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ABSTRACT Network embedding has emerged as a fundamental approach to network analysis tasks. Its
main purpose is to learn a suitable mapping function to convert nodes in networks into a low-dimensional
representations. The majority of existing studies concentrate solely on network topology structure. However,
nodes are commonly associated with sufficient attribute information in real-world networks. Therefore,
network embedding combining network topology structure and attribute information could be promisingly
beneficial. Given this, we propose a novel attributed network embedding method called Consistency
Constrained Attributed Network Embedding (CCANE), which preserves more complete information for
nodes when learning the embedding representations. On the basis of the consistency of topology structure
and node attributes, the CCANE is capable of learning the structure embeddings and attribute embeddings of
nodes simultaneously, and then concatenate them to obtain the integrated vector representations. Moreover,
the CCANE is scalable of dealing with large-scale of networks by decomposing the complicated optimization
process into multiple sub-tasks in parallel. Experimental results testify the feasibility and superiority of the

CCANE compared to the state-of-the-arts.

INDEX TERMS Attributed network, network embedding, representation learning.

I. INTRODUCTION

Mining valuable information from networks is of consider-
able significance as networks are widely existed in the real
world [1], [2]. Studies on network analysis have attracted
increasing attention, and various tasks have been raised and
regarded as open problems, such as node classification [3],
visualization [4], and community detection [5]. However,
sparsity is a persistent problem when solving the tasks of
network analysis using conventional methods of network
representation [6]. Therefore, an innovative idea is desirable
to learn appropriate representations for nodes in networks.
Network embedding [7], a novel and effective network repre-
sentation learning method, learns low-dimensional and dense
node representations which can be directly utilized as the
input of network analysis tasks, so as to avoid the problem
of sparsity.
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Diverse network embedding algorithms [12], [15], [16]
have been proposed recently. They generally focus only on
the linkage information between nodes. However, real-world
networks are usually attributed networks [25] where nodes
are usually associated with plentiful attribute information,
e.g., profiles of users in social networks and topics of papers
in citation networks. Properties of networks can hardly be
described thoroughly only by structural information since the
linkage information between nodes is limited in a portion of
networks. In this case, it is necessary to mine attribute infor-
mation of nodes in networks. Although topology structure
and node attributes reveal the properties of the network from
different perspectives, homophily implies that both of them
are correlative with each other [8]. Moreover, attributes of
nodes have a considerable impact on the formation of the
network structure. For instance, people with similar hobbies
tend to be friends in social networks; papers are more likely
to be cited by papers with the same keywords. Attributes
of nodes reflect the internal characteristics of networks to
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some extent and benefit network embedding as supplemen-
tary information to network structure. Incorporating attribute
information in network representation learning is advanta-
geous to solve the problem of information loss caused by
sparsity or noise [20].

Although plentiful attributed network embedding meth-
ods [17], [18], [23], [24], [27] have emerged, they all have
more or less limitations. For example, attribute information
is presented in various forms, and existing methods are not
universal to handle the information beyond text features.
In addition, many existing methods capture the proximity of
linked nodes while ignoring nodes sharing common neigh-
bors, making them challenging to describe network charac-
teristics adequately.

To tackle the aforementioned problems, we propose
an effective attributed network embedding method named
CCANE. Specifically, the CCANE constructs similarity
models in the network structure space and attribute space,
respectively. In order to make up for the scarcity of link-
age information, we consider the similarity of the neighbor
structure of nodes by introducing the second-order proximity
when building the structure proximity matrix. In addition,
we utilize the features to obtain symmetric attribute proxim-
ity matrix, which can be applied to matrix decomposition,
so that the CCANE can process multiple types of attribute
information, not just text features. Then, we can obtain
two embeddings of each node, i.e., structure embedding
and attribute embedding, by matrix decomposition of both
proximity matrices. The former preserves structure similarity
between each pair of nodes, and the latter holds attribute
similarity between nodes. Moreover, there is a certain degree
of consistency between them in line with homophily. The
final embedding for each node is to concatenate attribute
embedding and structure embedding together. Our contribu-
tions are summarized as follows:

« A novel attributed network embedding method named
CCANE is proposed, in which the structure proximity
and attribute proximity between each pair of nodes are
jointly considered when learning network representa-
tion, and thus, the consistency and complementarity
relations between them are built.

o The model is accelerated by decomposing complex
model optimization into a range of sub-problems in par-
allel, which is readily applied to distributed computing
for large-scale datasets.

« Superiority of our proposed CCANE is validated com-
paring to state-of-the-arts on attributed datasets. Exten-
sive experimental results demonstrate the feasibility and
efficiency of the CCANE.

Organization: In Section II, the model CCANE is pro-
posed, and the model optimization process is accelerated.
As for Section III, we corroborate the superiority and
effectiveness of the CCANE through experimental results.
Section IV introduces the related work of this paper. The
conclusion of our work and the future work are generalized in
Section V.
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Il. CONSISTENCY CONSTRAINED ATTRIBUTED

NETWORK EMBEDDING

In this section, we first demonstrate the problem definition.
Then, the framework and modeling process of the CCANE is
introduced. Finally, the parallel optimization method for the
model is detailed.

A. PROBLEM DEFINITION

An attributed network can be represneted by an undirected
graph G = (V,E, W, Z), in which V and E represent node
set and edge set. W € R™'(n = | V) is a weight matrix, and
W, ; € W means the weight of edge ¢;; € E. A larger value
of W; ; indicates a stronger topological connection between
nodes i and j, in particular, W;; = 0 indicates there is no
edge between them. Z € R™ ™ is a attribute matrix, Z(i, :)
represents a feature vector of node i with m attributes.

Definition 1 (Structure Proximity): The structure proxim-
ity matrix X integrates the first-order proximity X’ and the
second-order proximity X® through X = X 4 X®,

The first-order proximity describes the topological
connection between nodes, i.e., X(l),-’j = W; ;. The second-
order proximity measures the similarity of neighbor struc-
tures between nodes. Since cosine similarity is a classical and
widely used method and more conducive to the processing of
sparse matrices, we define the second-order proximity X ij
as the cosine similarity between XD, 2y and XDgj, 2).

Definition 2 (Attribute Proximity): The attribute proxim-
ity P; j between nodes is defined as the cosine similarity of

5™ Z(i.k)x Z(j.k)

k=1

Z(i.k)? x i Z(.k)?
k=1 k=1

Problem Definition: Given an attributed network G =
(V,E,W,Z), the CCANE is designed for learning a low-
dimensional representation Y(i,:) € R4 for each node i,
where d < |V|. The CCANE is expected to retain proximity
and ensure the consistency constraint in topology structure
space and attribute space.

their attribute vectors, i.e., P;; =

m

B. MODEL DESCRIPTION

The Fig. 1 illustrates the overall framework of our proposed
CCANE. First, we build the structure proximity matrix X
and the attribute proximity matrix P according to the weight
matrix W and the attribute matrix Z respectively. Then the
symmetric matrix factorization is applied to both proximity
matrices so that we obtain the structure embedding YW and
the attribute embedding YZ, which are in line with the con-
sistency constrains. Finally, we concatenate them to the final
embedding Y. We demonstrate the details now.

1) NETWORK STRUCTURE MODELING

The representation of network structure embedding denoted
by YW € R"*4 is supposed to preserve proximity in topology
structure space. The structure proximity matrix X € R™"
can be calculated after the first- and second-order proximity
are obtained. Specifically, inspired by the symmetric matrix

VOLUME 7, 2019



X. Zang et al.: Constrained Consistency Modeling for Attributed Network Embedding

IEEE Access

V1 V2 v3 e e
vi
v2
v3

Xﬂ)
vl v2 v3 == wn
vl
v2 vn
ﬂ]}]} i va
1 —2 \ Structure W VI V2 ¥ e e
vl
I & > [ - v
N . 2
m i @ M . SE=Es
\é /5,/ al a2 ===+ am
© & v
I 0m  Attribute

vn

vl v2 v3 =t wn
vl
v2
v W W\ T
+ X = YT x megyr)
- [ [ |
- N
]
Y- mYim
EEE
EEE N
EEE [
. - ----
= = -><--
1] III
| EEN
- EEEEEEEE EEE

FIGURE 1. A framework of CCANE. The weight matrix W and the attribute matrix Z are utilized to build proximity matrix. Matrix

factorization are performed to obtain the final embedding Y.

factorization [9], X can be approached by the product of YW
and the transpose of YW Ge., YY)D asitis a symmetric
matrix in undirected networks. Then, on the basis of structure
proximity, we define the loss function in the structure space
as:

b v

-3V )
i=1 j—
()

2) ATTRIBUTE PROXIMITY MODELING
The representation of attribute embedding denoted by
Y% e R"™“ is supposed to retain the attribute proximity. And
the symmetric attribute proximity matrix P € R"*" can be
obtained by calculating the attribute proximity between each
pair of nodes. Then, P can be approached by the product of
YZ and (Y%)T under the fundamental theory of symmetric
matrix factorization. The loss function in the attribute space
is defined as:

2

ZZ (Pij= Y%, Y%, )T)

i=1j=1
@

2= |p-vi T,

3) CONSISTENCY CONSTRAINED REPRESENTATION

The network homophily expounds that things with the same
characteristics are more likely to come together [28]. On
the one hand, both topology structure and node attributes
embody the nature of the identical network, and they should
be consistent to a certain extent [10]. On the other hand, they
provide complementary information about the same network.
Therefore, the consistency and complementarity of struc-
ture embedding and attribute embedding should be insured
accordingly.

By modeling structure information and attribute informa-
tion, the structure embedding representation YW (reserving
proximity in network structure space) and attribute embed-
ding representation YZ (reserving proximity in attribute
space) can be acquired, respectively. Then, a simple method
is to concatenate YV and YZ directly as the final embedding
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since attributed network representation should reckon on both
network topology structure and attribute information. For
example, the final representation of node i can be expressed as
Y, )= YWVt ... YWV 0, Y20, ..., Y2, ). In this way,
one can characterize the network information based on two
aspects of similarity and guarantee their complementarity, yet
it is powerless to guarantee consistency. Therefore, consid-
ering the consistency of structure embedding and attribute
embedding, we take the Euclidean distance of YW(i, :) and
YZ(i, ;) as metric to measure differences between these two
representation vectors and define the loss function for consis-
tency constraints as:

Le = Xn: HYW(i, ) — Y2, :)Hz 3)
i=1

4) JOINT EMBEDDING REPRESENTATION LEARNING

With the purpose to preserve the similarity in both structure
space and attribute space, and guaranteeing the consistency
and complementarity of learned representations, we propose
an integrated representation learning framework, for which
the objective function is formulated as follows:

mm L =

2
x -y T ey
YWY F

“y [Y¥6.0 - ¥4 | @
i=1

where A is a constraint parameter for consistency between
structure embedding and attribute embedding. A = 0
means that structure embeddings and attribute embeddings
are learned independently and irrelevantly. When an optimal
A > 0, the learned embeddings for nodes satisfy the require-
ments of consistency and complementarity.

C. MODEL OPTIMIZATION SCHEME

Stochastic gradient descent is a commonly used optimization
algorithm. However, on account of the limitation of memory
space and running time, stochastic gradient descent is infeasi-
ble for large-scale datasets. Given this, we propose to decom-
pose the complex model optimization problem into multiple
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sub-tasks. In this case, the parameter optimization procedure
can be executed in parallel, and ultimately we can get the opti-
mal solution of primal function faster. Specifically, we use
Alternating Direction Method of MultiplierstADMM) [11] to
optimize the objective function in attributed network repre-
sentation learning.

In line with consistency and complementarity, the objective
function can be optimized in parallel. The embedding matrix
YW and YZ can be updated simultaneously, and vectors in all
rows of YW or YZ can be updated independently during the
process of iteration. We accelerate the model optimization by
ADMM as follows.

First, we set copies BY = YW and BZ = YZ, then,
Eq. (1) and Eq. (2) can be rewritten as:

Ly = Z} XG0, ) — YVG, HBY) Hz

- Zl xi VeV ®

Ly = Z PG, 1) — YZ(, )(BE) Hz
i1

= Z PG, )T — YEBLG, ) Hz (6)

i=1

Further, the objective function Eq. (4) can be rewritten in a
linearly constrained form:

mi$2L=§ HX(i,:)—YVYi,:)QW)THE + é PG,

v,
i=1

YZ(3i,:) = B%G, ),
for i=1,....n ()

st YW@, ) =BYG, o),

Solving the objective in Eq. (7) is a bi-convex optimization
problem, where 2n vectors (n rows YW@, :) and n rows
YZ(i, 1)) can be updated independently by ADMM, and the
augmented Lagrangian corresponding to Eq. (7) can be for-
mulated as:

L= ; XG5 - YV H@™)' Hi
2 > e - 8% 0 )
+Zl [P, — 2, nw%) Hi
3 [ -we| ®

185690

where pVandp? > 0 are two penalty factors of net-
work structure information and attribute information, respec-
tively. Uw(i, ;) and UZ(i, :) are dual variables. Eq. (8) is
not convex, yet it is bi-convex. Eq. (8) is separable for both
Y(YW, YZ) and BBY, B%). Because 12-norm is convex, it is
well-reasoned to prove that the convex optimization problem
corresponding to Y(YW, YZ) is convex when B(BY, B%) is
invariable and vice versa. On the basis of ADMM, we keep Y
fixed, then Eq. (8) is convex involving B and easy to be
solved. Similarly, we keep B fixed when updating Y. The
problem of minimizing Eq. (8) is transformed into updating
Y and B iteratively, and in the process of (r + )" jteration,
YW(, ) is updated as:

YW, !
2X(i, ) BN+ pW ((BW(i, 3 — Ui, :))r)+ 24(BLG, )"
B 2(BY)) BWY + (¥ + 201

©)
Similarly, we get the update rule of YZ(i, :) as:
(YZ(l, :))r+1
= argmin HP(i, 5 — Y2, 1)((BZ)r)T H2
YZ(i,:) 2
P vz, Zo: Ny v/ r|?
+ 0 |G - B )+ UG )|
_ PGB+ pH(®BG ) - UG ) o

2(BL)) (BL) + 1
In the (r 4+ 1)™ iteration, the convex optimization process and
update rules corresponding to variables Bw(i, ;) and BZ(i, )
are shown in (11) and (12), as shown at the bottom of the next
page.
Then, the dual variables UW and UZ are updated as
follows:

(UW)F-I—] — (UW)r + ((YW)I‘-‘r] _ (BW)V+1) (13)
(UZ)I’+1 — (UZ)}’ 4 ((YZ)V+1 _ (BZ)I’+1) (14)

Note that (BW)+! is calculable only when (YW)+! is
known at each iteration. To update YV, one needs to update
all rows of YW. We can decompose them to n updating steps
in parallel since they are independent of each other. When
we update YW, the previous iteration of BW and correspond-
ing BZ should be given. Similarly, the process of updating
BW still can be converted into n sub-problems in paral-
lel. In this paper, the original optimization is decomposed
into 4n sub-problems (i.e., n rows YW(i, 1), 1 TOWS YZ(i, D,
n rows BW(i, :), and n rows BZ(, 1)), and n nodes update in
parallel. Please refer to Algorithm 1 for more details about
the optimization procedure.

D. COMPLEXITY ANALYSIS

According to the characteristics of ADMM, a few iterations
can achieve a moderate precision. In each iteration, according
to the update rule of YW@, ) in Eq. (9), it can be known that
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Algorithm 1 CCANE
Input: W, Z.
Output: Y = [YWYZ].

1: Initialize (YW)?, (YZ);

2: Set BW)? = (YW)0, B%) = (Y%)°,

UV = WUH° =0,r =0;

3: repeat
4;  Calculate (BM)Y)TBYY, (BZ))T (BZY;
5. for i = 1tonin parallel do
6: Compute proximity vectors;
7
8
9

Update (YW (@, )1, (YZ(@, ) T! by Eq. (9), (10);
end for
Calculate (YW)+1)T(yWy+1,
((YZ)r+1)T(YZ)r+1;
10:  for i = 1to n in parallel do
11: Compute proximity vectors;
12: Update — (BWY(, )+,
Eq. (11), (12);
13:  end for
14:  Update (UW)Y *1, (UZy+! by Eq. (13), (14);
15: r<r+1;
16: until Convergence;
17: return Y = [YWYZ].

B )Y+ by

the update time of d-dimensional vector YW, ) is O (dn),
since only one calculation (BMYHTBY)Y is needed. Due
to d <K n, the time complexity of each sub-problem can
be summarized as O(n). Tx represents the time required
to calculate the proximity between nodes, w represents the
number of processors, then the time complexity of CCANE is
O(Tx + %), which is equivalent to O(nNy +nNz + %), where
Nyw and Nz represent the number of non-zero elements in the
weight matrix W and the attribute matrix Z respectively.

lll. EXPERIMENTS

We conduct experiments to assess the contributions of the
CCANE, including node classification and visualization.
In the experiments, the processor is Intel(R) Core(TM)
15-8400, the main frequency of CPU is 2.80ghz, the memory
is 8G, the running system is WIN10, and the programming
software is Matlab 4 Python.

A. DATASETS

Before performing the specific experiments, we first intro-
duce three attributed datasets. Please refer to Table 1 for more
details.

TABLE 1. Statistics of datasets.

Dataset BlogCatalog | Flickr Wiki
Nodes(|V]) 5,196 7,564 2405
Edges(| E|) 171,743 239,365 17981
Attribute(m) | 8,189 12,047 4973
Label(l) 6 9 17

« BlogCatalog is a blogger website in which each node
represents a user, the following relationship constitutes
edges and the keywords of blogs posted by users are
served as node attributes.

« Flickr is an online platform for users to share photos and
provides online community services. A social network
can be formed when users follow each other. We take the
information users annotated when they upload photos as
attribute information.

« Wiki is a document network containing documents col-
lected from Wikipedia, in which a node represents a
document, the edges represent relationships between
documents, and the TF-IDFs of words are used as the
attributes of documents.

@Y, )+ = argmin H(X(i, » — W)

BWY(,:)

oW
+5- HBW(i, 5 — W,

2XG, YW !

rH(BW(i, :))T Hj

D[

+ oW WG, )+ WUV )

2YWY T YWyt i
B2, )+ = argmin H(P(i, W — v Bz, )" H

BZ(i,:)

(11

2
2
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z r r 2
+% HBZ(i, 5 — (Y2, ) T+ Uz, ) X

A HBZ@ 5 — YV, )

2P, (YY)

r+1

r+1 H2

+ P2 (Y26, )+ UG, ) ) + 2Y VG, )

20Y2) Y (Y2 (0% + 201

12)
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TABLE 2. Node classification results on BlogCatalog.

Metrics Micro-F1 Macro-F1

Training Percentage 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%
DeepWalk 0.5849 0.6247 0.6305 0.6527 0.6605 0.6609 0.5788 0.6189 0.6242 0.6474 0.6459 0.6559
Node2vec 0.5771 0.5973 0.6272 0.6302 0.6432 0.6522 0.5701 0.5911 0.6211 0.6243 0.6373 0.6483
LINE 0.6675 0.6943 0.6987 0.7142 0.7039 0.7042 0.6614 0.6878 0.6959 0.7085 0.6982 0.6996
TADW 0.8265 0.8446 0.8478 0.8537 0.8545 0.8533 0.8239 0.8422 0.8454 0.8515 0.8528 0.8520
AANE 0.5676 0.6870 0.7292 0.7354 0.7378 0.7407 0.5164 0.6699 0.7220 0.7213 0.7232 0.7257
CCANE™ 0.8756 0.9197 0.9349 0.9397 0.9430 0.9399 0.8739 0.9184 0.9335 0.9386 0.9420 0.9388

TABLE 3. Node classification results on Flickr.

Metrics Micro-F1 Macro-F1

Training Percentage 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%
DeepWalk 0.4147 0.4698 0.4818 0.5023 0.5018 0.5346 0.4127 0.4632 0.4755 0.4951 0.4928 0.5275
Node2vec 0.4391 0.4627 0.4691 0.5061 0.5111 0.5353 0.4360 0.4566 0.4625 0.4997 0.5036 0.5277
LINE 0.5105 0.5302 0.5338 0.5430 0.5448 0.5551 0.5021 0.5225 0.5260 0.5353 0.5391 0.5483
TADW 0.5601 0.5988 0.6179 0.6376 0.6441 0.6545 0.5417 0.5871 0.6072 0.6285 0.6371 0.6469
AANE 0.4467 0.5990 0.7959 0.8099 0.8313 0.8471 0.4718 0.6276 0.7937 0.8106 0.8276 0.8472
CCANE™ 0.7559 0.8068 0.8285 0.8370 0.8489 0.8620 0.7292 0.8041 0.8259 0.8354 0.8506 0.8603

TABLE 4. Node classification results on Wiki.

Metrics Micro-F1 Macro-F1

Training Percentage 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%
DeepWalk 0.5870 0.6522 0.6609 0.6749 0.6816 0.6985 0.4531 0.5454 0.5659 0.5787 0.5855 0.5979
Node2vec 0.5834 0.6148 0.6247 0.6383 0.6384 0.6642 0.4081 0.4935 0.5240 0.5472 0.5331 0.5432
LINE 0.4527 0.5093 0.5255 0.5502 0.5660 0.5748 0.3055 0.3520 0.3665 0.3856 0.3949 0.4049
TADW 0.6286 0.6684 0.7013 0.7228 0.7315 0.7307 0.4315 0.4742 0.5394 0.5700 0.5922 0.5997
AANE 0.6028 0.6709 0.7090 0.7277 0.7390 0.7339 0.3703 0.4512 0.4992 0.5381 0.5466 0.5394
CCANE™ 0.6711 0.7099 0.7548 0.7757 0.7855 0.7890 0.4578 0.5177 0.5887 0.6085 0.6297 0.6306

B. BASELINES

To demonstrate the effectiveness of the CCANE, five repre-
sentative network representation learning methods are com-
pared and analyzed.

o DeepWalk [12] learns vector representations of nodes
using random walk path to simulate nature language as
the input of the skip-gram model.

o LINE [15] (Large-scale Information Network Embed-
ding) considers both local and global topology structures
when learning network embedding.

o Node2vec [16] preserves the information of neighbor
structure by presenting a biased random walk strategy
based on DeepWalk.

o« TADW [17] (Text-Associated DeepWalk) absorbs text
attributes of nodes when learning network representa-
tion by matrix factorization.

o AANE [18] (Accelerated Attributed Network Embed-
ding) aims at dealing with large-scale attribute networks
by incorporating lasso penalty into an attribute network
representation framework.

To ensure the fairness, we set the dimensionality d of node
vectors to 200 for all methods. Particularly, for DeepWalk and
Node2vec based on random walk, each node walks 10 times
with length 80, and the context window is set to 10. For
Node2vec, the optimal parameters are determined by two
parameters p and g through grid search(p = 4, ¢ = 0.25 on
the BlogCatalog, p = 0.25, g = 4 on the Flickr and p = 0.5,
g = 2 on the Wiki).
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C. NODE CLASSIFICATION

To verify the effectiveness of the CCANE in terms of
node classification, training dataset is randomly extracted
under different percentage of labeled nodes from the whole
dataset, and then, the remainding parts of the dataset are
used for testing. For each dataset, all comparisons and our
proposed method run 10 times, and Micro-F1 and Macro-F1
are employed as metrics to quantitatively estimate the
performance.

Experimental results of node classification on three
datasets are shown in Table 2, 3 and 4, respectively. Overall,
the CCANE outperforms all these comparisons in different
settings, followed by attributed network embedding meth-
ods of TADW and AANE. Specifically, the performance
of DeepWalk, LINE, and Node2vec, which focus only on
network structure, is significantly worse than that of the
CCANE, implying the necessity of considering the attribute
information. The TADW is slightly worse than the CCANE
on BlogCatalog and Wiki, and declines fast in terms of
accuracy on Flickr in any cases. That’s because it uses Sin-
gular Value Decomposition(SVD) to get attribute matrices
and integrate attribute features into the final embeddings,
which cannot extract features accurately. The performance
of AANE is barely satisfactory when the proportion of the
training dataset is no bigger than 30%, since AANE only
considers the proximity of connecting nodes, while ignoring
high-order proximity. By contrast, the CCANE has the ability
to assign labels to unlabelled nodes, and thus, it only needs
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FIGURE 2. Visualization of node embeddings learned by different methods in order of BlogCatalog, Flickr and Wiki.

a small portion of labels to achieve a better performance.
LINE outperforms DeepWalk and Node2vec, indicating the
effectiveness of uniting the first- and second-order proximity
explicitly.

D. VISUALIZATION

With the purpose of exhibiting the experimental results more
intuitively, we visualize the results of node embeddings
learned by the CCANE and other comparisons. As shown
in Fig. 2, node embeddings are colored according to their
labels using t-SNE [19]. We can see that the distribution
of node embeddings learned by the CCANE is relatively
uniform, and the nodes of the same color are mainly con-
centrated in the same area. It indicates that the CCANE
is more capable of providing high-quality representations
of nodes (i.e., embeddings), which enables the CCANE to
cluster and classify the nodes with different features more
accurately. The AANE is slightly worse than the CCANE.
On the BlogCatalog, it has the ability to separate the red and
the green labels accurately while other labels are not well
grouped. Besides, on the Flickr and Wiki, the nodes of the
same label are grouped through AANE. However, the learned
embeddings does not make good use of solution space, and
the nodes of different labels in the center are mixed up. The
visualization results of DeepWalk and LINE are not satisfac-
tory in all three datasets. In summary, methods incorporating
attribute information can enhance the quality of network
embedding.
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E. PARAMETER TUNING

1) THE PARAMETER SENSITIVITY OF A

The parameter A influences on the consistency of structure
embedding and attribute embedding. To show the impact
of A intuitively, curves of Micro-F1 and Macro-F1 on node
classification are plotted in Fig. 3. On the BlogCatalog and
Flickr, when X increases from O to 1, the effect of it grows
rapidly, and when A is greater than 1, the effect is relatively
flat. Therefore, in order to ensure the consistency of structure
embedding and attribute embedding, we set the value of
between 1 and 2.5. In the same way, we observe that the
optimal range of on the Wiki is 0 < A < 0.05 through
multiple experiments. When the value of XA increases in
this range, the performance of node classification improves
steadily. Particularly, when A = 0, it means that the consis-
tency between structure embedding and attribute embedding
is not considered in the model (Eq. (3)). Generally speaking,
the CCANE outperforms all these comparisons when A > 0,
which indicates that it is necessary to take into account the
consistency constraints between structure and attribute when
learning network embedding.

—— BlogCatalog_Mic
- BlogCatalog_Mac

05 1 2 25 o 05 1 15 2 25 o 001 002 003 004 005

(a) BlogCatalog (b) Flickr (c) Wiki

FIGURE 3. Impact of parameter 1.
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TABLE 5. Node classification results on different weight ratio of proximity.

Datasets BlogCatalog Flickr Wiki
Metrics Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
X =XD + x@* | 0.9400 0.9388 0.8446 0.8439 0.7880 0.6241
X=X 4+2x3® | 09392 0.9380 0.8273 0.8263 0.7814 0.6188
X=xM4+3x® | 09372 0.9362 0.8147 0.8137 0.7780 0.6161
X=XD 4+ax® | 09365 0.9353 0.8054 0.8045 0.7747 0.6119
X=xD4+5x® | 0929 0.9283 0.7965 0.7955 0.7689 0.6069
X =2xM 4 x® | 0939 0.9386 0.8424 0.8411 0.7830 0.6215
X =3xM 4 x® | 09346 0.9336 0.8258 0.8245 0.7814 0.6194
X =4x® 4 x® | 09346 0.9336 0.7920 0.7906 0.7797 0.6176
X =3xM 4+ x3® | 09353 0.9342 0.7714 0.7700 0.7772 0.6176
2) THE PARAMETER SENSITIVITY OF THE WEIGHT RATIO OF N ——vad
PROXIMITY \ ‘
To verify the validity of the final integrated structure prox-

imity formula X = XU 4+ X@, we conduct the node
classification experiments where we set the weight ratio of
XM and X@ in the formula to be different values. Judging
from the results in Table 5, the node classification works best
when the weight ratio is 1, i.e., the first-order proximity is
as important as the second-order proximity when calculating
the structure proximity. In summary, the node embeddings
can better describe the characteristics of network structure
when the impact of the first-order proximity equals to that
of the second-order proximity. Therefore, the final structure
proximity is set to X = X 4 x@,

F. EFFICIENCY EVALUATION

The efficiency of the CCANE is validated on three datasets,
i.e., BlogCatalog, Flickr, and Wiki through comparing the
running time with TADW and AANE. The other baselines
are not selected as comparisons because they do not con-
sider attribute information when learning node embeddings.
In Table 6, the running time of the CCANE and AANE
is significantly less than TADW. The CCANE is slightly
faster than AANE, and they cost almost the same amount of
time to learn node embeddings as they all use ADMM for
optimization.

TABLE 6. Running time (in seconds) of different methods.

Dataset BlogCatalog | Flickr Wiki
TADW 447 691 1385
AANE 21 27 10
CCANE* 16 23 9

Fig. 4 depicts the value of objective function concerning
the number of iterations, which demonstrates the convergence
of the CCANE. Observed from the performance on these
three datasets, the value of objective function drops sharply
in the first two iterations, and then, the trend steadily slowed
down until convergence. In summary, the CCANE can con-
verge stably and quickly when training the parameters of the
model.
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FIGURE 4. The value of objective function with respect to iterations.

G. LARGE-SCALE SYNTHETIC DATASET

To assess the potential of our proposed CCANE to deal with
synthetic attributed networks and large-scale data, we syn-
thesize an attributed network and the statistics are listed
in Table 7. The CCANE learns the embeddings for nodes
on this network, and the learned embeddings are utilized to
conduct node classification experiments, then we compare
the running time of the CCANE with baselines.

TABLE 7. Statistics of synthetic dataset.

Item Value
Nodes(|V]) 22,000
Edges(|E|) 459,397
Attribute(rm) 22,000
Label(l) 10

The node classification results in Table 8 show that
the Micro-fl and Macro-fl of our proposed CCANE can
reach 1.0 in the node classification experiments on the syn-
thetic dataset. Since synthetic datasets are usually more sta-
ble, the value of Micro-f1 and Macro-fl can reach 1.0.
In contrast, the real-world datasets have more uncertainty,
therefore the performances are worse on them than the
synthetic datasets. From the results, the performances of
TADW, AANE and CCANE are better than other baselines.
This proves that our algorithm CCANE can handle synthetic
datasets.

Furthermore, we verify the efficiency of our proposed
CCANE in processing large-scale data in terms of the running
time. In Table 9, the results show that the running time of the
CCANE is still less than other attributed network embedding
methods in the large-scale network, which proves that the
CCANE can deal with large-scale networks efficiently.
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TABLE 8. Node classification results on the synthetic dataset.

Metrics Micro-F1

Macro-F1

Training Percentage 10% 30%

50% 10% 30% 50%

0.9995
0.9999
0.9995
1.0000
1.0000
1.0000

DeepWalk 0.9996
Node2vec 0.9997
LINE 0.9996
TADW* 1.0000
AANE* 1.0000
CCANE* 1.0000

0.9996 0.9996
0.9997 0.9997
0.9995 0.9996
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000

0.9995
0.9999
0.9995
1.0000
1.0000
1.0000

0.9996
0.9997
0.9996
1.0000
1.0000
1.0000

TABLE 9. Running time (in seconds) on the synthetic dataset.

Methods Running time
TADW 190

AANE 99

CCANE* 57

H. FURTHER DISCUSSION

Experiments are conducted to testify the feasibility of the
CCANE, the improvement of computing efficiency, and the
ability of processing large-scale data. First, validation on
node classification is conducted comparing to three net-
work embedding methods(DeepWalk, Node2vec, and LINE)
and two attributed network embedding methods(TADW and
AANE). The advantages of attributed network embedding
methods in the experiments indicate the importance of
combining attribute information with network representa-
tion learning. In addition, the CCANE is superior to other
attributed network embedding methods by comparing the
results of network analysis tasks. The visualization results
state that the learned embeddings through the CCANE can
better retain network characteristics. Then, we prove the
efficiency of the CCANE in terms of the running time and
iteration times. By accelerating the optimization process,
the running time of the CCANE reduced greatly, which
enables the model to handle large-scale networks. And the
objective function of the CCANE has a stable trend of con-
vergence in a few steps. Finally, we synthesize a large-scale
attributed network and perform node classification experi-
ments on it, which illustrates that the CCANE can process
large-scale data and synthetic datasets. In summary, our
proposed attributed network representation learning method
CCANE is both effective and efficient.

IV. RELATED WORK

A. NETWORK EMBEDDING

Network embedding has been a popular research topic and
various methods emerge one after another in recent years.
The objective of network embedding is that the node repre-
sentations can retain and characterize the original features of
the network structure. In view of this, some network repre-
sentation learning methods are designed to describe the first-
order similarity between nodes, i.e., the similarity reflected
by the node pairs through the adjacency matrix. For example,
spectral clustering [29] obtains the node representation of
d-dimension by calculating the first d feature vectors of the
normalized Laplace matrix.
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With the rapid development of Natural Language
Processing (NLP) [30], topological relationships between
nodes can be represented by combining network represen-
tation learning with natural language models. For example,
DeepWalk [12] proposed by Perozzi et al. in 2014 utilizes
the random walk [13] sequence in the network to simu-
late nature language based on Word2vec [21], then applies
the skip-gram model [14] to represent node embeddings.
Grover and Leskovec [16] extend DeepWalk algorithm by
introducing width- and depth-first search in the process
of random walk. To describe the similarity of two nodes
reflected by neighbor structure, Tang et al. [15] propose
preserving second-order similarity and model similarity
based on the joint probability distribution. In addition, some
researchers have also discovered some special structures
contained in network topology information. For example,
Wang et al. [22] take the community structure contained
in network topology into consideration, based on the joint
non-negative matrix decomposition model, to maximize the
modularity and similarity between nodes.

In the real world, nodes in networks usually contain
abundant attribute information. However, existing studies
are based on network topology structure solely, neglecting
valuable attribute information of nodes which usually plays
an essential role in characterizing network features. Sub-
sequently, studies on attributed network embedding have
received increasing attention.

B. ATTRIBUTED NETWORK EMBEDDING
Recently, studies on network embedding are developed by
taking into account the attribute information of nodes, which
can make full use of network information.

Yang et al. [17] first prove that the embeddings learned by
DeepWalk are equivalent to the sum of the first k-order state
transition matrices obtained by matrix decomposition. One
can obtain the network representations i.e., a low-dimensional
matrix, which depicts both topology structure and node text
attributes by taking the text attribute characteristics as input
of matrix decomposition. However, subsidiary information
considered in this model is limited to the attributes infor-
mation of text. Moreover, it is incapable of handling large-
scale networks. Huang et al. propose an optimization method
AANE [18] to learn node representations for large-scale net-
works, and the solutions are obtained by maximizing and
minimizing the similarity and difference between directly
connected nodes, respectively. However, it merely considers
the similarity of nodes directly connected by edges, ignoring
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the similarity of nodes sharing similar neighbor structure but
without a direct link. He et al. [32], [33] adopt the scheme of
multi-view learning [31] for processing attributed network.
However, they are task-specific aiming at discovering clus-
ters in graphs, therefore they are limited for handling other
network analysis tasks.

As deep learning [26] gets more and more attention,
studies on attributed network representation learning based
on deep learning have emerged. To integrate structure and
attribute information when learning node representation,
Liao et al. [23] propose putting the structure and attribute
information into the same deep learning model and train
parameters together, by maximizing the link probability
between nodes on the basis of the similarity of node rep-
resentation. Gao and Huang [24] propose considering the
structure and node attribute information when training deep
auto-encoders with consistency and complementarity con-
straints, and then, concatenate the embeddings obtained
to form the final representation. Kipf and Welling [27]
adopt convolutional neural network to learn coded local
network structure and latent representations of node attribute
information.

V. CONCLUSION AND FUTURE WORK

This paper presents an attributed network embedding model
CCANE, which can learn low-dimensional vectors for nodes
incorporating attribute information. The main objective is to
obtain node embeddings through matrix factorization con-
sidering both structure proximity and attribute proximity.
Moreover, the final embeddings of nodes have the ability to
guarantee the consistency and complementarity. To improve
the scalability of the model, the complex optimization pro-
cess is decomposed into several sub-tasks in parallel. In the
experiments, the feasibility and superiority of the CCANE are
validated through network analysis tasks comparing to the
state-of-the-arts. In the future, incorporating label informa-
tion into semi-supervised methods when learning attributed
network representation will be a new direction, since partially
labeled information of nodes can provide more useful infor-
mation beyond attribute information.
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