
Received November 2, 2019, accepted December 10, 2019, date of publication December 16, 2019,
date of current version December 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2959840

A Reuse-Degree Based Locality Classifier
for Locality-Aware Data Replication
QIANQIAN WU AND ZHENZHOU JI
School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

Corresponding author: Qianqian Wu (wuqianqian@hit.edu.cn)

This work was supported by the National Natural Science Foundation of China under Project 61472100.

ABSTRACT The last level cache (LLC) in shared configuration is widely used in the tiled chip
multiprocessors (CMPs), which reduces the off-chip miss rate but incurs the long on-chip access latency.
The state-of-the-art Locality-AwareData Replication (LADR) scheme provides an effective tradeoff between
capacity and latency through an in-hardware structure named locality classifier. However, the best Limited3
locality classifier (Limited3) in LADR equally preserves locality information of 3 cores for all cache lines
indiscriminately that is superfluous for some lines reused by less than 3 cores but incomplete for other
lines reused by more than 3 cores, which not only wastes the storage space but also limits the performance
improvement. In this paper, we propose a novel concept of Reuse-Degree (RD) for each LLC line, since
the line is loaded into LLC, to represent the number of cores that have reused the line. Then, we divide
cache lines into Not Reused Line (NRL, RD= 0), Single Reused Line (SRL, RD= 1) and Multiple Reused
Line (MRL, RD >= 2) based on their RDs and find that a significant fraction of LLC lines are NRLs or
SRLs at any time. Based on this observation, we design a Reuse-Degree based Locality Classifier (RD_LC)
for LADR. Specifically, RD_LC decouples the locality classifier from the LLC tag array and introduces
two kinds of locality information arrays, single locality information array (SLIA) and complete locality
information array (CLIA). Besides, RD_LC allocates a locality information entry only for the reused cache
lines (SRLs or MRLs) instead of all cache lines, and assigns an SLIA entry to SRLs and a CLIA entry to
MRLs. Our proposal avoids a waste of the storage space and also maintains enough locality information for
the accuracy of data replication decisions. Experimental results show that our RD_LC for LADR saves 51%
of the storage overhead than that of the baseline Limited3 locality classifier with a performance improvement
and a network traffic reduction by 7.56% and 3.33 % respectively.

INDEX TERMS Chip multiprocessors (CMPs), last level cache (LLC), data replication, locality classifier,
reuse-degree (RD).

I. INTRODUCTION
It is commonly believed that tiled chip multiprocessors
(CMPs), which contain a series of identical tiles connected
over a switched direct network, are becoming the most
scalable and promising architectures for future many-core
CMPs [1]–[3]. The last level cache (LLC) in tiled CMPs is
equally decomposed into lots of slices physically distributed
among all the tiles. Generally, the LLC slices can be orga-
nized as either private or shared. In private organization, each
LLC slice is private to a processor core on the same tile, which
provides lower on-chip access latency as the core can get
data from the local LLC slice directly when L1 miss occurs.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhengwei Qi.

However, this organization incurs plenty of off-chip memory
requests because it is unable to share the aggregated cache
resources, and one cache block is permitted to have multiple
replicas in LLC, occupying more effective cache capacity.
With the continual enlargement of the program working set,
shared LLC becomes more attractive than private LLC as
it allows sharing cache resource and lowers off-chip miss
rate. The main disadvantage of shared LLC organization is
that each slice can be visited by all processor cores globally
and the response time of cache request relies on the distance
between the request core and the home LLC slice possessing
the cache block. For future many-core CMPs, due to the long
wire delay, the LLCon-chip access latency is likely to become
unnegligible, which will results in overall performance degra-
dation seriously.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 182207

https://orcid.org/0000-0002-0897-2950
https://orcid.org/0000-0001-6686-3819


Q. Wu, Z. Ji: RD_LC for LADR

The earliest study on shared LLC organization, namely
Victim Replication (VR) [4], maintains shared features and
resorts to private features by replicating victim lines of local
L1 cache to the local LLC slice. So, VR achieves low off-chip
miss rate and reduces on-chip access latency simultaneously.
However, VR blindly replicates all victim lines to local LLC
slices, resulting in the pollution of the LLC and the increase
of off-chip miss rate. This limits the improvement of system
performance. In order to overcome the shortcoming of VR,
several improved data replication schemes [5]–[7] have been
proposed. These schemes can selectively replicate cache lines
controlled by some mechanism, but they either do not benefit
from the replication of all types of data, or cause too much
hardware overhead for guiding accurate data replication.

The Locality-Aware Data Replication (LADR) [7] policy
controls data replication according to data locality. LADR
introduces an in-hardware run-time Complete Locality Clas-
sifier (Complete) to track the locality information of all cores
for each cache line in LLC used for guiding the replication
decisions. Although LADR performs better than prior other
data replication schemes, the hardware overhead caused by
Complete is impractical, which prevents LADR from scal-
ing to future many-core CMPs. The improved Limited3 [7]
Locality Classifier (Limited3) in LADR that only tracks local-
ity information of 3 cores is presented for alleviating the
storage overhead of Complete. Nevertheless, Limited3 cou-
ples equivalent hardware with all LLC lines indiscriminately
for tracking locality information of 3 cores, which not only
wastes storage space but also damages performance. On one
hand, for the lines reused by only one core or even have not
been reused, it is not necessary to reserve space for them
to track locality information of 3 cores. On the other hand,
for the lines reused by more than 3 cores, Limited3 cannot
maintain complete locality information so that it makes lots
of inaccurate data replication decisions and degrades the
performance.

In this paper, we define a novel concept of Reuse-Degree
(RD) to denote the number of cores that have reused the line
since it is loaded into LLC. Motivated by the observation in
section IV-A, we propose a Reuse-Degree based locality clas-
sifier for LADR (RD_LC). we design RD_LC as an decou-
pled hybrid locality classifier, which allocates hardware space
for LLC lines based on their RDs. Specifically, we decouple
locality classifier from the LLC tag array and introduce two
kinds of locality information arrays, single locality informa-
tion array (SLIA) and complete locality information array
(CLIA). Meanwhile, we allocate a locality information entry
only for the reused cache lines instead of all cache lines,
and assign an SLIA entry to the cache lines with a low RD
of 1 and a CLIA entry to the cache lines with a high RD
over 1. Our proposal avoids a waste of the storage space
and also maintains enough locality information for the accu-
racy of data replication. Full-system simulations of 64-core
tiled CMPs show that RD_LC saves the storage overhead,
improves the performance and reduces the network traffic
than the baseline Limited3. Our proposed RD_LCmechanism

is suitable for the real application scenario, that is, the number
of cores in tiled CMPs will expand to a greater extent in the
future (many-core CMPs), and the on-chip space will be very
tight. Complete and Limited3 add excessive storage overhead,
which is not suitable for the many-core application scenario.
In this scenario, our RD_LC mechanism introduces a new
hardware structure with great care, avoiding unnecessary
storage overhead and improving the performance.

The rest of this paper is organized as follows. Section II
introduces some related work about previously proposed data
replication schemes and decoupled structures. Section III
gives a description of two kinds of locality classifier in LADR
and analyzes the disadvantages of Limited3. Section IV
defines a novel concept of Reuse-Degree (RD) and designs
a reuse-degree based locality classifier (RD_LC) for LADR.
The experimental methodology and results comparing our
RD_LC with the baseline Limited3 on the PARSEC [12] and
SPLASH-2 [11] benchmark suites are presented in Section V.
Finally, the conclusion is summarized in Section VI.

II. RELATED WORK
A. DATA REPLICATION
There is a large quantity of studies addressing the long
on-chip access latency problem for performance improve-
ment in CMPs by replicating data to local LLC.

Victim Replication (VR) [4] replicates the L1 victim
blocks to local LLC. On one hand, it permits L1 to get
data from local LLC, therefore reduces the on-chip access
latency. On the other hand, it replicates all L1 victims with-
out control and the replicated local lines occupy abundant
LLC space, which increases the local LLC off-chip miss
rate. Thus, the blindly replication policy limits the perfor-
mance improvement of CMPs. Adaptive Selected Replica-
tion (ASR) [5] controls data replication by estimating the
benefit and cost of it and only allows replicating shared
read-only lines. Although ASR relieves the space occupation
in VR to some extent, it ignores the access character of a
single cache line and cannot benefit from the replication of
all types of lines, which results in restricted performance
improvement. Nexus [18] adaptively chooses howmany local
LLC replicas to replicate on the entire chip, depending on
the replication degree of the different workloads, but like
ASR [5], this scheme only focuses on the replication of read-
only cache lines, and it cannot achieve performance gains
from the replication of the cache lines with other types. The
difference with ASR [5] and Nexus [18] is that our proposed
RD_LC focuses on the replication of all types of cache lines,
so RD_LC can benefit more from replication than ASR and
Nexus. Dynamic Reusability-based Replication (DRR) [6]
manages data replication by the reusability of cache lines and
only replicates data with high reusability. DRR improves the
performance compared to VR and ASR. However, it needs
to monitor reuse pattern at cache line granularity and causes
too much storage overhead. Locality-Aware Data Replication
(LADR) [7] introduces a run-time hardware locality classifier
to track the locality information of all cores at the cache

182208 VOLUME 7, 2019



Q. Wu, Z. Ji: RD_LC for LADR

line granularity. Nevertheless, the first kind of locality clas-
sifier, called Complete, is impractical for the reason that
it tracks locality information of all cores for each LLC
line, which causes huge storage overhead. The improved
Limited3 [7] locality classifier in LADR saves the stor-
age overhead by means of tracking locality information
of 3 cores. However, Limited3 still reserves equivalent space
for all LLC lines even though some lines do not need local-
ity information tracking, which wastes the hardware space.
Moreover, it hurts the performance because the incomplete
locality information impacts the accuracy of the replica-
tion decisions. Unlike DRR [6] and LADR [7], RD_LC
solves the problem of excessive storage overhead by using
a decoupled structure. In addition, RD_LC avoids perfor-
mance loss in Limited3 by tracking the complete local-
ity information for some cache lines. Locality-Aware Data
Access Control (LDAC) [17] attempts to further reduce stor-
age overhead by only tracking locality information of 3
cores for a limited number of cache lines on the basis
of the Limited3 locality classifier in LADR. LDAC only
focuses on the storage overhead problem in Limited3, which
not only fails to solve the performance loss problem of
Limited3, but also further reduces performance. Compared
with LDAC [17], the RD_LC scheme of this paper does not
directly reduce the number of cache lines that are tracked,
but tracks the different locality information for cache lines
based on their reuse-degree (RD), thereby simultaneously
solving the problem of excessive storage overhead and perfor-
mance loss in Limited3. Besides, the CLCE [19] replication
scheme is proposed to improve the cache space utilization
of the ‘in-network caching’ in the information-centric net-
work (ICN) architecture. Pyramid [20] is proposed as a
decentralized utility- and locality-aware replication method
to maximize the average available bandwidth and minimize
the average latency in the P2P cloud storage systems. The
application scenarios of CLCE [19] and Pyramid [20] are
different from our RD_LC. However, the RD_LC strategy is
designed to take full advantage of the on-chip LLC space to
improve the performance of today’s popular tiled CMPs.

B. DECOUPLED STRUCTURES
In addition to the performance improvement, some studies
focus on storage space degradation in CMPs using the decou-
pled structures.

The Reuse Cache (RC) [13] adopts decoupled LLC cache
structure to maintain performance using less storage capacity,
which decouples the tag and data arrays and only store data
for the lines that have been reused. SelectDirectory (SD) [14]
applies the decoupled idea to the directory structure for
reducing the hardware cost of directory. It decouples the tag
array and metadata array in directory and only allocates a
metadata entry for the share lines. The decoupled structure
allows less data entries than tag entries, which is good for
allocating unequal hardware space for different kinds of lines
and improving the area efficiency.

Similar to RC [13] and SD [14], we also adopt a decoupled
structure in our design. The difference between our proposed
RD_LC and the above two decoupled designs is that they
apply the decoupled idea to the LLC cache structure and the
directory structure respectively, and we use the decoupled
structure to design the locality classifier structure. In addi-
tion, RD and SD use the decoupled structures to reduce the
storage overhead with little performance compromise. The
decoupled locality classifier structure proposed in this paper
not only reduces the storage overhead but also improves the
performance.

C. COMBINATION
In this paper, we analyze the hardware overhead and per-
formance problems resulting from the coupled structure of
Limited3 in the LADR [7] data replication scheme and take
advantage of the decoupled structures [13], [14] to design a
decoupled locality classifier for LADR, which introduces two
kinds of locality information arrays and allocates appropriate
storage space according to the reuse-degree (RD) of the cache
lines. The detailed description of our design will be shown in
the following section IV.

FIGURE 1. The 64-tiled CMP organization of LADR with locality classifier.

III. LOCALITY CLASSIFIER IN LADR
Tiled architectures are suitable for future many-core CMPs
because of its high scalability to large core counts. Figure 1(1)
shows the tiled CMP organization of LADR with 64 repli-
cated tiles communicating through an on-chip network. Each
tile is made up of a processor core, a router, private L1 instruc-
tion and data caches, and a slice of logically shared LLC (L2)1

together with an in-cache directory and a locality classifier.
For intelligently replicating data to local LLC slice, LADR
introduces an in-cache structure named locality classifier to

1In this paper, we assume the tiled CMP has two levels of cache, so the
L2 level cache corresponds to LLC.

VOLUME 7, 2019 182209



Q. Wu, Z. Ji: RD_LC for LADR

track the locality information for all cache lines in LLC.
The details of the Complete and Limited3 (Limitedk, k = 3)
classifier entry are presented respectively in Figure 1(2-A)
and Figure 1(2-B).

A. COMPLETE LOCALITY CLASSIFIER
As we can see in Figure 1(2-A), the Complete entry
is extended with additional bits including a Replica
Reuse counter (RR) along with the Replication Mode bits
(RM0 ∼ RM63) andHomeReuse counters (HR0 ∼HR63) for
all 64 cores on the basis of the directory entry. If the cache
line is in home tile (called home line), the HRi (e.g. HR0)
is a counter to calculate how many times the home line is
accessed by corei and will be incremented on every hit of
the request from corei. Correspondingly, the RMi (e.g. RM0)
is designed as a identifier to make replication decisions for
corei and will be set true when the value of HRi reaches the
Replication Threshold (RT). On condition that the cache line
is a replica in local tile (called local line), the RR is used to
count the number of times that the local line is accessed by
local L1 and is incremented on every local hit.

B. LIMITED3 LOCALITY CLASSIFIER
The hardware overhead of Complete is so large that it is
impractical for tiled CMPs, therefore, LADR proposes the
optimized Limitedk in order to reduce the hardware overhead.
But Limitedk hurts the performance due to the inaccuracy
of locality information. Limited3 achieves the best trade-off
between performance and hardware overhead. As is shown
in Figure 1(2-B), the entry in Limited3 still maintains a
RR, whereas, it only retains 3 groups of RM, HR and Core
ID (CID) bits. Limited3 merely tracks locality information for
3 of the 64 cores with the CID to identify the tracked core, and
the replication decisions of the rest cores are made according
to the tracked locality information.

C. DISADVANTAGES OF LIMITED3
We summarize three disadvantages of Limited3. (1) Adding
unified hardware resources without distinguishing home lines
and local lines will waste plenty of space. Because, RR is
active only when the cache line acts as a local line, and on the
other hand, the 3 groups of CID, RM and HR only work for
a home line. (2) If the proportion of the home lines with an
RD of 1 or 0 is large at any time, it also wastes great space to
track locality information of 3 cores for all lines. (3) When a
home line has been reused by more than 3 cores, especially
by most or all cores, the accuracy of replication decisions and
the system performance will be hurt.

IV. REUSE-DEGREE BASED LOCALITY CLASSIFIER
FOR DATA REPLICATION
A. THE CHARACTERISTIC OF REUSE-DEGREE
1) THE CONCEPT OF REUSE-DEGREE
We define a novel concept of Reuse-Degree (RD) for each
cache line in the shared LLC, which indicates the number of

cores that have reused a particular cache line at home location
since it is loaded into LLC. In this terminology, an RD of i
(i= 0, 1, 2, . . ., 64) means that the number of cores that have
reused the cache line is equal to i, and specially, a cache line
with an RD of 0 has not been reused by any core. Besides,
we divide all cache lines in LLC into three groups based on
their RDs: Not Reused Line (NRL), RD = 0; Single Reused
Line (SRL), RD= 1; Multiple Reused Line (MRL), RD > 1.

2) REQUIREMENTS FOR REUSE-DEGREE
BASED LOCALITY CLASSIFIER
We analyze the behavior of a set of multithread workloads
selected in PARSEC [12] running in a 64-core tiled CMP
with shared LLC slices. We monitor the RD by adding a
counter for each cache line to record the number of cores
that have reused the cache line. The simulation details can be
seen in Section V-A. Figure 2 demonstrates the distribution
of the number of cache lines in LLC with different RDs.
As we can see, the cache lines with an RD of 0 (NRL)
occupy about 72% on average (If a cache line is a local
line, its RD is equal to 0 definitely). And the proportion of
the lines with an RD of 1 (SRL) is 20% and the rest part
of cache lines have an RD value over 1 (MRL). Therefore,
over 92% of cache lines are unnecessary to reserve space for
tracking locality information of 3 cores, so a lot of space for
hardware will be saved. Because, the cache line with an RD
of 0 does not need to track locality information for any core,
and if a line’s RD is equal to 1, one group of RM, HR, and
CID is enough. Moreover, complete locality information is
required to track for the home lines whose RDs are much
larger than 3 so as tomake accurate replication decisions. As a
whole, it is necessary to design a Reuse-Degree based locality
classifier for LADR. Because RD_LC adds different amount
of hardware for cache lines based on their RDs, that not only
decreases hardware overhead, but also improves performance
compared to Limited3.

FIGURE 2. Distribution of the number of cache lines with an RD of 0, 1,
2-3, and 4-64.

B. THE OVERVIEW OF REUSE-DEGREE BASED
LOCALITY CLASSIFIER
The state-of-the-art LADR policy adopts a run-time hard-
ware locality classifier to track locality information, and

182210 VOLUME 7, 2019



Q. Wu, Z. Ji: RD_LC for LADR

replicates cache lines with high reuse to the local LLC based
on the locality information. However, the locality classifier
in LADR uses a coupled structure, and each tag entry is
extended with the same hardware to keep locality information
of 3 cores. The coupled and fixed structure between the tag
array and locality information array not only wastes space but
also damages performance.

According to the observation for the RDs of all LLC cache
lines in section IV-A, the majority of cache lines are NRLs
or SRLs, and a small portion of lines are MRLs at any time.
In this section, we propose a Reuse-Degree Locality Classi-
fier for Locality Aware Data Replication (RD_LC for short),
which uses a decoupled and hybrid structure to track locality
information. RD_LC decouples the tag array and locality
information array, divides the locality information array into
two categories: Single locality information array (SLIA) and
Complete locality information array (CLIA) and allocates
locality classifier entries based on the RDs of cache lines.

Aiming at the three disadvantages in Limited3, RD_LC
takes the following three actions. (1) We only need to store
replica reuse information for local lines, and locality informa-
tion for home lines. (2) If the home line is a NRL (RD = 0),
we will not allocate a locality information entry for the line.
In other words, only the lines that have been reused will
correspond to locality information entries. If the home line is
a SRL (RD= 1), wewill allocate a single locality information
entry in SLIA to track the core’s locality information. (3) Oth-
erwise, we will allocate a complete information entry in
MLIA for the LLC home lines to track locality information of
all cores. For simplicity, we maintain complete and accurate
locality information for all the home lines with an RD value
over 1, because this kind of lines occupy only a small portion
and it will not cause too much hardware cost.

In the following two sections, we will present the details
about the organization of RD_LC and how RD_LC works in
our data replication scheme.

C. THE ORGANIZATION OF RD_LC
The organization of RD_LC is shown in Figure 3. As a whole
in Figure 3(a), we add a slice of RD_LC for each tile in
CMPs. The hybrid locality information arrays (SLIA and
CLIA) in RD_LC are decoupled from TA, and the entries
in SLIA and CLIA are connected with the entries in TA by
two points in the opposite direction: Forward Pointer (FP)
and Reverse Pointer (RP). Moreover, similar to TA, SLIA and
CLIA are organized as set-associative structures. Specifically,
the entries of TA, SLIA and CLIA are shown in Figure 3(b).
Firstly, we add Valid (V), Single/Complete (S/C) and Replica
Reuse/Forward Pointer (RR/FP) for each entry in TA. If the
cache line is a local line, V and S/C are invalid, and RR/FP
is used to store replica reuse information for it. For a home
line, V represents whether the home line is a NRL, S/C is
used to distinguish a SRL from a MRL, and RR/FP indicates
the way of the locality information entry in SLIA or MLIA
related to the home line. Because the entry in SLIA andMLIA
can be got by FP rather than tag comparison, no extra latency

FIGURE 3. The organization of Reuse-Degree based locality classifier.

will be caused. When V is invalid, the home line is a NRL,
therefore S/C and RR/FP are also invalid. When V is valid
and S/C is invalid, the home line is a SRL, and RR/FP points
to the locality information entry in SLIA. Correspondingly,
when V and S/C are both valid, the home line is a MRL,
and RR/FP points to the locality information entry in MLIA.
Secondly, the SLIA entry stores locality information for a
related SRL and it contains one group of RM, HR, and CID,
Valid (V), LRU bit, and Reverse Pointer (RP). As in Limited3,
CID, RM, and HR in RD_LC represent the tracked Core
ID, the Replication Mode bit and the Home Reuse Counter
respectively. V signs whether the SLIA entry is valid, LRU
bit is used for replacement policy, and the way number of the
related SRL is indicated by the RP. Thirdly, RD_LC stores
complete locality information for a related MRL in a MLIA
entry. The group amount of RM and HR in MLIA entry
is n, which is equal to the number of cores on chip. The
MLIA entry also contains Valid (V), LRU bit, and Reverse
Pointer (RP) with the same function as in SLIA entry.

Breaking the one-to-one mapping between the tag array
and locality information array will allow fewer locality
information entries than the tag entries. And the decou-
pled and hybrid structure will enable different cache lines
have different amount of space for locality information stor-
ing. Therefore, RD_LC will save lots of storage space and
simultaneously master more accurate locality information.
Although the CLIA entry needs large space for complete
locality information, its count is small on account of the
small proportion of MRL. Thus, CLIA will not offset the
spatial advantage of the decoupled and hybrid organization.

VOLUME 7, 2019 182211



Q. Wu, Z. Ji: RD_LC for LADR

In order to demonstrate the area efficiency of our scheme,
a comparison among the extra hardware structures and stor-
age overhead required by Limited3 and RD_LC can be found
in section V-B(3).

D. THE OPERATION OF RD_LC
1) ACCESS REQUEST
On a request miss in L1 cache, it firstly requests its local LLC.
If there is a local line in local LLC, the replicated line is sent
to L1 cache directly and RD_LC increments its RR in TA.
If the local LLC does not contain the request line, it forwards
the request to the home LLC. When the home LLC misses
the request line, it gets the line from main memory. Because
the line is used for the first time, in other words, it is not
reused by any core and is a NRL. RD_LC is not required to
track locality information for any core and only allocates a
tag entry in TA. What’s more, V, S/C, and RR/FP are set to
invalid. Then, the line is only sent to the request L1 cache
and not replicated to its local LLC. On the other hand, if the
request line exists in the home LLC, RD_LC permits several
situations to happen depending on the V and S/C in TA. The
pseudo code of the access request control algorithm based on
V and S/C is shown in Figure 4.

(1) If V is invalid, the home line is a NRL so far. The line
is reused for the first time by the request core and RD_LC
needs to track locality information for the single core. RD_LC
allocates a new entry in SLIA for the line for the reason that
the line is just reused by only one core. In the SLIA entry, CID
stores the ID of the request core; RM and HR is initialized
to false and 0 respectively; and RP is set to the way of the
related tag entry in TA. Simultaneously, the SLIA adopts LRU
replacement policy, and the SLIA entry is promoted to the
MRU position. Moreover, the V of the tag entry in TA is set
to valid, which shows the home line is a SRL, and the FP is
set to the way of the new SLIA entry.

(2) If V is valid and S/C is invalid, the home line is a SRL
so far and FP points to a SLIA entry. RD_LC firstly gets the
SLIA entry by FP and compares its CID with the ID of the
request core (for example i). Then RD_LC carries out two
different operations according to the comparison.

If the ID of the request core is equal to CID, the locality
information stored in SLIA entry belongs to the request core
and RD_LC updates the SLIA entry directly. The locality
information is updated similar to the method in LADR.
Specifically, if the RM is false, the HR is incremented and
then if the HR is greater than or equal to the RT (for exam-
ple 3), the RM is updated to true; otherwise, nothing is needed
to do. What’s more, the SLIA entry is promoted to the MRU
position.

Otherwise, the home line becomes a MRL, therefore
RD_LC needs to allocate a new entry in MLIA for the home
line and initialize it. Then, the locality information of the
original single core in SLIA entry is copied to the newMLIA
entry and the locality information of the new request core is
updated. Besides, the S/C of the tag entry is set to true and

FIGURE 4. The pseudo code of the access request control algorithm
based on V and S/C.

the FP is modified to point to the new MLIA entry. Finally,
the old SLIA entry is deallocated.

(3) If V and S/C are all valid, the home line is a MRL so far
and FP points to a MLIA entry. RD_LC still gets the MLIA
entry by FP, and then updates the locality information of the
corresponding core. Finally, the MLIA entry is promoted to
the MRU position.

182212 VOLUME 7, 2019



Q. Wu, Z. Ji: RD_LC for LADR

2) REPLACEMENT
As the system runs, more and more entries are needed in TA,
SLIA and MLIA necessarily. All the three arrays face the
situation to evict a victim entry in order to make room for
the new entry. The pseudo code of the replacement algorithm
is shown in Figure 5.

FIGURE 5. The pseudo code of the replacement algorithm.

(1) If the TA needs to evict a victim entry, two different
actions will be taken according to whether the evicted line
is a home line or local line (replica). If the evicted line is a
home line which is linkedwith a SLIA orMLIA entry, and the
replacement of the TA entry will result in the eviction of the
linked SLIA or MLIA entry. However, if the evicted line is a
local line, the local LLC will send back-invalidation message
to the L1 to invalidate the corresponding line. In addition,
if the state of the local replica line is Modified (M), the local
LLC will write back the data and RR to the home LLC, or the
local LLC will only send back the RR. Then, when the home
LLC receives the RR and is a SRL or MRL, it will update the
replication decision (RM) according to the value of RR.

(2) If, a SLIA or MLIA entry is evicted, the V, S/C and
FP in the linked TA entry will be set to invalid, and the
corresponding cache line becomes to a NRL.

V. EXPERIMENT
A. EXPERIMENTAL METHODOLOGY
The verification work of optimization mechanisms in the
actual hardware environment has a long verification cycle and
is costly. Currently, most of the optimization mechanisms in
the field of architecture research are performed by simulator
simulation. We use gem5 [8], a modular discrete event driven
simulator merged by the best aspects of the M5 [9] and

TABLE 1. Simulator configuration parameters.

GEMS [10] simulators, in full-system (FS) mode to evaluate
our proposed RD_LC. Because we choose Limited3 [7] for
LADR as the baseline system, the experiment in this paper
is set up as consistent as possible in LADR, such as proces-
sor core number, memory system, coherence protocol and
on-chip network. The detailed memory system is modeled
using the ruby modular in gem5 in which each core has its
private L1I and L1D cache, and the LLC is equally divided
into 64 slices that physically distributed among 64 tiles and
logically shared by 64 cores. What’s more, the relationship
between the private L1 caches and the shared LLC is inclusive
and the coherence among the private caches is maintained
using a MESI protocol. The detailed basic system parameters
and additional parameters of SLIA and MLIA in RD_LC are
summarized in Table 1.

As shown in Table 2, we measure the performance
impact of RC_LC for LADR using the PARSEC [12] and
SPLASH-2 [11] benchmark suits. The experimental results
reported in the section V-B are collected from the Region-of-
Interest (ROI) phase [15] of each multithread workload. For
canneal, dedup, and ferret, the results shown in sectionV-B(2)
and V-B(3) are from the simsmall input data set, while those
shown in section V-B(4) are from simlarge input data set in
PARSEC.

In the following section, we firstly analysis the additional
access latency in RD_LC and the baseline Limited3. Then, we
compare the performance in term of execution time and net-
work traffic of RD_LC and Limited3. Moreover, we analyze
the additional structures and storage overhead in Limited3
and RD_LC.

B. EXPERIMENTAL RESULTS
1) ACCESS LATENCY
Both Limited3 and RD_LC may introduce additional access
latency for the local LLC tag access latency and the home

VOLUME 7, 2019 182213



Q. Wu, Z. Ji: RD_LC for LADR

TABLE 2. Workloads and input size.

LLC directory access latency. CACTI 6.5 [16] is used in this
paper tomodel the access latency assuming 32nm technology.

On one hand, when a cache line is accessed as a local LLC
replica, the RR bits will be accessed, which may increases the
local LLC tag access latency. However, as shown in Table 3,
the RR bits in Limited3 and the RR/FP+S/C+V bits in
RD_LC are accessed along with the original Tag+LRU bits
in each LLC tag entry. Therefore, even considering the addi-
tional access latency introduced by Limited3 and RD_LC,
the local LLC Tag access latency still requires 1 cycle at
2GHZ clock.

TABLE 3. Local LLC tag access latency.

On the other hand, when a cache line is accessed as a home
LLC line, the locality information in Limited3 is coupled
with the directory sharer list and the locality information
in RD_LC is stored in SLIA or MLIA which is decoupled
from the LLC directory. Thus, when a home LLC line is
accessed, the locality information in Limited3 is accessed
along with the directory sharer list and the locality infor-
mation in SLIA or MLIA is accessed in parallel with the
directory sharer list. As is showed in Table 4, the origi-
nal sharer list access latency is 4 cycles, and considering
the additional latency, the access delay in Limited3 still
requires 4 cycles. The access latencies of SLIA and MLIA
are all 3 cycles which are hidden by the directory sharer list
access latency (4 cycles). Of particular importance, accord-
ing to observation in section IV-A(2), most LLC lines are
NRLs (RD = 0), so in most cases the SLIA and MLIA
will not be accessed and will not result in additional access
latency.

Based on the above analysis, neither Limited3 nor RD_LC
introduces additional access latency for the local LLC
tag access latency and the home LLC directory access
latency.

TABLE 4. Home LLC directory access latency.

FIGURE 6. Normalized execution time to Limited3.

2) EXECUTION TIME
Figure 6 shows the execution time of RD_LC normalized
to the baseline Limited3 [7] in LADR. In Figure 6, RD_LC
improves the performance of almost all benchmarks com-
pared to Limited3 and the execution time of RD_LC is 7.56%
less than Limited3 on average. Because Limited3 tracks
locality information of only 3 cores for all lines indiscrim-
inately while RD_LC adopts hybrid arrays and MLIA can
stores complete locality information for MRLs (RD > 3) so
that RD_LC makes more accurate decisions than Limited3.
So, RD_LC transforms more remote home LLC hits to local
LLC hits, which reduces the LLC on-chip access latency and
results in the overall performance improvement. Specially,
the maximum performance gain happens at Swaptions bench-
mark with about 19.46% performance improvement. This is
because Swaptions has relatively more MRLs, and Limited3
cannot, but RD_LC can, makes accurate replication decisions
for the extra cores based on their own locality information.
However, RD_LC and Limited3 have similar performance at
the benchmarks Water_nsquared and Water_spatial because
most of LLC lines in these benchmarks are NRLs or SRLs,
which do not benefit from theMLIA structure in RD_LC. For
this kind of benchmarks, although RD_LC cannot reduce the
execution time, it saves the storage overhead by decoupling
the SLIA from the TA which can be found in section V-B(3).

3) NETWORK TRAFFIC
Figure 7 depicts the on-chip network traffic of RD_LC
normalized to Limited3. Limited3 cannot preserve complete

182214 VOLUME 7, 2019



Q. Wu, Z. Ji: RD_LC for LADR

locality information for MRLs, which will result in a cer-
tain amount of inaccurate replication decisions. So, when
Limited3 mistakenly replicates the cache lines with low reuse
or excludes the replicationwith high reuse, the increased local
LLC misses and the subsequent remote home LLC accesses
will consume extra network traffic. RD_LC overcomes the
shortcoming of Limited3 by storing completing locality infor-
mation in MLIA and has a network traffic less than Limited3,
3.33% on average, as depicted in Figure 7.

FIGURE 7. Normalized network traffic to Limited3.

4) O3+SIMLARGE
The out-of-order (O3) CPU model is adequate for accurate
architecture. Meanwhile, because modern workloads typi-
cally have a large working set, they need to be evaluated using
the simlarge working set in PARSEC.

For a large working set, the number of NRLs (RD = 0)
and SRLs (RD = 1) will be large due to frequent cache
misses. In this case, Limited3 stores the locality information
of 3 cores for all cache lines, which will result in huge storage
waste, as is detailed in section V-B(5). However, RD_LC
does not need to store locality information for NRLs and
only needs to store locality information of one core for SRLs,
so that space can be saved without affecting performance.
Moreover, although the number of MRLs (especially those
with an RD > 3) is small, these cache lines are accessed
frequently. Therefore, it means that storing only the locality
information of 3 cores in Limited3 will result in reduced
the accuracy of data replication decisions and will degrade
performance. RD_LC stores complete locality information
for a small number of MRLs, which not only ensures the
accuracy of replication decisions and system performance,
but also does not introduce excessive hardware overhead.
Figure 8 shows the normalized execution time and network
traffic results with the O3 CPU model and the simlarge
working set in PARSEC, indicating that RD_LC is bet-
ter than Limited3 in terms of execution time and network
traffic.

5) STORAGE OVERHEAD
The additional structures and storage overhead in Limited3
and RD_LC are shown in Table 5. In this paper, the particular

FIGURE 8. Normalized execution time and network traffic to Limited3.

configuration is a 64 tiled CMP, in which each tile has 32KB
L1 caches, a 128KB LLC (L2 cache) slice, and a 64B cache
block.

TABLE 5. The storage overhead in Limited 3 and RD_LC.

Limited3 in LADR couples locality information on TA
and does not distinguish home lines and local lines, so the
coupled organization requires equivalent storage overhead
for all LLC lines. Limited3 adds a RR and three groups of
CID, RM and HR for each line. The number of bits required
by RR, CID, RM and HR is 2 bits, 6 bits, 1 bit and 2 bits
respectively (assuming threshold is 3). Therefore, Limited3
requires (2+ 3× (6+ 1+ 2)) × 128

64×8 = 7.25KB storage
overhead. The total additional cost of Limited3 is about 5.7%
of the cache capacity.

RD_LC adopts the decoupled and hybrid locality informa-
tion tracking organization. Increasing associations of SLIA
and MLIA will be beneficial to their hit rate, but has a bad
influence on storage overhead. Because the lengths of the
FP in TA entry and the LRU bit in SLIA entry and MLIA
entry are all equal to logassoc_SLIAorMLIA2 . As the same with
association, the numbers of entries in SLIA and MLIA have
the same impact on the hit rate and storage overhead. The
result in section V-B(2) demonstrates that a way of 16 in
SLIA and MLIA, and setting SLIA and MLIA to 256 and
64 entries respectively are enough for performance improve-
ment. RD_LC only brings in 6 bits (1 bit for V, 1 bit for S/C,

VOLUME 7, 2019 182215



Q. Wu, Z. Ji: RD_LC for LADR

and 4 bits for RR/FP) for each TA entry, and adds SLIA and
MLIA to track locality information. The length of a SLIA
entry is 17bits (9 bits for one group of CID, RM, and HR,
1 bit for V, 4 bits for LRU, and 3 bits for RP). Differently, each
MLIA entry contains 64 groups of RM and HR, 1 bit for V,
4 bits for LRU, and 3 bits for RP and needs 200 bits in total.
In general, RD_LC requires 3.59KB extra costs and reduces
the storage overhead by 51% compared to that of Limited3.

VI. CONCLUSION
In this paper, we propose a novel RD_LC locality classifier
for locality-aware data replication. We classify the LLC lines
into three kinds: NRL, SRL, and MRL based on their RDs.
And we design RD_LC as a decoupled and hybrid structure
to track locality information for different kind of lines with
two arrays: SLIA and MLIA. The decoupled structure avoids
a waste of hardware space compared to the coupled structure
in Limited3. And the hybrid arrays permits tracking complete
locality information for MRLs in MLIA. Our simulation
results show that RD_LC achieves on average 7.56% and
3.33% of the performance improvement and the network
traffic reduction compared to Limited3. Moreover, the extra
storage overhead for implementing RD_LC is 51% less than
that of Limited3.

REFERENCES
[1] S. Das and H. K. Kapoor, ‘‘Dynamic associativity management in tiled

CMPs by runtime adaptation of fellow sets,’’ IEEETrans. Parallel Distrib.
Syst., vol. 28, no. 8, pp. 2229–2243, Aug. 2017.

[2] S. Chakraborty and H. K. Kapoor, ‘‘Towards controlling chip temperature
by dynamic cache reconfiguration in multiprocessors,’’ in Proc. Int. Conf.
VLSI Design Int. Conf. Embedded Syst., Jan. 2017, pp. 75–80.

[3] S. Das and H. K. Kapoor, ‘‘Victim retention for reducing cache misses in
tiled chip multiprocessors,’’ Microprocessors Microsyst., vol. 38, no. 4,
pp. 263–275, 2014.

[4] M. Zhang and K. Asanovic, ‘‘Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors,’’ in Proc. Int. Symp.
Comput. Archit., Jun. 2005, pp. 336–345.

[5] B. M. Beckmann, M. R. Marty, and D. A. Wood, ‘‘ASR: Adaptive
selective replication for CMP caches,’’ in Proc. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2006, pp. 443–454.

[6] J. Wang, D. Wang, and H. Wang, ‘‘Dynamic reusability-based replication
with network addressmapping in CMPs,’’ inProc. 17th Asia South Pacific
Design Automat. Conf., 2012, pp. 487–492.

[7] G. Kurian, S. Devadas, and O. Khan, ‘‘Locality-aware data replication
in the Last-Level Cache,’’ inProc. IEEE 20th Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2014, pp. 1–12.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, and R. Sen, ‘‘The gem5
simulator,’’ACMSIGARCHComput. Archit. News, vol. 39, no. 2, pp. 1–7,
2011.

[9] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, ‘‘The M5 simulator: Modeling networked systems,’’
IEEE Micro, vol. 26, no. 4, pp. 52–60, Jul./Aug. 2006.

[10] M. M. Martin, ‘‘Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset,’’ Comput. Archit. News, vol. 33, no. 4,
pp. 92–99, Nov. 2005.

[11] S. C. Woo, M. Ohara, and E. Torrie, ‘‘The SPLASH-2 programs: Char-
acterization and methodological considerations,’’ in Proc. Int. Symp.
Comput. Archit., 1995, pp. 26–36.

[12] C. Bienia, S. Kumar, and J. P. Singh, ‘‘The PARSEC benchmark suite:
Characterization and architectural implications,’’ in Proc. Int. Conf. Par-
allel Archit. Compilation Techn., 2008, pp. 72–81.

[13] J. Albericio, P. Ibáñez, and V. Viñals, ‘‘The reuse cache: Downsizing the
shared last-level cache,’’ in Proc. IEEE/ACM Int. Symp. Microarchitec-
ture, 2013, pp. 310–321.

[14] N. Zhang, N. Zhang, and N. Zhang, ‘‘SelectDirectory: A selective direc-
tory for cache coherence in many-core architectures,’’ in Proc. Design,
Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2015, pp. 175–180.

[15] X. Zhan, Y. Bao, and C. Bienia, ‘‘PARSEC3.0: A multicore benchmark
suite with network stacks and SPLASH-2X,’’ ACM SIGARCH Comput.
Archit. News, vol. 44, no. 5, pp. 1–16, 2017.

[16] N. Muralimanohar and R. Balasubramonian, ‘‘Optimizing NUCA orga-
nizations and wiring alternatives for large caches with CACTI 6.0,’’ in
Proc. IEEE/ACM Int. Symp. Microarchitecture, 2007, pp. 3–14.

[17] Q. Shi, G. Kurian, and F. Hijaz, ‘‘LDAC: Locality-aware data access
control for large-scale multicore cache hierarchies,’’ Acm Trans. Archit.
Code Optim., vol. 13, no. 4, p. 37, 2016.

[18] P.-A. Tsai, N. Beckmann, and D. Sanchez, ‘‘Nexus: A new approach to
replication in distributed shared caches,’’ in Proc. 26th Int. Conf. Parallel
Archit. Compilation Techn. (PACT) , Sep. 2017, pp. 166–179.

[19] M. Bilal and S.-G. Kang, ‘‘A cache management scheme for efficient
content eviction and replication in cache networks,’’ IEEE Access, vol. 5,
pp. 1692–1701, 2017.

[20] Y. Hassanzadeh-Nazarabadi and A. Küpçü, ‘‘Decentralized utility-
and locality-aware replication for heterogeneous DHT-based P2P
cloud storage systems,’’ 2019, arXiv:1907.11997. [Online]. Available:
https://arxiv.org/abs/1907.11997

QIANQIAN WU received the B.S. and M.S.
degrees in computer science and technology from
the Harbin Institute of Technology, where she is
currently pursuing the Ph.D. degree in computer
science and technology. Her research interests
include computer architecture, high performance
computing, and parallel computing.

ZHENZHOU JI received the Ph.D. degree in com-
puter science from the Harbin Institute of Technol-
ogy, in 2000. He is currently a Professor with the
Harbin Institute of Technology. His research inter-
ests include computer architecture, parallel pro-
cessing computer, and computer network security.
He is the Vice Chairman of Computer Architecture
at China Computer Federation (CCF).

182216 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	DATA REPLICATION
	DECOUPLED STRUCTURES
	COMBINATION

	LOCALITY CLASSIFIER IN LADR
	COMPLETE LOCALITY CLASSIFIER
	LIMITED3 LOCALITY CLASSIFIER
	DISADVANTAGES OF LIMITED3

	REUSE-DEGREE BASED LOCALITY CLASSIFIER FOR DATA REPLICATION
	THE CHARACTERISTIC OF REUSE-DEGREE
	THE CONCEPT OF REUSE-DEGREE
	REQUIREMENTS FOR REUSE-DEGREE BASED LOCALITY CLASSIFIER

	THE OVERVIEW OF REUSE-DEGREE BASED LOCALITY CLASSIFIER
	THE ORGANIZATION OF RD_LC
	THE OPERATION OF RD_LC
	ACCESS REQUEST
	REPLACEMENT


	EXPERIMENT
	EXPERIMENTAL METHODOLOGY
	EXPERIMENTAL RESULTS
	ACCESS LATENCY
	EXECUTION TIME
	NETWORK TRAFFIC
	O3+SIMLARGE
	STORAGE OVERHEAD


	CONCLUSION
	REFERENCES
	Biographies
	QIANQIAN WU
	ZHENZHOU JI


