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ABSTRACT The central task in modeling complex dynamical systems is parameter estimation. This task is
an optimization task that involves numerous evaluations of a computationally expensive objective function.
Surrogate-based optimization introduces a computationally efficient predictive model that approximates the
value of the objective function. The standard approach involves learning a surrogate from training examples
that correspond to past evaluations of the objective function. Current surrogate-based optimization methods
use static, predefined substitution strategies to decide when to use the surrogate and when the true objective.
We introduce a meta-model framework where the substitution strategy is dynamically adapted to the solution
space of the given optimization problem. The meta model encapsulates the objective function, the surrogate
model and the model of the substitution strategy, as well as components for learning them. The framework
can be seamlessly coupled with an arbitrary optimization algorithm without any modification: It replaces the
objective function and autonomously decides how to evaluate a given candidate solution. We test the utility
of the framework on three tasks of estimating parameters of real-world models of dynamical systems. The
results show that the meta model significantly improves the efficiency of optimization, reducing the total
number of evaluations of the objective function up to an average of 77%.

INDEX TERMS Differential equations, meta models, numerical optimization, parameter estimation, surro-
gate models.

I. INTRODUCTION
Estimating the values of parameters of mathematical models
of dynamical systems is often formulated as an optimization
task with a computationally expensive objective function [1].
Given measurements of the behavior of a dynamical system,
the task is to find values of model parameters that lead
to a model simulation that closely fits the measurements.
Computationally expensive simulation of themodel is needed
to assess the discrepancy between simulated and measured
behavior of the observed system. Therefore, optimization
approaches to parameter estimation can highly benefit from
the use of surrogate-based optimization, which uses effi-
cient approximation of the objective function. Such use of
surrogates can thus substantially improve the efficiency of
mathematical modeling.

The associate editor coordinating the review of this manuscript and

approving it for publication was Quan Zou .

Surrogate-based optimization solves optimization prob-
lems in situations where the resources for evaluating the
objective function are limited. In computational domains,
the limiting resource is most commonly computation time,
which becomes critical when dealing with computation-
ally expensive objective functions. The fundamental idea of
surrogate-based optimization is to replace the computation-
ally expensive objective function with a surrogate, i.e., a com-
putationally efficient model that approximates the value of
the true objective function. Surrogate-based methods employ
machine learning algorithms for learning the surrogate model
from training instances derived from the available evaluations
of the true objective function.

Surrogate-based optimization can be deployed in two dif-
ferent application contexts. The first assumes a very lim-
ited number of evaluations of the true objective function.
The aim of the surrogate model is to guide the selection of
the most promising candidate solutions for evaluation. The
Bayesian optimization approach [2] uses the surrogate model
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predictions and the corresponding confidences for selecting
the next candidate solution that will be evaluated with the
true objective function. The computational complexity of the
selection process increases proportionally with the cube of
the number of previously evaluated candidate solutions.

The use of Bayesian optimization is thus prohibitive in
the second application context that assumes a large number
of evaluations of the true objective function. The aim of the
surrogate model, in this context, is to improve the efficiency
of the optimization by replacing a large portion of the eval-
uations of the true objective function with evaluations of its
surrogate. The parameter estimation task, addressed in this
paper, fits this application context. The key component of
the approaches applicable in this context is the substitution
strategy that, for a given candidate solution, decides whether
to evaluate it with the surrogate function or the true objective
function [3]. Current approaches focus on maximizing the
predictive performance of the surrogate model and use fixed,
hard-coded substitution strategies [4]–[6].

In this paper, we design a meta-model framework for
surrogate-based optimization with a substitution strategy that
dynamically adapts to the space of evaluated candidate solu-
tions. It includes two learning components: a component for
learning a surrogate model of the true objective function and
a component for learning a model of the substitution strategy.
Additionally, the meta-model framework encapsulates the
objective function, the surrogate model, the model of the sub-
stitution strategy, the history of evaluations and the learning
components in a single, yet modular entity. An important
consequence of the encapsulation is that the meta-model
can be seamlessly coupled with an arbitrary optimization
algorithm without any modification of the algorithm or the
meta model. The latter replaces the true objective function
and autonomously decides what function or model to use for
the evaluation of a given candidate solution.

In our previous study [7], we show that learning the
substitution strategy improves the overall performance of
surrogate-based optimization. By learning the substitution
strategy, instead of using a predefined one, the meta model is
capable of solving complex numerical optimization problems
while significantly reducing the number of evaluations of the
true objective function. In this paper, we focus on the config-
uration of the learning components of the meta model. In par-
ticular, we conjecture that the selection of appropriate learn-
ing algorithms for the surrogate and substitution-strategy
models significantly impacts the overall performance of
surrogate-based optimization.

To test the validity of the conjecture, we perform an
extensive empirical evaluation of different instances of the
meta-model framework. Each corresponds to a pair of learn-
ing algorithms for training the surrogate, on one hand, and
the substitution-strategy model, on the other. We select each
algorithm in the pair among six alternative algorithms for
learning predictive models, previously used in the literature
on surrogate-based optimization—linear regression, decision
trees, nearest neighbors, support vector machines, Gaussian

processes and random forests—leading to 36 meta-model
instances. In the first series of experiments, performed on
synthetic benchmarks [8], we tune the parameters of each
meta-model instance. In turn, we select the most success-
ful instances that significantly outperform the others. The
selected meta-model variants are evaluated in a second series
of experiments on three real-world tasks of estimating the
parameters of models of dynamical systems described by
systems of coupled ordinary differential equations [1], [9].

We first describe in more detail the task of numerical opti-
mization and parameter estimation. Next, we introduce and
formally define the meta model, its components and param-
eters. We then lay out the setup for the empirical evaluation
and report the results of our analyses. Finally, we provide a
summary of our conclusions and outline directions for further
research.

II. NUMERICAL OPTIMIZATION AND PARAMETER
ESTIMATION
We consider the task of numerical optimization involving a
single, nonlinear objective function F in an unconstrained,
continuous space Rk . The task is to find a solution x∗ ∈ Rk

that leads to the extremum of the objective function F :
Rk
→ R. The objective function can be either minimized

or maximized: in the former case, the result of optimization
is x∗ = argmin x∈Rk F(x).
If the analytical solution for the minimum of F is

intractable, numerical methods are applied. These methods
can belong to two groups: local and global optimizationmeth-
ods. While local methods [10] are efficient, they suffer from
myopia, i.e., the tendency to end up in a local extreme point
in the neighborhood of the initial point. On the other hand,
global methods [11] are concerned with finding the global
optimum point and use different strategies for sampling the
solution space. To improve their efficiency, they are often
coupled with surrogates.

Parameter estimation aims at finding values of the param-
eters of a given model of a dynamical system that result in a
model simulation that closely fits a given set of measurements
of the observed system behavior. Models of dynamical sys-
tems are usually formalized as systems of coupled ordinary
differential equations ẏ = G(y, x) [12], where y denotes
the vector of the observed state variables of the dynamical
system, ẏ is the vector of the time derivatives of the state vari-
ables, G is the function representing the model structure, and
x denotes the vector of the real-valued constant parameters
of the model. Given an initial condition yt0 , i.e., the value
of y at the initial time point t0, the model simulation leads
to a set of trajectories of the dynamical change of the state
variables y through time. Analytical solutions of systems of
coupled ordinary differential equations describing complex
real-world models are rarely an option, so computationally
expensive numerical approximation methods for integration
(simulation) are typically applied.

The task of parameter estimation (Figure 1 (A)) can be
formalized as follows. Given the measured behavior OT of
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the system variables at time points T , the task is to maximize
the likelihood of the observed behavior given a particular
value of x, i.e., F(x) = −L(OT |x), where L is a likelihood
function. In practice, due to the complexity of the models
considered, the likelihood-based function is approximated
by a least-squares function F(x) = ‖OT − ST ‖, where ST
denote the simulated behavior of the system variables at time
points T . Recall however, that ST is obtained by using a
computationally intensive method for integrating differential
equations, often leading to inefficient optimization and poor
optima.

This is especially true in the process of discovery of knowl-
edge about the complex behavior and function of biologi-
cal systems. This often involves mathematical modeling of
dynamical systems from observational data [9], with a key
aspect being the task of parameter estimation [1]. Regard-
ing the choice of a parameter estimation method for prob-
lems coming from the domain of systems biology, global
stochastic and hybrid methods based on metaheuristics are
considered most promising in the literature [13], [14]. These
methods require a large number of objective function eval-
uations, which makes them ideal candidates for applying
surrogate-based optimization.

III. META-MODEL FRAMEWORK FOR
SURROGATE-BASED OPTIMIZATION
We first introduce the mathematical meta-model framework
for surrogate-based optimization in its abstract form. This
part is accompanied by a graphical overview of the frame-
work depicted in Figure 1(B). We then gradually proceed by
specifying the machine learning components of the frame-
work. Finally, we introduce a relevance-based surrogate
management strategy that allows the meta model to make
autonomous decisions about which function or model to use
for evaluating a given candidate solution.

A. META-MODEL FRAMEWORK
Our meta-model framework consists of four components.
The first is the objective function F that is the subject of
optimization. The second component is the surrogate model
S : Rk

× (Rk+m)∗ → R that for a given candidate solution
(or a query point) x and based on the history of previous
meta-model evaluations h computes S(x, h), the surrogate
approximation of F(x). The third component is the decision
function D : Rk

× (Rk+m)∗ → {0, 1} that implements
the dynamic substitution strategy: for a given x and based on
h, it decides whether to use the objective function F (output
1) or its surrogate S (output 0). Finally, the fourth important
component of the meta-model framework h is the ‘‘history of
evaluations’’, where the data on past meta-model evaluations
is kept. The evaluation history is a finite sequence of vectors:
h ∈ (Rk+m)∗ where k is the dimension of the optimization
problem andm the dimension of additional data being kept in
the history.

More formally, the function MM : Rk
→ R is defined

by three functions and a history of evaluations (F, S,D; h),
corresponding to the components of the meta model:

• objective function F : Rk
→ R,

• surrogate function S : Rk
× (Rk+m)∗ → R,

• decision function D : Rk
× (Rk+m)∗ → {0, 1}.

• evaluation history h : (Rk+m)∗.
Given this components of the meta-model framework,

the function MM is defined as1

MM (x) =

{
F(x); D(x, h) = 1
S(x, h); D(x, h) = 0

(1)

While the functions F, S,D can be arbitrary black
boxes, we assume that the evaluation history of the
meta model is updated after every evaluation. For our
current needs, the evaluation history records the query
point x = (x1, . . . , xk ), the result of the meta model
MM (x) and the value of the decision function D(x, h).
If we denote the r-th evaluation of the meta model at
the point x(r)with MM (x(r); hr ) and the next one with
MM (x(r+1); hr+1), then hr+1 is the extension of hr with the
vector (x(r)1 , . . . , x(r)k ,MM (x(r); hr ),D(x(r), hr )). The last two
values are used to define the values of the targets in the data
sets for learning the predictive models in the components S
and D.

Algorithm 1 presents the meta model for evaluating a given
candidate solution x. First, the meta model checks whether
there are enough evaluations of the true objective function
(variable nEvalsF) in the evaluation history h for training
(or re-training) the surrogate and relevator models (functions
S.learn(h) and R.learn(h), see subsection III-C). To this end,
parameters T1, T2, I1 and I2 are being used; we provide further
explanation in subsection III-B. Next, if the predictive models
are not available yet, the meta model opts for evaluating the
true objective function (the variable decision is set to have
a value of 1). Otherwise, based on the evaluation history h
and the parameter r , it updates the decision threshold (see
subsection III-C) and uses it to decide whether to use the
surrogate model (equivalent to S.evaluate in the pseudo code)
or the true objective function F to evaluate x. It stores the
evaluation in the variable value, which is the result of the
meta model function. The meta model updates the counter
nEvalsF that keeps track of the number of evaluations of the
true objective function.

B. SURROGATE
The surrogate function S takes care of learning, updating and
evaluating the surrogate predictivemodelP : Rk

→ R. In the
rest of the paper, we use S when talking about the whole
and P when talking about the predictive model component
of S. There are three important aspects to be considered
when constructing a good surrogate function: the type of
the predictive model, the size of the training set used for its
initialization and the frequency of the model updates.

We aim at selecting a surrogate predictive model that
closely approximates the objective function and can be eval-

1Note that the alternative notation MM (x; h) will be used whenever we
want to emphasize the modification of the evaluation history.
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FIGURE 1. The meta-model framework for surrogate-based parameter estimation in dynamical systems. (A) The parameter
estimation task takes at input (1) the model of the biological dynamical system in its equation-based formulation (top-left boxes)
and (2) the measured trajectories of the observed system behavior. It uses an optimization algorithm, coupled with the meta model
for surrogate-based optimization, to find an optimal value of parameters x∗ that leads to a final model, the simulation of which
closely fits the observed system behavior. (B) The meta model takes the candidate solution x at input. The decision function D uses
the relevator R to evaluate the relevance of x and choose what function to use for its evaluation. For highly relevant x , it will opt for
the true objective function F , that involves simulation of the model with parameters x and comparison of the simulated behavior ST
with the observations OT . The x and F (x) will be stored in the history part of the meta model h. This part contains the evaluations of
the objective functions and is used as a training set for the surrogate model P and the relevator R. A candidate solution x with low
relevance will be evaluated using the surrogate P . (C) The utility of the meta model is assessed by comparing the two convergence
curves (upper graph) of the plain optimization algorithm (without MM) with the surrogate-based optimization using the meta model
(with MM). The convergence curve depicts the optimal value of the objective function (y axis) as the number of function evaluation
(x axis) increases: the lower the convergence curve, the better is the utility. The transposed convergence curve (lower graph) depicts
the number of evaluations (y axis) necessary to achieve a certain threshold value of the objective function (x axis, logarithmic scale).
Lower curve indicates better utility.

uated efficiently. Because we do not wish to additionally
sample data for F , we only rely upon the data stored in
the evaluation history h. This is particularly beneficial when
working with population-based methods, as the samples are
more concentrated in the current area of our population,
where we want better accuracy of our prediction model.
Moreover, the efficiency of the surrogate function depends
upon the trade-off between the frequency of surrogate learn-
ing and the size of the training set. Having a high update
frequency is desirable since the surrogate then always takes
into account the most recent history of evaluations. On the
other hand, frequent surrogate updates are unprofitable unless
the learning time is fairly low compared to the evaluation

time of the true objective function. To this end, we introduce
user-defined parameters that determine the number of true
object evaluations between the consecutive surrogate updates
(parameters I1 and I2 in Algorithm 1).
A larger training set substantially slows down the algorithm

by increasing the time needed to learn the surrogate model,
which in turn negatively impacts the time performance of the
meta-model. We attempt to solve the problem with filtration
of the history of evaluations. In order to minimize the error of
our prediction model, only evaluations of F are used, which
are easily extracted from the evaluation history because we
additionally keep the values ofD (records from the evaluation
history are extracted, whereD(x, h) = 1). Furthermore, when
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Algorithm 1 The Meta Model for Surrogate-Based Opti-
mization. At Input It Takes the Candidate Solution x and at
Output It Returns Its Evaluation MM (x)

Input x: candidate solution to be evaluated; x ∈ Rk

Output value: evaluation of the candidate solution x
Parameters T1 and T2 control the number of training exam-
ples T1 k + T2
Parameters I1 and I2 control the minimum number of new
examples I1 k + I2
Parameter r controls the desired surrogate replacement
rate
if (nEvalsF − (k · T1 + T2))% (k · I1 + I2) = 0 then
S.learn(h)
R.learn(h)

end if
if nEvalsF < k · T1 + T2 then
decision = 1

else
threshold .update(h, r)
decision = R.evaluate(x) > threshold

end if
if decision = 1 then
value = F .evaluate(x)
nEvalsF = nEvalsF + 1

else
value = S.evaluate(x)

end if
h.add(x, value, decision)
nEvals = nEvals+ 1
return value

using the meta model in conjunction with a population-based
method, the population slowly converges towards the mini-
mum of the true objective function. We want the surrogate
to be more precise in the current area of the search, which
coincides with the most recent evaluation points. By focusing
only on the most recent evaluations, we additionally empha-
size points with a lower value of the objective, meaning less
noise from the high value outliers, which are less relevant for
learning the surrogate, since they correspond to non-optimal
points. Therefore, in our implementation, the training set
includes a user-defined number of the most recent points
from the history of evaluations (parameters T1 and T2 in the
Algorithm 1). Additional filtration schemes are possible, for
instance considering only the points with the lowest values
of the objective function or a combination of the two. While
all schemes are subsumed by adding a weight function, that
introduces a large amount of additional parameters.

C. RELEVATOR
Selecting a suitable decision function is of vital importance.
As shown in our previous work [7] a simple uninformed
decision function, which uses the step number as its only
argument, performs poorly on harder optimization problems.
One possible way of constructing a more successful decision

function is by predicting how relevant the point will be for our
optimization algorithm. It is based on the idea that points of
high ‘‘relevance’’ for the optimization algorithm need to be
predicted more accurately in order not to slow down progress.
Thus, the evaluation of themost relevant points should be per-
formed using the true objective function while less relevant
points can be evaluated using the surrogate model.

Taking a decision based on the relevance of a point, brings
up two issues. First, how do we formally define point rel-
evance and second, how can the relevance of a point be
estimated before evaluating the objective function. The point
relevance can be calculated with a function passed to the meta
model as an argument. However, in our current implementa-
tion, we define the relevance of a point x ∈ Rk relative to the
lowest value of the objective function seen so far: the closer
is the value to the lowest value, the higher is its relevance.
In particular, if we use f = (f1 · · · , fm) to denote the vector
of values of F in the evaluation history, we define the point
relevance as

relevance(x, f )=


(
1+

F(x)−mini fi
avgi fi −mini fi

)−1
F(x) ≥ mini fi

1 F(x)<mini fi
(2)

The relevance of a point is bound by definition in the interval
[0, 1] where the value of 0 corresponds to a point of low
relevance and 1 to a point of high relevance and points close
the current average value get mapped close to 0.5.
Having defined point relevance, we have to resolve the

remaining issue of its estimation without evaluation of the
objective function. We could use the same prediction model
as S to approximate F and then calculate the relevance
by simply replacing F(x) with P(x) in the formula above.
Instead, we have decided to learn a separate model for pre-
dicting the point relevance. This not only gives us a much
wider array of possible meta models but also allows us to
dynamically adapt our relevance prediction model to the opti-
mization task at hand. We refer to this model as the relevator.

To reduce the number of parameters in the framework,
when constructing the training set for the relevator, we have
decided to reuse the same filtering scheme as with the sur-
rogate. Thus, to learn the relevance function, we construct
the vector f by using the evaluation history h. However,
we decided to only include values of F present in our training
set. Using the whole history of evaluations tends to increase
the average of fi making it difficult to distinguish relevant
points as their relevance moves closer towards 1. This prob-
lem is reduced by only using ‘‘recent values’’ present in out
filtered train set.

As with the surrogate function S, a call of the relevator
R(x, h) not only predicts the value of relevance(x, f ), where
f is taken from the filtered h, but also learns and updates
the relevance prediction model whenever needed. In order
to reduce the number of parameters we reuse the surrogate
parameters for update frequency.
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In addition to the relevator, the decision function includes
a decision threshold that distinguishes the points with high
relevance, which should be evaluated using the true objective,
from points with low relevance, which should be evaluated
with the surrogate. To allow for dynamic change of the thresh-
old value 2, we define it as a function of the evaluation
history h.

Thus, the decision function of a relevator meta model is
the indicator function 1[R(x, h) > 2(h)], where R : Rk

×

(Rk+m)∗ → [0, 1] is the relevance estimate of point x given
the history of evaluations h and 2 : (Rk+m)∗ → [0, 1] is a
dynamical relevance threshold function.

D(x) =

{
1; R(x, h) > 2(h)
0; R(x, h) ≤ 2(h)

(3)

We implement the dynamical relevance threshold using an
iterative update procedure with the goal to control and locally
adjust the frequency of surrogate evaluations. By considering
the user-defined number of most recent evaluations, we can
either raise or lower the threshold after every meta model
evaluation in order to increase or decrease the frequency of
surrogate evaluations to (locally) achieve the desired substi-
tution rate.

IV. RESULTS
In this section, we present the setup and the results of two
series of experiments with the proposed meta-model frame-
work. In the first series, we use 45 standard benchmark
problems for numerical optimization to tune the parameters
and evaluate the performance of the framework with differ-
ent meta-model instances. Based on the comparison of their
performance, we identify the machine learning methods that
lead to suitable surrogate and substitution-strategy (relevator)
models. The most successful among them are evaluated on
a second series of experiments on three tasks of estimating the
parameters of three real-world models of dynamical systems
from the domain of systems biology.

A. META-MODEL TUNING AND SELECTION
The construction of both the surrogate and the relevator func-
tions for the meta model can be readily framed as a regression
problem. We considered combinations of six different meth-
ods for learning: linear regression (LINEAR), regression tree
with variance reduction and reduced-error pruning (TREE),
k-nearest neighbors with k = 5 (KNN), Gaussian processes
with squared exponential covariance (GP), support vector
machines, ε-SVM with RBF kernel (SVM), and Random
Forest with 100 trees (RF). We used the default parame-
ters from the Weka implementation for each method [15].
The selection of the machine learning methods is based
on the state-of-the-art studies of surrogate-based optimiza-
tion approaches [4]–[6] that uses mostly Gaussian processes,
followed by Random Forest and support vector machines.
To check the utility of other, more efficient machine learning
methods, we decided to include also linear regression, nearest
neighbors and regression trees.

TABLE 1. Values considered for tuning the five parameters of the meta
model.

For each of the 36 surrogate-relevator combinations,
we tuned the five parameters of the meta model by using
COCO, the platform for comparing numerical optimization
methods in a black-box setting [8]. The parameters were
tuned by using grid search with values as shown in Table 1.
The parameters T1 and T2 are used to calculate the training
set size and the parameters I1 and I2 are used to calculate the
interval for rebuilding the surrogate as k ·T1+T2 and k ·I1+I2.
Both sizes are relative to the dimension of the problem k .
The last parameter is r , the desired rate of substitution of the
objective function with the surrogate model.

The widely-used COCO platform contains a set of
black-box optimization functions that are used as bench-
marks problems for numerical optimization. From this set,
we selected 15 functions from three different classes of prob-
lems that resemble real-world parameter estimation tasks:
uni-modal functions with high conditioning, multi-modal
functions with adequate global structure and multi-modal
functions with weak global structure. Within each class the
functions differ by levels of deceptiveness, ill-conditioning,
regularity, separability and symmetry. Each optimization
function can be generalized to a different number of dimen-
sions. We consider instances of each function in 5, 10 and
20 dimensions. Thus, we use a total of 45 benchmark
optimization functions. The best set of parameters for
each surrogate-relevator pair is selected that maximizes the
improvement in performance π relative to a baseline opti-
mization method without surrogates.

Regarding the choice of a parameter estimation method,
global stochastic and hybrid methods based onmetaheuristics
are considered as most promising in the literature [13], [14].
Out of themany different methaheuristic methods, Evolution-
ary Strategies and Differential Evolution have been identified
as the most successful [16], [17] in the intended domain of
application in this work – systems biology. We use Differen-
tial Evolution (DE) [18] as the baseline optimization method.
It is a staple evolutionary and population-based method that
has consistently shown robust and reliable performance on
various problems in many domains [19].

For each of the 45 functions we establish the baseline
performance of DE without meta model by running it with a
budget of 1000·k evaluations. The performance improvement
of a meta-model on a single benchmark function f is then
calculated as πf = max(0, 1 − Mf /Nf ). Note that Nf repre-
sents the number of evaluations needed to reach the minimum
value Vf without surrogates, while Mf is the number of true
function evaluations needed to reach the same minimum of
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FIGURE 2. Average ranks of the meta-model instances on the
45 numerical optimization benchmarks. The meta-model instances are
grouped according to the algorithm used to learn the surrogate (A) and
the substitute-strategy model (B). Each point in the diagram corresponds
to the ranks of the meta-model instances in the group averaged over all
the 45 benchmarks and 6 algorithms used for the second learning
component.

Vf using the meta model. The overall performance improve-
ment of a meta-model is then calculated as π = π̄f + s,
where π̄f is the average performance improvement on all
45 functions and s is the proportion of all functions f with
πf > 0.

For each surrogate-relevator pair we selected the param-
eters that resulted in the best performance improvement.
While we cannot draw any firm conclusions about the best
size of the training set and the rebuild interval, the results
show the potential of the meta model to achieve a very high
replacement rate of evaluations of the true objective function
with evaluations of the surrogate function. For parameters T1
and I1, all possible values were selected an equal number of
times as the best configuration. The lowest values were most
frequently selected for T2 and I2 (17/36 and 14/36). Most
importantly, the highest possible value of 0.8 or the parameter
r was selected in 24 out of 36 best configurations.
To analyze the impact of the selection of the algorithms for

learning the surrogate and the relevator model, we performed
Friedman’s rank sum test and a Nemenyi post-hoc analy-
sis [20]. To perform the tests, we grouped the methods in two

ways. First, we grouped the meta-model instances in 6 groups
according to the algorithm used for learning the surrogate.
The second grouping is based on the algorithm used for
learning the substitution-strategy model. For both groupings,
the Friedman test checks the validaty of the null hypothesis
that all the groups of meta-model instances perform equally
well. In both cases, the null hypotheses is rejected with a
p-value of less than 2 · 10−16, leading to a conclusion that
the selection of the algorithm for learning the surrogate or
the relevator has a significant impact on the performance of
the meta model. Furthermore, the post-hoc analysis uses the
Nemenyi test to investigate the significance of the existing
differences by calculating the critical distance between the
average ranks of the groups. The performances of the two
groups differ significantly, if their difference is larger or equal
to the critical distance. In both groupings, the critical distance
at the significance level of 0.05 equals 0.4594.

Figure 2 employs average-rank diagrams to summarize
the results of the comparative analysis. The horizontal axis
of the average-rank diagram corresponds to the rank of the
group ofmeta-model instances: the top-ranked group is on the
left-most position on the axis. The line above the axis, labeled
CD, depicts the value of the critical distance. The groups of
meta-model instances with utilities that are not significantly
different are connected with thick lines below the axis.

The average-rank diagram in Figure 2(A) groups the
meta-model instances according to the algorithm used
to learn the surrogate. Considering the significance of
the pair-wise differences between the groups, we can
exclude linear regression as an algorithm leading to
meta-model instances with significantly inferior perfor-
mance. The average-rank diagram in Figure 2(B) groups the
meta-model instances with respect to the algorithm for learn-
ing the substitution-strategy model. Meta-model instances
using Random Forest, nearest neighbors and support vector
machines for learning the relevator significantly outperform
the other meta-model instances using the other three algo-
rithms. The comparison of the two graphs reveals that the
meta model is more sensitive to the selection of the algorithm
for learning the relevator then the selection of the algorithm
for learning the surrogate. This is an important insight show-
ing that the choice of the model for the dynamical substitution
strategy adapted to the problem at hand has a significant
impact on the utility of surrogate-based optimization.

B. ESTIMATING THE PARAMETERS OF DYNAMICAL
BIOLOGICAL SYSTEMS
We are interested in the performance of the meta-model in
the case of the real-world problem of estimating the parame-
ters of models of dynamical biological systems. We selected
three dynamical biological systems with varying degrees of
complexity (shown in Figure 3). The three systems have
been well studied in terms of their dynamical properties and
identifiability [21], [22].

The first system is a synthetic oscillatory network of three
protein-coding genes interacting in an inhibitory loop, known
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FIGURE 3. Diagrams of the three models of dynamical biological systems. (A) Synthetic oscillatory network - repressilator; (B) Metabolic
NAND gate; and (C) S-system model of a genetic network. The rectangles represent observed and modeled variables. The arcs ending with
an arrow (→) represent interactions with positive regulation while the arcs ending with a bar (a) represent interactions with negative
regulation.

as the Repressilator, modeled by Ellowitz and Leibler [23].
The system is modeled by six variables and four constant
parameters. The time-series data for this problem is obtained
by numerical integration of the system of ordinary differential
equations with the parameter values reported in [23] for
30 integer time-points. The objective function used is the sum
of squared errors between the simulated trajectories of the
model and the available data.

The second system is a metabolic pathway representing a
biological NAND gate [24]. The model is represented by a set
of five ODEs with 15 constant parameters. Observation data
for the metabolic pathway model was obtained from [22].
It consists of 12 sets of observations obtained by simulating
the model using 12 different pairs of input step functions
(I1, I2) sampled uniformly at 7 time points. The objective
function used is the negative log-likelihood of the simulated
trajectories of themodel and the observations, summed across
all datasets.

The third system is a genetic network [25]. The system is
represented as a five variable S-system model with 23 con-
stant parameters. The observation data for the S-system
model was obtained from [22]. It consists of 10 sets of
observations obtained by simulating the model using 10 dif-
ferent sets of initial conditions for all variables, sampled
uniformly at 11 time points. The objective function is a
log-transformation of the negative log-likelihood function,
with preserved order and mapping 0 to 0. As in the previ-
ous system, the objective function was summed across all
datasets.

To establish a baseline, we ran Differential Evolution (DE)
without a meta-model on each problem with a budget of
10000 · k evaluations, where k is the dimensionality of the
problem, i.e., the number of constant parameters in the sys-
tem. For the meta-model we considered the 5 methods for
learning a surrogate and the 3methods for learning a relevator
function, that were shown to have statistically significant
performance improvements over the other methods. In all

cases the parameter estimation was repeated 10 times with
different random seeds.

Figure 4 shows the transposed convergence curves for the
optimization runs (minimum of 10 restarts) without using
a meta-model (DE) and using a meta-model with different
surrogate-relevator pairs. Recall that the transposed conver-
gence curve depicts the number of evaluations (y axis) nec-
essary to achieve a certain value of the objective function (x
axis, logarithmic scale) and thus, lower curve indicates faster
convergence of the method. In all the graphs, the red curve
corresponding to the optimization without the meta model is
above the others indicating the superior convergence of the
methods using the meta model. The exception to this rule
are the meta models with the SVM relevator (depicted in
the top left graph of the Figure 4) that fail to outperform
the baseline DE method. The graphs in the second column
show the consistent superiority of the meta models using
RF method as a relevator: for all the tasks, these methods
achieve the lowest values of the objective function. For the
repressilator task, the meta models using surrogates based on
decision trees lead to fastest convergence; for the other meta
models with tree-based and RF repressilators have superior
convergence. Note finally that the meta models using the
SVM relevator also consistently outperform the baseline, but
the curves are shorter when compared to the meta models
using RF relevator, indicating inferior utility with respect to
the obtained value of the objective function.

More importantly, the meta-model achieves a significant
improvement in the speed of convergence. To compare the
convergence behavior of the meta-model to the baseline (DE)
across all problems, we performed Page’s trend test for
ordered alternatives as proposed by Derrac et al. [26] on
20 uniformly distributed cut points along the log-transformed
convergence curves. We test the null hypothesis that the
difference between two curves (minimum across 10 restarts)
does not increase with the number of evaluations, i.e. there is
no difference in the speed of convergence. Table 2 shows the
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FIGURE 4. Transposed convergence curves for the three parameter estimation problems: (A) Repressilator, (B) Metabolic pathway and (C) S-System model
of genetic network. Optimization without a meta-model (DE) and a meta-model with different surrogate-relevator pairs (each column corresponds to one
of the methods for learning the relevator). The curves show the number of true objective function evaluations needed to reach a certain objective value
threshold. Points are missing from the end of some of the curves if that method did not reach the threshold in the allocated total number of evaluations.

p-values obtained for the different surrogate-relevator pairs;
note that the values below 0.01 are emphasized in bold letters.
Page’s trend test indicates that in terms of improvement

in the speed of convergence, Random Forest is the superior
choice for the relevator of a meta-model when combined with

any choice of method for learning the surrogate function. The
use of the k-nearest neighbors method for the relevator also
results in more efficient convergence, however only when
combined with certain methods (i.e., TREE, KNN and RF)
for learning the surrogate function.
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TABLE 2. p-values for the statistical significance of the difference
between the convergence curve of a meta-model instance and the
convergence curve of the no-surrogate method.

TABLE 3. Speedup of the optimization obtained with a meta-model
instance on the Repressilator/ Metabolic/ S-system problem and the
average speedup (bold font).

Both Random Forest and k-nearest neighbors are conser-
vative estimators in that they are limited in their ability to
extrapolate predictions for candidate solutions with feature
values outside the space covered by solutions in the train-
ing set. We conjecture that this property of the surrogates
and the relevator is exploited by the optimization method to
efficiently explore non-optimal parts of the objective space,
which improves the convergence. This property also reduces
the possibility of error from evaluating the surrogate function
when exploring parts of the solution space that have high
potential for optimality.

We further analyze the performance improvement
of the surrogate-relevator pairs. Table 3 shows the
πf values achieved by the meta-model with different
surrogate-relevator pairs. The meta-model achieves a remark-
able performance improvement with an average reduction
of up to 77% of the number of true function evaluations
(RF-RF). On individual problems the meta-model achieves
up to 94% performance improvement (SVM-RF).

As was the case for the improvement in speed of conver-
gence, the best performing relevator function is Random For-
est closely followed by k-nearest neighbors. It is compelling
that the best performing surrogate function on average is a
simple regression tree closely followed by SVM.

Regarding the performance achieved on individual prob-
lems, it is worth noting that the SVM relevator is unable to
improve the optimization performance on the Repressilator.
The performance improvement achieved on the other prob-
lems by using the SVM as relevator is on par with others.
The Gaussian processes surrogate exhibits the same issue.

The best performing surrogate-relevator pairs are hetero-
geneous. Learning the surrogate function and the relevator
function are clearly independent tasks that require different
learning methods. Overall, given the results of the empirical
evaluation and taking into account the computational time
needed by the different learning methods, we recommend
choosing a strong and robust learner for the relevator func-
tion such as Random Forest. The computational cost can be
leveraged by the choice of a simpler learner for the surrogate
function without compromising the performance.

V. RELATED WORK
In the literature on surrogate-based optimization, the sub-
stitution strategy D is referred to as a surrogate manage-
ment strategy [3]. Figure 5 depicts the categorization of the
state-of-the-art surrogate-based optimization methods into
two classes of wrapper (B) and embedded (C) methods.
To better understand the figure, consider first the simple
situation of a numerical optimization algorithms that do not
use surrogates (A). In such an environment, the optimization
method interacts only with the true objective function F
by requesting numerous evaluations of different candidate
solutions x ∈ Rk . At the end, the method reports the opti-
mal solution x∗ that minimizes (or maximizes) the value
of F .

Wrappermethods place the surrogatemanagement strategy
outside the optimization method. Following this approach,
the wrapper first initializes the surrogate P using a sample
of candidate solutions x ∈ Rk and their respective objec-
tive evaluations F(x). In consecutive iterations, the wrap-
per first runs the optimization method using the surrogate
model P, obtaining a solution x∗P. Next, it evaluates this
solution using the true objective function. Finally, the solution
x∗P and its evaluation F(x∗P) are added to the training set and
the surrogate model is updated (re-learned) before running
the next iteration. Note that wrapper methods use a fixed
surrogate management strategy that is encoded in the wrap-
per. Recent developments of the wrapper-approach methods
include the methods for constrained numerical optimization
COBRA [27] and SOCOBRA [4].

Embeddedmethods encode the substitution strategy within
the optimization method. Following this approach, the deci-
sion onwhether to use the surrogate or the true objective func-
tion is based on various artifacts of the algorithm [3]. In par-
ticular, population-based evolutionary optimization methods
use the surrogate model P to evaluate the offspring candidates
for the next generation of individuals. On the other hand,
the selection of the top candidates to be actually included
in the next generation, is based on the evaluation of the
true objective function F . A simpler, generation-based man-
agement strategy evaluates the surrogate function in some
generations, and the true objective function in others. Follow-
ing the embedded approach, numerous new variants of the
classical optimization methods in general [5], and [6], [28] in
particular, have been developed.

In sum, the comparison of the wrapper and embedded
class of methods, depicted in Figure 5, shows the following.
Wrapper approaches are inflexible when it comes to the
substitution strategy, since they force the evaluation of the
surrogate function within the wrapped optimization method,
while the true objective function can only be evaluated
from outside the method. On the other hand, embedded
approaches are more flexible, but their decision function
relies directly on the current state of the core optimization
algorithm. Also, they requires re-implementation or modifi-
cation of an existing implementation of the base optimization
method.
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FIGURE 5. Different approaches to surrogate-based optimization. Optimization without surrogates (A), two state-of-the-art classes of
surrogate-based optimization methods, wrapper (B) and embedded (C), and the meta-model framework proposed in this paper (D). In the
four illustrations, F denotes the objective function, P the surrogate, and D the decision function corresponding to the substitution strategy.
The arrows denote the flow of values between the different components of the optimization method.

The proposed meta-model framework for surrogate-based
optimization combines the simplicity of the wrapper
approaches with the flexibility of the embedded approaches.
On one hand, like in wrapper methods, the meta model can be
coupled with any core optimization method since it is used as
a black box (see Figure 5(D)). Unlike other wrapper methods,
the surrogate model and the substitution strategy are coupled
with the true objective function in a manner independent
from the optimization algorithm. On the other hand, as in
embedded methods, the substitution strategy of the meta
model is more flexible. While embedded approaches base
the substitution decision on the artifacts of the optimization
algorithm, the meta-model substitution strategy dynamically
adapts to the solution space of the optimization problem at
hand.

VI. CONCLUSIONS
The main contribution of this paper is the novel meta-model
framework for surrogate-based optimization. In contrast with
the prevailing focus of existing surrogate-based optimization
methods on learning accurate surrogate models, the proposed
framework involves two learning components. One of these
learns the surrogate model and the other learns the decision
function that takes the decision on when to substitute the true
objective function with the surrogate model.

The results of the empirical evaluation of the meta-level
framework confirm our initial hypothesis that the selection

of appropriate surrogate and decision-function models can
have significant influence on the overall performance of
surrogate-based optimization. Moreover, the results show
that the meta-model performance is more sensitive to the
selection of the decision-function model: while almost all
learning algorithms (except linear regression) lead to useful
surrogate models, only random forests, nearest neighbors
and support vector machines are appropriate in the role of
decision-function models.

More specific contribution of the paper is a novel
surrogate-based approach to estimating the parameters of
ordinary differential equations. We consider three parameter
estimation tasks with different complexity and showed that,
for these tasks, the use of a meta model improves the effi-
ciency of optimization. In particular, the use of the relevator
meta model for surrogate-based optimization significantly
and efficiently improves the convergence rate and the final
result of the optimization, when considering a limited number
of evaluations of the true objective function.

The presented meta-model framework significantly con-
tributes to the current machine learning literature by estab-
lishing a new paradigm for coupling optimization and
machine learning methods. While most of the studies in the
machine learning literature are currently based on the sequen-
tial model-based optimization (SMBO) paradigm [2], the pro-
posed framework opens a whole new avenue of research, rich
with opportunities for coupling surrogate models with other
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state-of-the-art optimization methods. The proposed frame-
work is ready to be applied in the context of the currently
very active machine learning research on hyper-parameter
optimization [29], algorithm configuration [30], and to other
meta-learning tasks [31].

The current conceptualization of the meta-level framework
is limited to single-objective, unconstrained optimization. Its
generalization towards dealing with multiple objective func-
tions and/or constraints represents two possible directions
for further research. Despite the fact that we have applied
the framework to numerical optimization only, it is general
enough to address also combinatorial or mixed optimization
problems. The evaluation of the framework, presented in this
paper, is also limited to its coupling with the Differential Evo-
lution method. While this is a typical representative of a more
general class of population-based optimization methods, fur-
ther experimental evaluation is necessary to establish its gen-
erality with respect to the selection of the base optimization
algorithm. Finally, further evaluation can include compara-
tive analysis of the performance of the meta-model frame-
work relative to the performance of wrapper and embedded
surrogate approaches.

DATA AVAILABILITY
The source code of the implementation of the meta-model
framework for surrogate-based parameter estimation,
the models and the data used in the experiments are freely
available at http://source.ijs.si/zluksic/metamodel.

MODEL OF THE REPRESSILATOR

ṁ1 = α0 +
α

1+ pn3
− dm1

ṁ2 = α0 +
α

1+ pn1
− dm2

ṁ3 = α0 +
α

1+ pn2
− dm3

ṗ1 = β(m1 − p1)

ṗ2 = β(m2 − p2)

ṗ3 = β(m3 − p3)

MODEL OF A METABOLIC NAND GATE

Ṡ3 = −
S3Vmax1

(S3 + KD1)(1+
I1
KI1

)
−

S3Vmax2
(S3 + KD2)(1+

I2
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)

+
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+
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Ṡ4 =
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−
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Ṡ7 =
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S-SYSTEM MODEL OF A GENETIC NETWORK
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2
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Ẋ4 = α4X
g43
3 Xg455 − β4X

h44
4
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