
A2 = {a, d, e}.

The MVN is constructed using Algorithm 5.1 in [14],
and is shown in Fig. 5. Note that in this figure we
use a double arrow arc if a place has a self-loop.
Then we construct the CG of the MVN, which is not
reported here. We can observe that starting from any
faulty node, there exist no cycles corresponding to repet-
itive sequences in the MVN. Therefore, the LPNS is
codiagnosable.

FIGURE 4. An unbounded LPNS.

B. K-CODIAGNOSABILITY VERIFICATION USING MVN
We propose a necessary and sufficient condition for
K -codiagnosability in this section.

We first show that the result in [14] is not available
for the case of K -codiagnosability. Consider again the
unbounded LPNS shown in Fig. 4. We can infer that it is
not K -codiagnosable. In fact, for any sequence s = tx1 t4 ∈
9(Tf ), we can choose a number Ks ≥ x + 1 to verify
codiagnosability, where x is a nonnegative number. However,
since Ks may grow arbitrarily large with x, we cannot find a
fixed number K so that it is K -codiagnosable.

By Definition 3, we know that the detection delay after
each fault has a uniform bound, i.e.,K . While by Definition 2,
we know that such a uniform bound does not necessarily exist.
In particular, the following two properties hold.
Property 1: An LPNS (N ,m0,L) is codiagnosable if it is

K -codiagnosable.
Proof: The result obviously holds since Definition 3 is

stronger than Definition 2.
Property 2: A bounded LPNS (N ,m0,L) is codiagnos-

able iff it is K -codiagnosable.
Proof: (If) Straightforward from Property 1.

(Only if) Let ms be the marking reached by firing a
sequence s ∈ 9(Tf ) from m0, i.e., m0[s〉ms. By Definition 2,
there exists a number, say Ks, such that the fault can be
detected after Ks steps starting from ms. Since the LPNS
is bounded, it has a finite number of markings reached by
firing sequences in 9(Tf ) from m0. Therefore, the LPNS
is K -codiagnosable by taking the largest K over all such
markings.

Now we give the main result of this paper.
Proposition 2: Let (N ,m0,L) be an LPNS. Let G be the

MVN and F(G) be the set of faulty nodes. The LPNS is
K -codiagnosable iff staring from any node of F(G), the R/CG
of G contains no cycles.

Proof: Let (N ,m0,L) be a bounded LPNS. By Propo-
sition 1, we know that the result obviously holds for this case
since in the RG of G, a cycle must correspond to a repetitive
sequence.
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FIGURE 5. The MVN of the LPNS in Fig. 4.

Let (N ,m0,L) be an unbounded LPNS. We prove the if
part and only if part respectively.
(If) When constructing the CG of G, we can always com-

pute that after howmany transitions the firing of a fault can be
diagnosed by a site since there exist no cycles starting from
a node in F(G). Therefore, the LPNS is K -codiagnosable,
where K is taken as any number that is larger than the longest
subsequent path of a faulty node.
(Only if) By contradiction, assume that there exists a cycle

after a faulty node. It may correspond to either a repetitive
sequence or a non-repetitive sequence:
1) If it corresponds to a repetitive sequence, then

(N ,m0,L) is not codiagnosable by Proposition 1. As
a consequence, it is not K -codiagnosable by Property 1.
This is a contradiction.

2) If it corresponds to a non-repetitive sequence, then it
cannot occur arbitrarily. By Remark 1, we know that it
contains ω-markings for sure, which means that there
exists an increasing sequence whose firing can put
an uncertain number of tokens in ω-places. Therefore,
the non-repetitive sequence can occur until the tokens in
ω-places are consumed. However, we cannot find a fixed
number of transitions can occur after a fault since the
number of tokens in those places is uncertain. Therefore,
it is not K -codiagnosable by Definition 3. This is a
contradiction.

Algorithm 2, which is detailed in Fig. 6, summarizes the
main procedures for verifying K -codiagnosability of LPNSs.

FIGURE 6. Algorithm 2: Verification of K -codiagnosability.

Example 3: Reconsider the unbounded LPNS shown
in Fig. 4. A part of the CG of the MVN is detailed in Fig. 7,
where the markings are detailed in Table 1. Note that m2 ∈

F(G). According to Proposition 2, we can infer that it is not
K -codiagnosable due to the fact that the CG contains cycle
c1 = bbλ/t5t18λ after m2. In fact, the sequence associated to
the cycle is not repetitive, and thus it cannot fire for an infinite
number of times.

In previous discussion, we only consider one fault type.
When the LPNS contains r fault types, r MVNs need to be
constructed, i.e., for every fault type a MNV is constructed.
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FIGURE 7. A part of the CG of the MVN w.r.t. Tf .

TABLE 1. The set of markings in Fig. 7.

If we analyze K -codiagnosability w.r.t. a fault type, all faults
that are not in this type should be viewed as faulty-free
transitions.

The complexity of Algorithm 2 is briefly discussed here.
The most burdensome part of Algorithm 2 consists in the
construction of the R/CG. It is well known that constructing a
CG is still an open issue since it requires evenmore than expo-
nential space [27]. In fact, Yin and Lafortune have proved that
checking diagnosability of LPNSs is EXPSPACE-complete,
and the high complexity seems unavoidable [27]. Fortunately,
some efficient software such as Time Petri Nets Analyzer can
be used for constructing an R/CG. Moreover, the structure
properties for some types of PNs may also improve the
computational efficiency of diagnosability analysis, which
could be an attractive research area for future study on fault
diagnosis.

V. COMPUTATION OF THE MINIMUM VALUE OF K
From Definition 3, we know that an LPNS that is
K -codiagnosable is alsoK ′-codiagnosable withK ′ > K . This
section presents a method to compute the minimum value of
K , denoted by Kmin, for an LPNS that is K -codiagnosable.
In particular, the computation is still based on the R/CG of
MVN.

By Proposition 2, we can easily infer that an LPNS is
K -codiagnosable if and only if starting from any faulty node,
each subsequent path in the R/CG of the MVN must end
in a deadlock (otherwise the LPNS is not K -codiagnosable
by Proposition 2). Therefore, Kmin is the largest number of
transitions after a faulty node in the R/CG of the MVN, plus
one.

Given a faulty node x ∈ F(G), we denote by D(x) the
largest number of transitions starting from x in the R/CG of
the MVN. Clearly, if the LPNS is K -codiagnosable, D(x) is
finite and it is

Kmin = 1+ max
x∈F(G)

D(x).

FIGURE 8. Algorithm 3: Computation of Kmin.

Algorithm 3, which is reported in Fig. 8, provides the
procedures to compute Kmin.
The idea behind Algorithm 3 can be detailed as follows.

Steps 1 and 2 analyze K -codiagnosability of the given LPNS
using Algorithm 2. Step 3 means that the occurrence of a fault
can be detected after at least one (i.e., D0(x) + 1) transition.
Step 4 iteratively computes the number of transitions starting
from all faulty nodes. It stops if such a number w.r.t. each
faulty node no longer increases. The value Kmin is finally
computed by Step 5 taking the largest number of transitions
w.r.t. all faulty nodes.

Here we consider the case of multiple fault types. When
the LPNS contains r fault types, Algorithm 3 needs to be
respectively applied r times. The minimum value of K w.r.t.
each fault type, say Ki,min, is obtained, where i = 1, 2, . . . , r .
Therefore, the value of Kmin is

Kmin = max
i∈{1,2,...,r}

Ki,min.

VI. CONCLUSION
Fault detection is an essential task of PNs. This paper presents
an approach for analysing K -codiagnosability of LPNSs
using the R/CG of a special structure called Modifier Ver-
ifier Net, which is first introduced in [14]. A necessary
and sufficient condition for K -codiagnosability is given. In
particular, the presented approach is available for bounded
and unbounded PNs. We finally propose an algorithm to
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compute the minimum value of K for an LPNS that is
K -codiagnosable.

As a future plan, we will analyze codiagnosability and
K -codiagnosability of unbounded PNs while avoiding com-
puting the entire state space [28].
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