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ABSTRACT The adaptive algorithms have been widely studied in Gaussian environment. However,
the impulsive noise and other non-Gaussian noise may largely deteriorate the performance of algorithm
in practical applications. To address this problem, in this paper, we propose two novel adaptive algorithms
for system identification problem with mixed noise scenarios. Both proposed algorithms are based on the
framework of the affine projection (AP) algorithm. The first proposed algorithm, termed as VS-APMCCA,
combines variable step-size (VS) strategy and maximum correntropy criterion (MCC) to obtain improved
performance. For further performance improvement, the VC-VS-APMCCA is developed, which is based
on the variable center (VC) scheme of MCC. The convergence analysis of the VC-VS-APMCCA is
conduced. Finally, simulation results demonstrate the superior performance of the VS-APMCCA and

VC-VS-APMCCA.

INDEX TERMS Affine projection algorithm, variable step-size, maximum correntropy criterion (MCC),

variable center (VC), mixed noise.

I. INTRODUCTION

Adaptive filtering technique has been successfully applied in
diverse signal processing fields, such as active noise control,
system identification, and adaptive echo cancellation [1]-[3].
The most popular algorithm used in such a technique is the
least-mean-square (LMS) algorithm because of its simplic-
ity [4]. The LMS algorithm and its improved version can
obtain stable filtering performance in Gaussian noise envi-
ronment, and they also promote the development of adaptive
algorithms [5]-[7].

To speed up the convergence rate of the LMS algorithm,
the affine projection (AP) algorithm was proposed [8]. The
AP algorithm enjoys improved performance under the col-
ored input signal [9], [10]. In [11], a novel affine projection
sign algorithm (APSA) was presented by making use of
the Li-norm algorithm for system identification in impul-
sive scenario. Following this work, several APSA-based
algorithms were proposed by using variable step-size (VS)
scheme [12]-[14], convex combination strategy [15] and
SO on.
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The impulsive noise has short time duration and
large amplitude, and as such, leads to ‘outliers’ of the
signal [16], [17]. Such outliers can cause parameter drift
of adaptive algorithm and even make the filter fails to
work [17]-[20]. Moreover, in many applications, the impul-
sive noise may be mixed with other noises, such as Gaussian
and uniform [21]. Therefore, filtering such non-Gaussian
noise became an important topic in the field of adaptive signal
processing.

During the past two decades, several approaches were
developed for performance improvement in the presence of
impulsive noise [22]-[24]. The sign algorithm and clipped
algorithm were proposed for stable performance when large
outliers exist in the system [25], [26]. However, they suf-
fer from slow convergence rate. In [27], the M-estimate
method was first proposed which is based on robust estima-
tion. This method is essentially a limiting idea to achieve
stable filtering performance under impulsive environment.
Besides, this method can be easily extended to other classes
of the adaptive filter. Representative methods include recur-
sive M-estimate algorithm [28], and active noise control
based on M-estimate algorithm [29], [30]. The fractional
lower-order moments (FLOM) strategy is also an alternative
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method to deal with impulsive noise [31]. The celebrated
least mean pth (LMP) algorithm was derived from this
scheme [31], [32]. To further enhance the performance,
the normalization version of the LMP and some variants were
also developed in [33], [34] and references therein. The main
bottleneck of the FLOM strategy is: it needs the a prior
information of the impulsive noise, and then selects a suitable
value of p to achieve improved performance [32]. Such a
drawback largely prohibits its practical applications.

Compared to conventional mean square error (MSE)
criterion, the information theoretic learning (ITL) avenue
can extract more information from the original signal and
as such, it has attracted much attention during the past
decade [35]-[37]. According to the theory of ITL, two
types of algorithms were extensively investigated in the
previous studies, namely minimum error entropy criterion
(MEEC) [38], [39] and maximum correntropy criterion
(MCQC) [40], [41]. Among these, the MEEC has proven to
be an improved performance when both input and output
signals are contaminated by noise [38]. The MCC has a
wider range of applications as compared with the MEEC.
Chen et al. proved that the MCC is a smoothed maxi-
mum a posteriori estimation and has robust performance in
impulsive noise [35]. Owing to these good properties, it has
been applied to active noise control [42], system identifica-
tion [41], and sparse subspace learning [43].

The well known MCC method can effectively combat
impulsive noise and a great many of researches were per-
formed to improve the performance of MCC. In [44], a risk-
sensitive loss in kernel space was proposed, motivated by
risk-sensitive criterion. This new cost function is benefited
by the risk-sensitive criterion and kernel trick, and can lead
to a faster initial convergence rate. Consider the filtering task
with complex-valued data, some complex MCC algorithms
were introduced, which provide a new solution method for
complex signal processing [45], [46]. In 2016, generalized
MCC (GMCC) and its corresponding applications were pro-
posed by Chen et al. [47]. The GMCC can be interpreted
as a generalized form of the classical MCC, and it was
also proposed as an optimality criterion in estimation related
problems [47].

Very recently, the MCC with variable center (VC)
was proposed for enhancing performance of MCC [48].
In conventional MCC, the Gaussian kernel function with
zero-mean was employed. However, such function may
become sub-optimal in certain circumstance. The MCC with
VC scheme exploits a more generalized form of MCC and
offers improved performance with slightly increased compu-
tational complexity. Moreover, such a method was applied
to online learning for refining the kernel width and center
location [49].

Motivated by [50], we propose a novel AP algorithm
by using MCC approach and develop a new VS scheme,
resulting in VS-APMCCA. In comparison with the FLOM
method, the VS-APMCCA uses the high-order error power
criterion (HOEP) and can obtain refined performance in

182516

mixed noise. Before that, a novel AP algorithm based on
MCC has been developed [51]. The difference between our
proposed VS-APMCCA and the algorithm in [51] is that the
proposed algorithm is designed for mixed noise and the latter
algorithm is for sparse system. The algorithm [51] has inverse
operation. Therefore, it has increased computational bur-
den for system identification. In contrast, the VS-APMCCA
incorporates the VS strategy to overcome the conflict require-
ment under the fixed step size. While using the variable step
size strategy, we also consider reducing the computational
complexity of the algorithm. In the previous studies, the con-
vex combination strategy has been proposed to address the
conflicting requirement between fast convergence rate and
small misadjustment [52]. In general, the convex combination
scheme requires more than twice the complexity of a single
filter. This drawback may hinder its practical application. The
proposed algorithm based on VS scheme can significantly
reduce the computational complexity as compared with the
convex combination algorithm. Its complexity is even close
to the conventional MCC algorithm [41] and as such, it can be
easy to implement in engineering. For performance improve-
ment, a VC-VS-APMCCA is proposed based on VC scheme
to further enhance the identification accuracy of the adaptive
algorithm. In summarize, our contributions can be listed as
follows.

1) A novel VS-APMCCA is proposed by using HOEP and
VS scheme, which enables the proposed VS-APMCCA to
obtain anti-impulsive ability of MCC algorithm and the fast
convergence rate of the APA;

2) A novel VC-VS-APMCCA is developed as an added
contribution, with an adjustable center position;

3) Convergence behavior of the VC-VS-APMCCA is
analyzed;

4) Simulations are performed to demonstrate the effective-
ness of the VS-APMCCA and VC-VS-APMCCA.

The content of this work is organized in the following.
In Section II, the system identification model used in this
paper is described. In Section III, the derivations of the
VS-APMCCA and VC-VS-APMCCA are given in detail.
In Section 1V, the convergence behavior of the VC-VS-
APMCCA is provided. Simulation results are performed in
Section V, and some conclusions are drawn in Section VI.

Il. PROBLEM FORMULATION

A. SYSTEM MODEL

System identification is an art of establishing the relationship
of input-output. The system identification problem can be
solved by the least-square method, the evolutionary algo-
rithm, and adaptive filter [53]-[55]. Among these meth-
ods, the adaptive filter can provide more flexible modeling
capability and it has been extensively studied [56]. Fig. 1
shows the block diagram of the system identification problem
with adaptive filter, where x(k) denotes the input signal at
time instant k, y(k) denotes the output signal which is used
to approximate the desired signal d(k), £(k) denotes the
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FIGURE 1. System identification problem by using adaptive filter.

noise signal, and e(k) denotes the error signal. Considering
the above system model, the desired signal d(k) can be
expressed as

d(k) = x" (kyw, + & (k) (1

where x(k) = [x(k), x(k — 1), ..., x(k —M + 1)]T, M stands
for the filter length, w, represents the unknown parame-
ter vector with the size M, and T stands for the transpose
operation.

At time instant k, the error signal e(k) can be given by

e(k) = d(k) — y(k)
= d(k) —x" (kyw(k) )

where w(k) is the weight vector of adaptive algorithm at
time instant k. In this expression, the output signal can be
computed by y(k) = xT (k)w(k).

B. A REVIEW OF AP ALGORITHM

The AP algorithm can effectively accelerate the convergence
rate as compared with basic LMS algorithm. The AP algo-
rithm needs to define the a posteriori error, which can be
defined by

ep(k) = d(k) — x" (kyw(k + 1). 3)

At every iteration k, it minimizes the following optimization
problem [56]

minimize [|w(k + 1) — w(k)|13
w(k+1)
subject to d(k) — XT (kyw(k +1) =0 )

where ||, denotes the Lr-norm, d(k) = [d(k),d(k —
,....,dk — P+ 1)]T denotes the desired signal vector
which combines the past P desired signal from past times, and
X(k) = [x(k),x(k — 1),...,x(k — P+ 1)] denotes the input
signal matrix with the size of M x P, where P represents the
projection order. The update equation of basic AP algorithm
is expressed as

wik + 1) = wik) + uX (k) [XT(k)X(k)]_l k) (5)

where p is the learning rate and e(k) =
D,...etk —P+ DI]T.

[e(k), e(k —
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C. A REVIEW OF McC
Considering the definition of the Gaussian kernel function in

MCC
_ 2

D,Y)=
“ ) o2 202

where D and Y are random variables with the same dimen-
sions, and o denotes the kernel bandwidth (kernel size). Fig. 2
depicts the J (k) = «(d, y) in the joint space of d and y.

FIGURE 2. Gaussian kernel function in the joint space.

The MCC has the ability of dividing space, and it can be
derived according to the following cost function [41]:

2
J(k) =E |:exp (—%@)]

2(k
~ exp @%) ™

where E [-] denotes the expectation operation. Using the

stochastic gradient method, one can obtain the gradient of (7)

3J (k) < e2(k)
= —ex

e = — F) x(k)e(k). (3)

Thus, the update rule of the MCC is

(k)
w(k + 1) = w(k) + pexp ( — F)x(k)e(k). )
As we noticed, the AP algorithm is based on MSE cri-
terion to obtain a refined performance. Hence, it is natural
to take HOEP criterion into account. Unlike the MSE rule,
HOEP uses high-order errors to define cost functions, such
as E[¢3(k)], E[¢*(k)], and so on. Since the Taylor expansion
of exp(ez(k)) can be expressed as 1 + %62(]{) + %e“(k) +
...+ h.o.t., where h.o.t. denotes the highér-order terms of the
remainder of the Taylor series expansion. Therefore, the cost
function of the form exp(e?(k)) can be regarded as a kind
of HOEP criterion. Pei and Tseng have demonstrated that
the HOEP criterion is preferred when the unknown system
is contaminated with impulsive noise [57]. Considering the
good suppression performance of the MCC, we utilize the
MCC as the HOEP criterion. In the next section, we propose
novel VS-APMCCA and VC-VS-APMCCA for performance
improvement for mixed-noise scenarios.

182517



IEEE Access

X. Wang, J. Han: AP Algorithm by Employing MCC for System Identification of Mixed Noise

IIl. PROPOSED ALGORITHMS

Due to the good suppression performance of the MCC, we uti-
lize the MCC as the HOEP criterion. A class of APs based
on MCC for performance improvement under mixed-noise
scenarios are proposed in this section.

A. PROPOSED VS-APMCCA
Considering affine projection space, based on the HOEP
criterion, we re-define the optimization problem in (4) as

e ||ep<k>||§)

202
Iw(k + 1) —w(k)ll5 < p? (10)

minimize
w(k+1)
subject to

where p2 is a threshold and ey(k) = [ep(k), ep(k —
n,..., ep(k—P—{—l)]T. In our derivation, the threshold will be
absorbed into the step size. Note that such threshold is similar
to the set-membership algorithms and such threshold can be
selected according to [58], [59]. To show the cost function
more intuitively, Fig. 3 shows the cost function of MCC and
its corresponding gradient value. As can be seen, the large
value of kernel size leads to a flatter cost function shape.
The increase in amplitude of the error signal can lead to a
small value of gradient. This property can offer stable and
robust performance in ‘outliers’ environment. Utilizing the

a . a a
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FIGURE 3. Cost function of the MCC and its gradient. (a) MCC cost
function with different selections of 52, (b) Gradient of MCC cost function
with different selections of 2.
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constraint parameter ¢, we draw the cost function as

les®)]3

J(k)=exp (— 52

)+ ;( Wik + 1) = w(l3 - p2).
an

By taking gradient of (11) with respect to w(k + 1), thus
yielding

k) ~
e (k )
Ze p( | P m ”2)

x x(k — m)e,,(k m)

=2 (W(k +1)— w(k)) - G%X(k)e(k) (12)
where

ol

(k) = exp ( - %)e,,(k). (13)

Letting (12) equals to zero, we have

w(k + 1) =w(k) + X(k)e(k) (14)
Substituting (14) into (10) results in
2
exp ( _ ||”;Ef2)"2>
wik + 1) = w(k) + s X(ke,(k) (15

2002

where (r > 0 1is the scalar parameter. Then, we can combine
constant terms o2, ¢, and uy, at below

If ||en(k)||z
2002 o2

(16)

In this expression, we take L as the L>-norms of the error
signal. This equation can be regarded as a VS strategy. When
the error is large, the step size of the algorithm becomes large,
and the convergence is accelerated. The step size of the small
algorithm becomes smaller, resulting in small steady-state
error. Therefore, the adaptation of the VS-APMCCA can be
expressed as follow:

w(k + 1) = w(k) + n(k)X (k)ep(k) a7)

where

ol

e

PN L O
We can observe from (17) and (18), the proposed
VS-APMCCA can be regarded as the algorithm based on the
VS scheme. Note that, at each iteration k, the a posteriori
error e,(k) can be calculated via the value of weight vector
w(k + 1). However, e,(k) is unavailable in the current iter-
ation k. To overcome this problem, the a priori error e(k)
is employed to replace the a posteriori error e,(k) during
weight adaptation. This approximation is widely applied to
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the derivation of the APA-based algorithms, and the similar
method can be found in [11]. Finally, we arrive at

wk + 1) = w(k) + wk)X (k)e(k) (19)
where
||e<k>||2 lleCk)!I3
(k) = exp (=5 52)- 0)

In summary, the detailed VS-APMCCA is outlined in Table 1.

B. PROPOSED VC-VS-APMCCA

To further enhance the performance of the VS-APMCCA,
in this section, we develop a novel VC-VS-APMCCA by
using VC strategy. The previous studies have demonstrated
that the VC strategy can maintain the convergence rate of
the algorithm and can provide an accelerated convergence
rate. To illustrate the cost function of MCC with VC, Fig. 4
depicts the cost function and its correspondingly gradient
value. By using VC scheme, the cost function and gradient
value translate ¢ units to the right. They still hold the property
of conventional MCC. Fig. 5 further plots a comparison of
the LMS, MCC, and MCC with VC. As can be seen from
this figure, the MCC and MCC with VC can provide a stable
performance when the error signal becomes large.

091
0.8

D R W N
L T T T

0.7+

0.6
Eost
04f
03
0.2f

0.1r

error signal

(a)

0.8

0.6

Gradient value

-4 -2 0 2 4 6
error signal

(b)

FIGURE 4. Cost function of the MCC with variable center and its gradient
(c = 1). (a) MCC with variable center versus o, (b) Gradient of MCC with
variable center cost function versus o.
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FIGURE 5. Cost function of the LMS, MCC and MCC with variable center
and their gradient (c; =[11111111]andc, =[22222222]).

(a) MCC with variable center versus o, (b) Gradient of MCC with variable
center cost function versus o.

Hence, the updated formulation of the VC-VS-APMCCA
can be given by

w(k + 1) = w(k) + nk)X (k)e(k) (2D
where
9] 1E; k) —cll?
(k) = lleC 2)||2 exp ( e 2) 2CIIZ) 22)

where ¢ is the vector. Note that 1 (k)\|2 can be interpreted
as an estimation of step size, and VC scheme is only
applied to Gaussian kernel. In the previous studies [48], [49],
the VC strategy is only integrated into Gaussian kernel.
The VC-VS-APMCCA is listed in Table 1.

C. ANALYSIS OF COMPUTATIONAL COMPLEXITY

In this subsection, we analyze the computational com-
plexity of the proposed algorithms along with the exist-
ing algorithms. The MCC [41], least-mean mixed-norm
(LMMN) [60], [61], and AP [8] algorithms are used as the
comparison algorithms. We compare the additions, multi-
plications, divisions, and exponential operations of the five
algorithms, as shown in Table 2. We can observe from this
table that the LMMN algorithm, which benefits from the
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TABLE 1. Summary of the VS-APMCCA and VC-VS-APMCCA.

Initialization w(0) =0

Parameter step-size u, projection order P, filter length M, kernel size o
parameter ¢

Loop Fork=1,23,...

Input X (k), X (k) = [z(k),z(k —1),...,x(k— P +1)]
e(k) 2 y(k) - X7 (K)w(k)

(k) = 1212 exp

o

_ lle®)3
202

) (VS-APMCCA)

(k) = LBIE exp (— 1=oelB) (ve-vs-aPMCCA)

w(k + 1) = w(k) + u(k) X (k)e(k) (VS-APMCCA / VC-VS-APMCCA)

End For

TABLE 2. Comparsion of the computational complexity of five algorithms.

Algorithms + X -+ Exponential operation
MCC [41] oM 2M +5 1 1
LMMN [60] oM + 2 oM + 4 0 0
AP [8] 2P’M + PM — P?> | 2P +2PM + M | 0 0
VS-APMCCA oM PMTP+6 2 1
VC-VS-APMCCA oM + P PM+ P +6 2 1
LMS and LMF algorithms, has the lowest computational Supposing that X T(k)xX(k) is invertible, (25) is

complexity. It needs 2M + 2 additions and 2M + 4 multi-
plications. The MCC algorithm, based on the MCC criterion,
slightly increases the computational complexity as compared
with the LMMN algorithm. It requires 2M additions, 2M + 5
multiplications, 1 division, and 1 exponential operation. The
AP algorithm uses the past information of the input signal,
and it requires 2P* + PM — P? additions and 2P?> +2PM +M
multiplications. The proposed VS-APMCCA has reduced
computational complexity since it does not need the inverse
operation of matrix. It requires 2M additions, PM +P+-6 mul-
tiplication and 2 divisions. Because it utilizes the MCC, this
algorithm needs additional 1 exponential operation per iter-
ation. The VC-VS-APMCCA based on VC scheme, slightly
increases the computational complexity as compared with the
VS-APMCCA. It requires 2M + P additions, PM 4P+ 6 mul-
tiplications, 2 divisions, and 1 exponential operation. It still
has reduced computational cost as compared with celebrated
AP algorithm.

IV. PERFORMANCE ANALYSIS
To begin with the analysis, we define the weight-error vector
as follow:

wk) = w, — w(k). (23)

Combining (23) and (21), we can utilize the weight-error
vector to rewrite the updated equation as

w(k + 1) = w(k) — u(k)X (k)e(k). (24)

Then, defining the weighted a priori and a posteriori errors
by €,(k) = XT(k)ZW(k) and €,(k) = X" (k)ZWw(k + 1),
where X is the Hermitian positive-definite matrix. Multiply-
ing both sides of (24) by X T(k)Z from the left, we can gain

arelation between the estimation errors €,(k) and €,(k)
€p(k) = €y(k) — M(k)XT(k)ZX(k)e(k). (25)

182520

expressed as

1 -1
o) = (XT(k)):X(k)> (€a(k) — €5(K)) . (26)

Inserting (26) into (24) and rearranging terms, and taking the
weighted Euclidean norms on both sides, the energy conser-
vation relation of the VC-VS-APMCCA can be established
as follow:

I+ D13+ €50 (XX D) eath)
-1
= #0013 +eh (0 (XTROZX®) k) @D

where ||w(k + 1)||%: denotes the weighted squared norm
wl(k + 1)ZW(k + 1). By combining the expressions (25)
and (27) yields

Wk + DIZ = W3 — nel (k)edk)
— e’ (kyeq (k)

+ulel OXT(OTX (kek). (28)

Defining e, (k) £Xx T(k)W(k). Since e, (k) would not affected
by the noise signal, it is reasonable to approximate e(k)
with e, (k). Eq. (1) gives

e(k) = e, (k) + &(k)

where &(k) = [E(k), E(k—1), ..., E(k — P+ 1)]. To simplify
the analysis, the following two assumptions will be used
throughout our analysis:

(I) The noise signal & (k) is independent and identically dis-
tributed (i.i.d.) and statistically independent of the regression
matrix X (k).

(I1) The matrix sequence X (k) is i.i.d. and w(k) is indepen-
dent of X (k)X (k).

(29)
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By using assumption I and taking the expectation on both
sides of (28) yields

E{|W(k + DIz} = E(®®©)[3}
+ W EET X" ()X (KEK)}  (30)
where
Y =3 — u()EX®)XT (k) — nO)X X (k)X
+ P OXRERXT (k). (31)

Now, define 0 £ vec (X) and T £ vec~! (o), where vec(-)
denotes stack the columns of its matrix argument on top of
each other. Then, the notation IIW(k)II%eC(G) is used to denote

IIW(k)II%. Under the assumption II, (30) can be expressed as

E{#k + Do)} = EUNREO)3eciqr)
+ oy iorTe  (32)

where
¢ =Eo (33a)
E =1 — k) (E {QT(k)} QI+1QE {QT(k)})
+ 12 ME{Q" () ® 00| (33b)
(k) = X)X (k) (33¢)
vk = E [T k) (33d)
K = vec (E {X(k)XT(k)}) (33¢)

and ® stands for the Kronecker product. Note that, the recur-
sion (32) is stable if, and only if, the matrix E is stable [50].
Therefore, the convergence of the VC-VS-APMCCA in the
mean-square sense is guaranteed for any (k) in the range

1
Somen (P-1R) max (1. (H < R+))} 69

0 < u(k) < min {

where Amax(-) denotes maximum eigenvalue of a matrix,
max (A (H € R")) denotes the largest positive eigenvalue of
H when it exists,

P=E0 0} e1+18EQ®M), (35)
R =E{0"0 ® 0w} (36)
and
1P 1R
H- (5 2 ) (37)
1 0

V. SIMULATIONS

In this section, extensive simulations are conducted to demon-
strate the effectiveness of the proposed algorithms. We have
measured the performance of the algorithms on a 2.2-GHz
Intel Core i7 processor with 12Gb of RAM, running Matlab
R2017b on Windows 7. The following simulations are con-
sisted of three examples. In the first example, the Gaussian
and impulsive noises are considered as the noise signal.
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FIGURE 6. NMSDs of the algorithms versus different ¢ under Gaussian
noise and impulsive noise.

Note that this case widely exists in ANC system [21].
In the second example, the uniform noise and impulsive
noise are used as the noise signal, and in the third exam-
ple, the exponential and impulsive noises are employed
as the noise signal. The impulsive noise is generated
by Bernoulli-Gaussian (BG) distribution, which contains a
Bernoulli process and Gaussian process [11], [62]

¢ (k) = Bo(k)Ga(k) (38)

where B, denotes a Bernoulli process with the probability P,.,
which can be defined by P(B,) = 1 — P, with B, = 0,
and P(B,) = P, with B, = 1, and G,(k) stands for a white
Gaussian process with zero mean and variance o 2.

To qualify the identification performance of the algorithm,
both excess MSE (EMSE) and normalized MSD (NMSD)
are adopted in the simulations, which can be respectively
defined as

EMSE, db = 10log,, {eg(k)] (39)
and
— w)|?
NMSD, db = 10log,, w . 40)
lwoll5

In EMSE and NMSD, we utilize y-coordinates of the loga-
rithm to make their performance more clear. The length of
unknown system is set to M = 10, and w, is generated
by random. For a fair comparison, the MCC algorithm [41],
the LMMN algorithm [60], and the AP algorithm [8] are used
as the benchmark algorithms. In the following simulations,
all the learning curves are obtained by over 100 independent
trials.

A. GAUSSIAN NOISE AND IMPULSIVE NOISE

In the first case, the white Gaussian noise with zero-mean
and unit variance is used as the input signal. The mixed
noise is modeled by Gaussian noise and impulsive noise.
The Gaussian noise is a zero-mean with signal-to-noise ratio
(SNR) = 10dB, and the impulsive noise with Pr = 0.001
and 0{2 = 30.
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FIGURE 7. The EMSEs of algorithms under Gaussian noise and impulsive
noise.
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FIGURE 8. The NMSDs of algorithms under Gaussian noise and impulsive
noise.

To demonstrate the effect of ¢ on the performance of the
VC-VS-APMCCA, Fig. 6 shows the NMSDs of the algorithm
versus different ¢. We observe that the VC-VS-APMCCA
withe = [2 0 1 1 1 1 1 1] has the best performance
among these cases. Therefore, we fix this choice in the fol-
lowing studies. The EMSE performance of five algorithms is
tested, as shown in Fig 7. In the MCC algorithm, the step-
size u is set to 0.6 and the kernel size ¢ = 1. In the
LMMN algorithm, the step-size @ = 0.03, the mixing
parameter A = 0.04. For the conventional AP algorithm,
we fix the step-size © = 0.025 and the projection order
P = 8 for a fair comparison. The proposed two algorithms,
VS-APMCCA and VC-VS-APMCCA, we set © = 0.025,
u = 0.08, o = 2, and P = 8. Specifically, for the
vector ¢, we selecte = [2,0,1,1,1, 1, 1, 177. All the param-
eter settings are selected to ensure the fast convergence rate
and small final EMSE. As can be seen from this figure,
the AP and LMMN algorithms have large fluctuations during
adaptation. The MCC algorithm has a stable performance in
the presence of mixed noise, it reaches —15dB for system
identification. Owing to using MCC and HOEP criterion,
the proposed two algorithms significantly enhance the accu-
racy of system identification with similar initial convergence
rate. Fig. 8 shows the corresponding NMSD learning curves
of the algorithms for Example 1. It can be observed from
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FIGURE 9. Steady-state NMSDs of the algorithms versus step-size for
Example 1.
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FIGURE 10. Steady-state NMSDs of the algorithms versus SNR for
Example 1.

this figure that all the NMSDs have the same trends as
compared with Fig. 7. With the similar initial convergence
rate, the VS-APMCCA achieves improved misadjustment in
comparison with the state-of-the-art algorithms. Because of
VC strategy, the VC-VS-APMCCA can achieve smaller mis-
adjustment as compared with the VS-APMCCA. To further
demonstrate the performance, Fig. 9 and Fig. 10 illustrate the
steady-state NMSDs versus step-size and SNR, respectively.
We can see from Fig. 9 that the VC-VS-APMCCA achieves
reduced NMSD(about 5dB) with different . For different
SNRs, the VC-VS-APMCCA has improved performance
when SNR ranges from 5dB to 20dB (See Fig. 10). When
SNR = 0dB and 25dB, the VS-APMCCA owns enhanced
steady-state NMSD.

B. UNIFORM NOISE AND IMPULSIVE NOISE

In the second example, the performance of algorithms under
uniform and impulsive noises is investigated. The uniform
noise is modeled by uniform distribution U(—0.5,0.5), and
the impulsive noise used in this example is the same as
Example 1. The white Gaussian noise with zero-mean and
unit variance is utilized as the input signal. Fig. 11 plots
he NMSD learning curves of the VC-VS-APMCCA with
difference selections of ¢. It can be observed that the VC-VS-
APMCCA withe=[20111111],e=[11111111]
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FIGURE 11. NMSDs of the algorithms versus different ¢ under uniform
noise and impulsive noise.
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FIGURE 12. The EMSEs of algorithms under uniform noise and impulsive
noise.
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FIGURE 13. The NMSDs of algorithms under uniform noise and impulsive
noise.

ande = [2000 1 11 1] achieve similar performance.
Since the VC-VS-APMCCA withe = [201 111 1 1]
has slightly faster initial convergence rate as compared with
other selections, we choose ¢ = [2 0 1 1 1 1 1 1]in
this case. Fig 12 shows the EMSEs of the MCC, LMMN,
AP, VS-APMCCA, and VC-VS-APMCCA in the presence of
uniform noise and impulsive noise. All the parameter settings
are the same as Example 1. As can be seen, the AP and
LMMN algorithms suffer from stability problem under this
scenario since these algorithms are based on MSE criterion.
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FIGURE 14. Steady-state NMSDs of the algorithms versus step-size for
Example 2.
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FIGURE 15. NMSDs of the algorithms versus with colored input.

In contrast, the MCC algorithm can obtain robust perfor-
mance. The VS-APMCCA and VC-VS-APMCCA converge
as fast as the MCC algorithm, and can achieve smaller
NMSD. To further demonstrate the identification perfor-
mance, we plot the NMSD learning curves of five algorithms
in Fig. 13. One can see that all the algorithms share very
close initial convergence rate and they reach steady-state at
iteration about 250. The VS-APMCCA reaches final NMSD
about —25dB and the VC-VS-APMCCA achieves reduced
NMSD about 2dB. Finally, the performance of steady-state
NMSD versus step-size is tested in Fig. 14. It can be observed
from this figure that the VS-APMCCA has smaller NMSD.
The smaller value of step-size, the smaller steady-state
NMSD is. As a modified version of VS-APMCCA, the
VC-VS-APMCCA achieves more accuracy identification
performance, it reduces final NMSD performance of the
VS-APMCCA about 5dB. We can also conclude from Fig. 14
and Fig. 9, the VC-VS-APMCCA can obtain great per-
formance enhancement in the case of Example 2. Finally,
we investigate the proposed algorithm with colored input
in Fig. 15. The colored input is a first-order autoregressive
(AR(1)) signal with a pole at 0.2. Other simulation conditions
are the same as Fig. 14. One can observe from this figure that
the VS-APMCCA and VC-VS-MCCA can obtain smaller
steady-state NMSD under the colored input.
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FIGURE 16. NMSDs of the algorithms versus different c under
exponentiated noise and impulsive noise.

C. EXPONENTIATED NOISE AND IMPULSIVE NOISE

In the last example, the unknown system is corrupted by
exponentiated and impulsive noises, where the exponenti-
ated noise is modeled by exponential distribution with mean
parameter (exponential parameter) 0.1 and the impulsive
noise is generated by BG distribution with P, = 0.001 and
o7 = 30. Fig. 16 shows NMSDs of the VC-VS-APMCCA
with six different selections. As can be seen from this fig-
ure,c = [2 0 1 1 1 1 1 1] slightly enhances the
initial convergence rate. Fig. 17 shows the EMSE:s of existing
algorithms and the proposed algorithms during adaptation.
We repeat the parameter settings of Example 2. We can
observe from this figure that all the algorithms achieve stable
filtering performance in this case. The MCC and AP algo-
rithms have quite close performance in this scenario, and both
algorithms reach —20dB final EMSE. The LMMN algorithm,
which combines the LMS and least mean fourth (LMF) algo-
rithms, has improved steady-state error as compared with
the MCC and AP algorithms. The proposed VS-APMCCA
and VC-VS-APMCCA further reduce the EMSE, and the
VC-VS-APMCCA has slightly smaller EMSE when com-
pared to the VS-APMCCA. Correspondingly, the NMSDs
of five algorithms are depicted in Fig. 18. Again, the

 MCC (u=0.6)
LMMN (u=0.03)
5 AP (u=0.03, P=8)
———— VS-APMCCA (1=0.025, P-8)
= = VC-VS-APMCCA (1=0.08, P-8)

EMSE/dB
|
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FIGURE 17. The EMSEs of algorithms under exponentiated noise and
impulsive noise.
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FIGURE 18. The NMSDs of algorithms under exponentiated noise and
impulsive noise.

NMSD/dB

—p— VS-APMCCA
——#— VC-VS-APMCCA

_40 . . . . : :
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Step-size

FIGURE 19. Steady-state NMSDs of the algorithms versus step-size for
Example 3.
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FIGURE 20. Steady-state NMSDs of the algorithms versus exponential
parameter for Example 3.

proposed algorithms achieve improved performance and the
VC-VS-APMCCA has the best performance. Fig. 19 plots
the steady-state NMSDs with different selections of u. It can
be found that the small value of step-size gains smaller
NMSD, as we expected. The VC-VS-APMCCA reduces the
steady-state NMSD as compared with the VS-APMCCA.
In particular, we discuss the effect of exponential parameter
on the steady-state NMSD performance. As shown in Fig. 20,
two proposed algorithms have quite close identification per-
formance in most cases. Moreover, the VC-VS-APMCCA

VOLUME 7, 2019



X. Wang, J. Han: AP Algorithm by Employing MCC for System Identification of Mixed Noise

IEEE Access

has improved performance when the exponential parameter
is set to 0.05, and the VS-APMCCA enjoys smaller NMSD
when the exponential parameter is in the range of 0.3 to 0.5.

VI. CONCLUSION

In this paper, we have proposed two novel AP algorithms
based on MCC and VC strategy for performance improve-
ment in system identification with mixed noise. The pro-
posed VS-APMCCA combined the benefits of AP and
MCC algorithms, which can significantly reduce steady-state
error with moderate computational complexity in various
environments. To further enhance its performance, the VC
scheme has been introduced to VS-APMCCA, resulting in
VC-VS-APMCCA. Moreover, the convergence behavior of
the VC-VS-APMCCA has been analyzed. Extensive sim-
ulation results validate the effectiveness of the proposed
algorithms as compared with existing algorithms for system
identification problem. It should be stressed that the selection
of variable center ¢ is based on simulations, which may
prohibit its engineering applications. Hence, it is reasonable
to employ the method in [63] to the proposed algorithm. In the
future, we will conduct research in this approach.
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