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ABSTRACT Sparseness is often witnessed in big data emanating from a variety of sources, including
IoT, pervasive computing, and behavioral data. Frequent itemset mining is the first and foremost step
of association rule mining, which is a distinguished unsupervised machine learning problem. However,
techniques for frequent itemset mining are least explored for sparse real-world data, showing somewhat
comparable performance. On the contrary, the methods are adequately validated for dense data and stand
apart from each other in terms of performance. Hence, there arises an immense need for evaluating these
techniques as well as proposing new ones for large sparse real-world datasets. In this study, a novel
method: Mining Frequent Itemsets by Iterative TRimmed Transaction lattICE (TRICE) is proposed. TRICE
iteratively generates combinations of varying-sized trimmed subsets of I , where I denote the set of distinct
items in a database. Extensive experiments are conducted to assess TRICE against HARPP, FP-Growth,
optimized SaM, and optimized RElim algorithms. The experimental results show that TRICE outperforms
all these algorithms both in terms of running time and memory consumption. TRICE maintains a substantial
performance gap for all sparse real-world datasets on all minimum support thresholds. Moreover, assessment
of memory use of optimized SaM and RElim algorithms has been performed for the first time.

INDEX TERMS Association rules, big data applications, data mining, frequent itemset mining, pattern
recognition, pervasive computing.

I. INTRODUCTION
The mining of association rules is regarded as one of the lead-
ing problems in data mining. It is used to uncover obscured,
interesting relationships in large databases. The task is to be
aware of associations occurring among different things in
such away that the presence of some elements in a transaction
is implied by the presence of other elements. The maidan
use of association rule mining in retail industry has achieved
fruitful results. It has provided assistance to companies in
making wiser business decisions such as offering items on
sale, bundling items together, and formulating marketing
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strategies [1]. At present, the exceptional power of mining
and furnishing deep insights of data has made association
rule mining a necessary tool. It is currently used in a number
of fields such as analyzing market basket data [2], IoT ser-
vices and infrastructure [3]–[5], smart home [6]–[8], smart
retail [9], mining of data streams [10], mining of mobile
data stream (mdsm) [11], recommender systems [12], medi-
cal [13]–[17], predicting natural catastrophes [18], safeguard-
ing Internet and web [19]–[22], and predicting weather [23].

First and foremost step of association rulemining discovers
frequent itemsets [1]. Itemsets are considered frequent if
found present in a higher number of transactions than the
minimum support, a threshold defined in advance. This step
is computationally expensive. Association rules are generated
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in the next step with the help of frequent itemsets. In contrast
to the former one, this step is trivial and computationally
inexpensive. Hence, the overall performance of an association
rule mining technique is strictly dependent on the first step.
Frequent itemset mining holds a distinguished stature in data
science to generate association rules, episodes, and correla-
tions [24]. It finds collections of items placed collectively in a
database of transactions [1]. A transactional database is com-
posed of a sequence of transactions where the transactions
are mapped to baskets of different items customer buy [25].
Several large retailers such as e-bay, YouTube, Netflix, and
Amazon mine frequent itemsets to offer further recommen-
dations to the users about interesting items/products.

Current frequent itemset mining algorithms are compre-
hensively validated for dense datasets, and a clear dissim-
ilarity exists among their performance. On the other hand,
they are not adequately applied to sparse real-world datasets
lacking significant validation. Furthermore, a comparable
performance has been exhibited by them for sparse datasets.
Real-world sparse datasets have the following features.

1) There are no significant repetitions as well as transac-
tion overlapping.

2) They generally have several distinct items.
3) They contain transactions of varying lengths.
4) Frequent itemsets discovered are hundreds or thou-

sands in numbers.
A transactional database of a hypermart is an example of

a real-world sparse dataset. A hypermart usually contains a
multiplicity of items available. However, a small portion of
these items is contained within each transaction. Therefore,
a transaction represents a minimal subset of I , where I is
the set of distinct elements present in a hypermart. Sparse
datasets are also generated by the sensors containing several
thousand readings and a few occurrences of activity leading
towards big data [26]–[30].

Moreover, imbalanced behavioral big data is also
sparse [31]. Though the information represented by sparse
data is less comprehensive, yet it is reasonably rare, and
that is why more useful and precious for companies. This
information is essential for understanding the behaviors of a
variety of clientele; hence, better predictive analytics can be
made. It has been empirically demonstrated that sparse data-
based predictivemodels have brought amassive improvement
in predictive performance [32].

In this paper, a novel method, Mining frequent itemsets
by Iterative TRimmed Transaction lattICE (TRICE), is pro-
posed to dig out frequent itemsets from sparse real-world
transactional datasets efficiently. TRICE has optimized the
HARPP (HARnessing the Power of Powersets for Mining
Frequent Itemsets) algorithm [33] by getting rid of its mem-
ory exhaustiveness for the datasets having longer average
transaction length. HARPP is based on Iterative Transaction
Lattice (ITL). Though HARPP’s novel feature of making a
single pass over the database is advantageous, it limits the
performance as well. In a transactional database, a transaction
contains both frequent and infrequent items. Since HARPP

reads a transaction only once, it lacks the mechanism to
eliminate the infrequent 1-itemsets from it. It affects the
performance of HARPP when applied to the datasets having
longer average transaction length. Limitations of HARPP
can be eradicated by introducing a mechanism that cutoffs
the infrequent 1-itemsets from each transaction. Thus, each
trimmed transaction contains only frequent 1-itemsets before
making its power set. This approach can effectively reduce the
memory requirement because the resultant power sets will be
smaller in size.

Itemset Lattice (IL) of I items contains 2I itemsets, where
I is the set of all distinct elements in a transactional database.
Since I tends to be very large, generating IL of I spawns expo-
nential possible itemsets. These abundant possible itemsets
need a massive memory to be stored, which is not viable in
veracity. Moreover, extracting frequent itemsets from 2I pos-
sible itemsets is trivial but extremely inefficient. In contrast,
a transaction is a smaller subset of I because it contains fewer
items of I . Therefore, a Transaction Lattice (TL) is composed
of minimal possible itemsets, and frequent itemsets can be
generated efficiently. TRICE introduces the concept of Itera-
tive Trimmed Transaction Lattice (ITTL).

Following HARPP, TRICE also generates power sets
of transactions. However, TRICE generates power sets of
varying-sized trimmed subsets of I , where each subset rep-
resents a transaction in a database. In fact, TRICE iteratively
makes power set of every trimmed transaction described by its
respective ITTL. Furthermore, several identical transactions
are contained in large real-world sparse datasets. TRICE
stores and trims identical transactions only once, therefore
the corresponding power set is also constructed once. This
mechanism avoids redundant processing later. It also helps
in getting efficiency and conserving memory. Trimming
before making power sets helps in getting rid of infrequent
1-itemsets from the transactions. Thus, in contrast to Itemset
Lattice (IL), which is a huge power set containing 2I subsets,
an ITTL represents a small subset of IL. These ITTLs are then
used to find frequent itemsets.

TRICE achieves efficiency and conserves memory due
to its elegant transaction trimming mechanism as well as
treating identical transactions. It is compared with HARPP,
FP-Growth, and optimized SaM (Split andMerge) and RElim
(Recursive Elimination) algorithms on six real-world sparse
datasets. Optimized versions of SaM and RElim have been
claimed as efficient performers for sparse datasets. TRICE
has shown its superiority and outperformed all these algo-
rithms both in terms of running time and memory consump-
tion. Moreover in this study, the memory consumption of
optimized versions of both SaM and RElim algorithms [34]
has been evaluated for the first time.

The paper is organized as follows. Related work is pre-
sented in Section 2. Section 3 presents the detailed depic-
tion of the problem and its essential definitions. TRICE
algorithm is presented in Section 4. A detailed exam-
ple is given in section 5. Section 6 presents experimen-
tal results in detail and performance study. Section 7
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FIGURE 1. Itemset Lattice generated by brute-force algorithm.

concludes this study and presents some potential research
issues.

II. RELATED WORK
Frequent itemset mining is a well-researched area. Table 1
describes the characteristics of existing techniques and their
validation adequacy for real-world sparse datasets.

At the very start, the basic brute-force algorithm [35] builds
all possible itemsets shown by IL in Figure 1. Following this,
it begins calculating the support or frequency of presence
of every itemset (except empty set) by comparing it against
each transaction in a transactional dataset. If the support of an
itemset remains less than the user-defined minimum support
threshold, it becomes infrequent, thus rejected. This algo-
rithm works in a simple manner but the exponential increase
of itemsets makes it is exceptionally inefficient and useless.
If I denotes a large set of different items in a transactional
dataset, then the generated itemsets are 2I . Consequently,
massive memory is required to store these itemsets, which
makes this algorithm unreasonable. Abundant items are kept
by large retailers; therefore, I tends to be very large.
Based on the method of candidate-set generation and

test, Apriori is believed as a standard algorithm [2]. Apriori
introduces the notion of hierarchical monotonicity to bring
improvement in the basic brute-force algorithm. According
to hierarchical monotonicity, if a subset of a frequent item-
set is present, it should be realized as frequent too. Like-
wise, an infrequent itemset makes its superset infrequent too.
Figure 2 depicts the principle, in which after making first pass
over the database, the support of {Juice} is found to be less
than minimum support threshold.

Thus, according to the principle of hierarchical monotonic-
ity, the supersets of candidate itemset {Juice} will also be
infrequent. In this way, Apriori algorithm brings improve-
ment in the brute-force algorithm by pruning the itemset
lattice. Adopting breadth-first approach, Apriori constructs
candidate itemsets in iterations having length (k+1) by using
the collection of frequent itemsets of length k (for k≥1) and
calculates their support in the database.

Several later studies [2], [36]–[42] are based on Apriori.
However, they have to deal with the same challenge of gener-
ating gigantic candidate itemsets and calculating their support
afterward.

Several database scans are required that limit the perfor-
mance of these techniques [43]. Many vertical methods are
proposed to bypass this tedious scanning [44]–[47]. These
techniques vertically represent each itemset, such as Tid-set
or diff-set. Support of itemsets is calculated by employing
set intersection. Tid-set counts support of itemsets efficiently
because it does not scan the database repetitively. However,
if Tid-set cardinality or the dataset itself is large, efficiency
of vertical techniques deteriorates.

Furthermore, according to the direct hashing prun-
ing (DHP) algorithm [48], creation of frequent 2-itemsets is
the key contributor to the growth of running time. Therefore,
improvement in the preliminary construction of candidate
itemsets can improve the performance of the algorithm on
the whole. Moreover, scanning of the voluminous data also
degrades the performance. DHP lowers the volume of the
database and efficiently generates frequent itemsets. Perfect
hashing and pruning (PHP) [49] makes hash tables forCκ+1
and efficiently escapes from hash table collisions that happen
regularly in DHP. Accordingly,Cκ+1 keeps the real count of
theCκ+1 itemsets. Thus, the desire to count the frequency of
Cκ+1 itemsets oncemore inD is lowered. Sampling [50] and
counting itemsets dynamically (DIC) [51] further lifted the
efficiency by softening the harsh division between counting
the support and building candidates. Every time the support of
a candidate itemset and minimum support threshold become
equal, DIC initiates the generation of additional candidate
itemsets. A prefix tree is employed that extracts frequent
itemsets quickly.

The Cluster-based association rule (CBAR) algorithm fol-
lows Apriori and makes use of a clustering technique [52].
In the beginning, CBAR carries out a dataset scan and con-
structs cluster tables. During this process, CBAR keeps a
transaction record of k length to k-th cluster table. It makes
candidate-2 itemsets in accordance with the procedure used
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TABLE 1. Characteristics of existing techniques.

FIGURE 2. Hierarchical monotonicity in apriori.

by Apriori algorithm. Following this, CBAR contrasts candi-
date 2-itemsets with in the 2nd cluster. An itemset is believed
to be frequent if its support becomes equal to the minimum
support threshold, and additional checking in larger clusters
is stopped. Likewise, candidate 3- itemsets are examined in

the 3rd cluster and so on. CBAR performs in a fast manner
because it prefers contrasting partial cluster tables over the
entire database.

A modified cluster-based method performs two optimiza-
tions in the CBAR algorithm [53]. At the start, it performs
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database trimming by ignoring all infrequent items before
constructing clusters. The database is scanned two times. The
first scan of the database helps to find out frequent 1-itemsets.
In the later scan, infrequent itemsets are removed from each
transaction before clustering. It further optimizes CBAR by
employing a counter for every transaction. Every occurrence
of a transaction causes an increment in the counter. An iden-
tical transaction is discarded. The transaction is then placed
in the cluster table. This adjustment significantly trims the
volume of cluster tables.

FP-Growth algorithm employs extended structure of
prefix-tree. A trie structure is used for holding the database.
A link list is kept by each itemset that performs traversal of
all transactions containing the itemset. A condensed form is
used to keep this structure and denoted as, FP-tree (Frequent-
Pattern tree) [43]. Each node maintains a counter to track
the number of transactions that share the branch all the way
through the node. It holds a link that points to the next
presence of the itemset in FP-tree. Finally, it connects every
occurrence of an itemset and represents it by FP-tree. Also,
it holds a header table to store every distinct itemset and
its support along with a pointer in FP-tree that points to
its first presence. Discovery of frequent itemsets is done by
employing a divide-and-conquer method. FP-Growth lacks
efficiency if the patterns are longer or minimum support
becomes low because conditional FP-trees are spawned in
abundance [54].

Subsequently, PPC-trees (Pre-order Post-order Code trees)
are proposed for holding the information regarding frequent
itemsets [55]. The efficiency of the PPC tree is better than
FP-tree because the algorithm needs to traverse the tree once
for identification of the N-list holding frequent 1-itemsets.
On the contrary, FP-Tree based techniques need to traverse
the tree several times. PrePost algorithm is proposed that
employs PPC-tree [56]. In the beginning, PREPOST con-
structs a PPC-tree utilizing an algorithm for tree generation.
Later, it creates N-lists related to 1-itemsets. N-list denotes a
transaction ID list (TID list) in compressed form that repre-
sents the features of an itemset. Then a divide-and-conquer
approach is incorporated to extract frequent itemsets after-
wards. There is no requirement of constructing additional
trees in the successive iterations, thus its performance is supe-
rior than that of FP-Tree. PrePost has a limitation due to its
utilization of Apriori-like method to mine frequent itemsets,
still single-path property of N-list is utilized for pruning the
search space.

Nodeset represents an itemset that is based on the PPC
tree. The encoding of a node in Nodeset is carried out by
post-order or preorder code. FIN algorithm is proposed based
on Nodeset [57]. FIN and PrePost perform equally well;
however, FIN consumes less memory. PrePost+ optimizes
PrePost as utilizes N-list to corresponding to frequent item-
sets and performs mining in a straight manner [58]. Children-
Parent Equivalence pruning is used for reduction of the search
space as well as to evade monotonous search.

Moreover, the subsume index is proposed for additional
enhancing mining performance [59]. A frequent 1-itemset
keeps a subsume index to represent a list that holds frequent
1-itemsets occurring with it. NSFI is proposed that is based
on subsume index [60]. NSFI mingles subsume index and
N-Lists to gain efficiency and minimal memory. The use
of a hash table to generate N-lists makes NSFI an efficient
algorithm. Further, it has improved the N-list intersection
process. Subsume index helps in finding frequent itemsets
and eliminates the need to recognize associated N-lists.

RElim [61] is another algorithm that is based on
FP-growth, but rather than using FP-trees, it uses recur-
sion for eradicating items. It begins by selecting the trans-
actions that contain the least frequent item. That item is
then removed, resulting in a much smaller trimmed dataset.
The remaining items in this dataset are processed recur-
sively. It remembers the discovered items during the recursive
process and computes all frequent itemsets related to the
removed item for which the recursive procedure is called.
RElim does this when all the items in the trimmed dataset
are explored. RElim does this procedure again by selecting
the next least frequent item and so on. RElim is simplified by
introducing SaM (Split and Merge) [62].

SaM is based on a horizontal demonstration. It works in
two steps. The first step is the split-step in which every array,
which starts with the first item of the first transaction is copied
into a new array, and that foremost item is then eliminated.
This procedure is then repeated recursively to discover all
frequent itemsets for the first item. Afterward, a merge step
is performed with the trimmed dataset (the foremost item is
eliminated) to get the conditional pattern base. Both RElim
and SaM have been optimized later, and it is claimed that
they have shown excellent runtime performance on sparse
datasets.

HARPP algorithm is evaluated on three sparse real-world
datasets and has shown its superiority [33]. It makes combi-
nations of transactions represented by power sets in a trans-
actional database. Treating each transaction as a set ADT,
the containment of each of its subset is checked within a set
ADT first that contains all frequent itemsets. Containment
within this set signifies that the subset is frequent already.
Thus the subset is labeled frequent and discarded immedi-
ately. Or else, the subset and its support count are stored in a
dictionary ADT as a pair of key and value. Shortly after sav-
ing, the support of the subset is compared with the minimum
support threshold. If its support becomes equal to minimum
support threshold, it is regarded frequent, removed from the
dictionary, and kept in the set containing frequent itemsets.
Without storing the database in mainmemory, HARPPmakes
a single pass over the database and discovers frequent item-
sets on the fly.

Most of the techniques have been usually evaluated on
dense datasets, a significant distinction exists in their per-
formance. However, there is no substantial dissimilarity
among their performance for large real-world sparse datasets.
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TABLE 2. Notations and descriptions.

Furthermore, they are not often applied to real-world sparse
datasets and have shown inferior performance [48]. For
example, NSFI is applied to Retail dataset only, and PrePost
performs marginally better than NSFI [60]. Comparable per-
formance is shown by PrePost, FP-Growth∗, and FP-Growth
on sparse datasets [56]. Likewise, running time of PrePost+,
FIN, and PrePost is alike on Kosarak dataset [58]. The run-
ning time of these algorithms grows swiftly when minimum
support goes beneath 0.4% for Kosarak dataset [58].

Optimized SaM and RElim algorithms have been applied
to only two sparse datasets, out of which only one is real.
Moreover, the memory consumption of both SaM and RElim
has not been investigated at all [34]. Therefore, their effi-
ciency on sparse datasets needs to be further investigated.
HARPP is efficient, yet its performance degrades for the
datasets having longer transactions. Due to scanning the
database once, HARPP generates combinations of a trans-
action on the fly. Thus, it lacks the capability of removing
infrequent 1-itemsets before making combinations. Resultant
power sets are larger; therefore, they exceed the memory
limits.

To beat this issue, a novel method: Mining Frequent
Itemsets by iterative TRimmed transaction lattICE(TRICE)
is proposed. TRICE optimizes HARPP by getting rid of
its memory exhaustiveness and efficiently finds frequent
itemsets from several real-world sparse datasets. Moreover,
the assessment of memory use of optimized SaM and RElim
algorithms is done for the first time.

III. BASIC CONCEPTS
This section commences by introducing the concepts relevant
to TRICE. Suppose I = {i1, i2, i3,. . . , im } be the set contain-
ing all items. Let D ={T1, T2, T3,. . . , Tn} be a dataset con-
taining n transactions in a way that every transaction consists

TABLE 3. A transactional dataset, D.

of various items belonging to I . Is indicates an itemset if Is is
a set of items. A transaction Ts includes Is if and only if Is is
a subset of Ts.

Notations with their descriptions are presented in Table 2.
A dataset,D is shown in Table 3 for the purpose of illustra-

tion throughout the paper. Sup(Is) denotes the support of an Is
inD, and it represents the number of transactions that contain
all the items in the Is. An Is becomes frequent if Sup(Is) ≥
(minsup X |D|). A frequent itemset that holds k elements is
called a frequent k-itemset. Frequent itemset mining problem
can be expressed as discovering the set that holds all itemsets
having support ≥ (minsup X |D|).

The power set of a set comprises all subsets of the set,
including the set itself, but excluding the empty subset.

IV. TRICE: THE PROPOSED METHOD
A typical transaction in a dataset consists of some items
contained in I , which is the set of all distinct items. Thus, a
transaction represents a subset of I . In fact, TRICE iteratively
generates Transaction Lattice (TL) by making power sets of
each transaction in a transactional dataset, hence denoted as
Iterative Trimmed Transaction Lattice (ITTL). The likelihood
of the occurrence of identical transactions (containing similar
items) is high in large real-world sparse datasets. TRICE
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FIGURE 3. Pseudocode of TRICE.

stores and trims alike transactions only once, therefore the
corresponding ITTL is also constructed once. This mecha-
nism avoids redundant processing in later stage. It also helps
in getting efficiency and conserving memory.

Trimming before making ITTL helps in getting rid of
infrequent items from the transactions. Thus, in contrast to
Itemset Lattice (IL), which is a vast power set containing
2I subsets, an ITTL represents a small subset of IL. ITTL
of TRICE is even smaller than the IL generated by HARPP
because IL in HARPP is made up of the complete transaction
without removing infrequent 1-itemsets. TRICE incorporates
efficient set and dictionary data structures for storing, con-
tainment checking, and support counting of itemsets. These
operations take constant running times, thereby achieving
efficiency. The pseudocode of TRICE is shown in Figure 3.

TRICE algorithm is comprised of two steps. In the begin-
ning, TRICE invokes Frequent1( ) procedure to do the subse-
quent tasks.

1) The procedure scans the dataset and iteratively does the
following two sub-tasks for every transaction.

a) In Step (1)-(6), a Ts is read. Ts and support of Ts
are placed as a pair of key and value inDict1. The
value of Ts is one if Ts occurs for the first time,
or else, the value is incremented. A value greater
than one shows that identical transactions exist in
a dataset. Dict1 stores identical transactions only
once.

b) In Step (7)-(14), every single Is is extracted from
Ts and stored into Dict2 as a key with value one,
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FIGURE 4. Flowchart of Frequent1 ( ) procedure.

if it comes for the first time. Or else, the current
value is incremented.

2) When the dataset is read thoroughly, in Step (15), all
Is whose support is equal or greater than minsup are
filtered out and stored into Dict3. Thus, Dict3 consists
of all frequent 1-Is and their values (support) as the
pairs of keys and values.

3) Keys kept in Dict3 are extracted and stored into Ls in
Step (17). Thus, Ls contains frequent 1-itemsets.

The procedure ends with Dict1 that contains all distinctive
transactions (Ts) and their associated supports as pairs of
keys and values, and Ls. The flowchart of the procedure
Frequent1() is shown in Figure 4.
FrequentItems( ) procedure is invoked in the next step,

which takes minsup, Dict1, Ls, and |D| as parameters.

The following tasks are done for every Ts placed in Dict1
pointed to by Kc.

1) Step (1) - (2) gets a Kc and intersect it with Ls stored in
Z . This intersection discards the infrequent items from
Kc. Thus, Z is a trimmed version of Kc (currently read
Ts) because it contains the frequent items of Kc only.
After that it does the following actions.
a) Step (3) - (4) verifies the containment of Z in Fs.

If Z exists already, it is considered frequent, thus
deleted. Following this, the procedure takes next
Kc fromDict1. Or else, it generates the power set,
Ps of Z , that represents the ITTL of Z .

b) For every S within Ps in Step (5), the procedure
does subsequent sub-tasks.
i) Step (6) takes a S and verifies its containment

in Fs. If S exists, it is regarded as frequent,
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FIGURE 5. Flowchart of FindFrequent ( ) procedure.

thus removed and next S is taken from Ps.
Or else, in Step (7)-(8) S is placed in Dict4 as
key, and the value of S is made equal to that
of Kc. If S exists previously, then an increase
is done in its current value by the value of Kc
in Step (9)-(10). This process happens for the
reason that the support of S is equivalent to
support of Ts and Z shows intersection of this
Ts with Ls.

ii) After placing S in Dict4, the value of S and
minsup are compared in Step (11). If both are
equal, S is regarded as a frequent Is.

iii) Then this Is is removed from Dict4 and kept
in Fs in Step (12).

The flow chart of FrequentItems ( ) is shown in Figure 5.

V. TRICE EXAMPLE
This representative example is based on the dataset given
in Table 3. Let us assume minsup = 66%. According to

the dataset, an Is will become frequent if it occurs in at
least four transactions (66%). At first, TRICE invokes the
procedure, Frequent1 ( ), as shown by figures 6-11. 1st Ts
is read by Frequent1 ( ) in Figure 6 and kept in Dict1 as key.
The associated value of the Ts is one because this does not
exist in Dict1 already. Following this, each single itemset,
Is of Ts is extracted and put into Dict2 as a key, and the
value of Is will be one. The values of all keys in Dict2 are
set to one, because it will be stored in Dict2 for the first
time.

In Figure 7, 2nd Ts is read and stored as a key in Dict1
having value 1. Following this, the procedure extracts each
Is of Ts and places it as a key in Dict2. Itemsets, A, B,
and C exist there already; thus, an increment is done in
their values. The values of A, B, and C are now equal to 2
in Dict2.

Figure 8 shows the states of Dict1 and Dict2 when 3rd Ts
is read. This Ts is placed in Dict1 as a key and the value of Ts
is one because the Ts arrives for the first time. After extorting
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FIGURE 6. State of Dict1 and Dict2 after placing T1.

FIGURE 7. State of Dict1 and Dict2 after placing T2.

FIGURE 8. State of Dict1 and Dict2 after placing T3.

individual Iss, an increment is done in the values of A, B,
and D.

Figure 9 shows Dict1 and Dict2 when 4th Ts is read.
Figure 10 shows Dict1 and Dict2 when 5th Ts is read.
Figure 11 shows Dict1 and Dict2 when 6th Ts is read,

which is a repeated transaction. This repeated Ts is not kept
in Dict1 again; instead its value is incremented. Values of Iss
{D} and {E} in Dict2 are smaller than minsup, thus ignored.
Eventually, frequent 1-Iss are {A}, {B}, and {C} that are
stored into Dict3 with their supports. Finally, Dict3 keys that

FIGURE 9. State of Dict1 and Dict2 after placing T4.

FIGURE 10. State of Dict1 and Dict2 after placing T5.

FIGURE 11. Dict1, Dict2, Dict3, and Ls after reading T6.

represent frequent 1-Is are kept in Ls, however the values of
these keys are not required any longer.

Figures 12-16 depict the FrequentItems( ) procedure.
In Figure 12, Kc refers to the 1st key in Dict1.
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FIGURE 12. Ps showing ITTL of 1st key, Dict4, and Fs.

The intersection of Kc and Ls is stored in Z . Itemset D
is discarded because it is not present in Ls; therefore, Z
contains a trimmed transaction. Containment check in Fs is
done here. Z is infrequent yet; thus, Fs does not contain Z .
The procedure advances and Ps of Z is created that shows
its ITTL. Then iteratively, all subsets (S) of Ps are placed as
keys intoDict4 one by one with value two that is equal to that
of recent Kc in Dict1. Immediately after storing, support of
each S and minsup are contrasted. If the value of S equalizes
minsup or becomes higher, it is regarded as frequent. The
value of every S is less than minsup, so it is not frequent yet.
Fs is still empty.
Figure 13 shows Dict4 and Fs when Kc refers to the next

key of Dict1. Because Fs is unfilled, the Ps of the present
intersection is generated and stored in Z . Then each subset (S)
is stored into Dict4. Because each S already exists in Dict4,
the value of each S is incremented. Yet the support of every
S is far behind minsup; therefore, Fs remains empty.
Figure 14 shows Fs and Dict4 when 3rd key of Dict1

is read. Ps is generated again because Fs does not possess
current Z already.

After the creation of Ps, each S is kept in Dict4 as a key
with updated value. Values of subsets {A}, {B}, and {A, B}
are now equivalent to minsup, hence they are frequent. Thus,
they are deleted from Dict4 and kept in Fs. Figure 15 depicts
Fs and Dict4 when 4th key of Dict1 is read.
The intersection containing A, B is discarded because it

already resides in Fs. Thus, the additional steps are not per-
formed, and the procedure reads the nextKc. Figure 16 shows
Fs and Dict4 when 5th key of Dict1 is read.
Z contains a subset {B, C}. Due to its absence in Fs, Ps

of this subset is generated. Each S and support of S is kept
in Dict4 as a pair of key and value. The support of {C} and
{B, C} and minsup are equal now. Thus, they are regarded as

FIGURE 13. Ps showing ITTL of 2nd key, Dict4, and Fs.

FIGURE 14. Ps showing ITTL of 3rd key, Dict4, and Fs.

frequent, removed from Dict4 and kept in Fs. The algorithm
terminates because no further key remains in Dict1. Fs holds
each frequent itemset.
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FIGURE 15. Ps showing ITTL of 4th key, Dict4, and Fs.

FIGURE 16. Ps showing ITTL of 5th key, Dict4, and Fs.

VI. EXPERIMENTAL EVALUATION OF TRICE
In this section, experimental results related to runtime and
use of peak memory are reported. All algorithms discover
identical frequent itemsets, thus verifying the accuracy of the
results.

A. EXPERIMENTAL SETUP
TRICE is compared with HARPP, FP-Growth, and optimized
versions of SaM and RElim algorithms on six real-world

TABLE 4. Features of the datasets.

FIGURE 17. Assessment of runtime for Kddcup99 dataset.

sparse datasets. Characteristics of the datasets are summa-
rized in Table 4.
PowerC, Kddcup99, Record Link, Food Mart, and Online

Retail are obtained from [63]. Extended Bakery dataset is
derived from [64]. FP-Growth is preferred as one of the base-
line algorithms, because its running time is reasonably equiv-
alent to that of the other state-of-the-art algorithms for sparse
datasets [56], [58], [60]. HARPP has also shown efficiency
for sparse datasets. Optimized SaM and RElim algorithms
have been demonstrated as efficient algorithms for sparse
datasets [34]. Therefore, they have been chosen as other
baseline algorithms. Python is used to implement TRICE and
HARPP. FP-Growth, SaM, and RElim python implementa-
tions are taken from [65]. For experiments, a computer having
Intel Core i7-3667U, 2.0 GHz processor, Windows 8 Pro×64
Edition, and 8G memory has been used.

B. ASSESMENT OF RUNTIME OF TRICE
Running time of TRICE is compared with that of the others in
this subsection. The assessment of runtime for the Kddcup99
dataset is given in Figure 17. At lower minsup, such as 30%,
FP-Growth, SaM, and RElim are beaten by TRICE almost
by a factor of 3, 2, and 2 respectively. At higher minsup,
such as 70%, TRICE is more than four times faster than FP-
Growth, three times faster than SaM and more than three
times faster than RElim. SaM is a bit better performer than
RElim as opposed to the formerly reported analysis [34],
where RElim has shown superiority on sparse datasets. The
result of HARPP is not plotted because its running time
exceeded 1000 seconds at minsup 30% and worsened when
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FIGURE 18. Assessment of runtime for PowerC dataset.

FIGURE 19. Assessment of runtime for Online Retail dataset.

minsup is increased further. However, the result shows that
TRICE is leading by the widest of margins.

Figure 18 shows the assessment of runtime for the PowerC
dataset. TRICE succeeds in maintaining the performance gap
all the way. FP-Growth, RElim and SaM are beaten by TRICE
almost by the factor of 4, 4, and 3 respectively on all minsup
values. TRICE and HARPP perform equally well at minsup
0.001%, but runtime of TRICE improves with the increase
in minsup. On the other hand, running time of HARPP starts
rising with the rise in minsup. Eventually, HARPP is beaten
by TRICE by the factor of 31 when minsup is 40%.

Figure 19 shows the assessment of runtime for the Online
Retail dataset on a logarithmic scale. TRICE throughout
outperforms all other algorithms and gets the same run-
ning time on each minsup threshold. At minsup 3%, TRICE
beats FP-Growth, RElim, and SaM by a factor of 4, 4, and
5 respectively. At minsup 0.01%, TRICE becomes quicker
than FP-Growth by two orders of magnitude and SaM and
RElim by a factor of 5. HARPP and TRICE give a comparable
performance at minsup 0.003%. But HARPP starts taking
more time in discovering frequent itemsets as minsup tends
to increase. However, performance of TRICE gets better with
the increase in minsup. TRICE beats HARPP by a factor
of 10 at minsup 3%.
Figure 20 demonstrates the evaluation for Record Link

dataset. SaM again beats RElim though it is found to be slow

FIGURE 20. Assessment of runtime for Record Link dataset.

FIGURE 21. Assessment of runtime for Extended Bakery dataset.

performer on sparse datasets [34]. Nevertheless, TRICE again
wins the performance battle.

When minsup is 70%, TRICE is quicker than FP-Growth,
SaM and RElim by a factor of 4, 3, and 3.5 respectively.
This significant performance gap persists throughout allmin-
sup values. The result of HARPP is not plotted because its
running time exceeded 600 seconds at minsup 0.1% and
worsened when minsup is increased further.

Figure 21 shows the assessment for the Extended Bakery
dataset.

TRICE beats FP-Growth almost by a factor of 1.5 and
SaM and RElim by more than a factor of 2. TRICE performs
consistently well and beats FP-Growth and the others by a
factor of 5 and 3, respectively, whenminsup is 0.01%. TRICE
and HARPP give a comparable performance over all minsup
values.

Figure 22 shows the assessment for the Food Mart dataset.
At minsup 0.6%, TRICE is faster than HARPP by an order of
magnitude and SaM by two orders of magnitude. Moreover,
it beats RElim and FP-growth by the factors of 2 and 5 respec-
tively. Atminsup 0.04%, performance of HARRP and TRICE
is comparable but TRICE is faster than FP-growth, SaM, and
RElim by the factors of 47, 11, and 8, respectively.

The performance of TRICE becomes better with the
increase in minsup. It is evident from the above performance
analysis that TRICE always achieves better running times on
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FIGURE 22. Assessment of runtime for Food Mart dataset.

each dataset and on each minsup threshold. The reasons are
explained below.

1) FP-Growth underperforms for sparse datasets because
long repeated patterns seize to exist. FP-tree contin-
ues to grow; thus, additional time is required by the
algorithm for construction and traversal of conditional
FP-trees. On the contrary, TRICE does not need to
generate numerous conditional pattern bases and con-
ditional FP-trees; thus, less time is taken. The bot-
tleneck in the original SaM algorithm is its merging
step that deteriorates its performance when applied to
sparse datasets [62]. Likely, the lengths of two lists
of transactions in sparse datasets differ significantly,
which compels the merge sort to show its worst-case
quadratic behavior. Therefore, the optimized SaM has
been used in this paper for comparison, which employs
a modified merging scheme [34]. Similarly optimized
RElim gets rid of duplicates in the transaction lists and
used a heuristic approach to sort the lists [34]. However,
TRICE has still managed to outperform the optimized
SaM and RElim algorithms in a meaningful manner.

2) Frequent1( ) procedure of TRICE performs the dataset
compression in a way that it places a transaction in
P as a key only once. The value associated with the
key refers to the total number of occurrences (support)
of a transaction in a dataset. If a transaction comes
again, it is rejected, but the corresponding value is
incremented. This procedure is shown in steps (1) - (6).
For that reason, steps (1) - (2) of Frequent1( ) show that
no matter how much is the frequency of a transaction,
it is intersected with Ls once only. It gives a consider-
able performance boost because duplicate unnecessary
computations are avoided. It also prohibits additional
duplicate processing, thus contributes to achieving effi-
ciency.

3) In the step (2) of FrequentItems( ), Z shows a trimmed
Ts from which, infrequent-1 items are removed. There-
fore, lesser time is required to build power set of Z .

4) Twofold itemset containment check in Fs also helps to
get efficiency. Containment check is done for the first
time at Step (3) ofFrequentItems( ), where containment

FIGURE 23. Assessment of memory use for Kddcup99 dataset.

FIGURE 24. Assessment of memory use for PowerC dataset.

of Z is verified in Fs. Because the probability of the
existence of identical Z is high in large datasets, this
containment checking stops from doing additional pro-
cessing. It is useless to check the containment of Z
again if it is already frequent (residing in Fs). The sec-
ond containment is examined at step (6) of Frequen-
tItems( ), where containment of every S of Ps is verified
inFs. Once become frequent, it is useless to process this
S further.

C. ASSESMENT OF MEMORY USAGE OF TRICE
Peak memory consumed by the algorithms is shown in
Figures 23-28. Memory consumption of TRICE is minimum
on majority of datasets for all minimum support thresholds.
In Figure 23, memory utilized by TRICE is far less than
that of the others on all minsup limits for the kddcup99
dataset. No significant variation in the memory consumption
of baseline algorithms is observed. The memory consumed
by these algorithms is higher than that by TRICE almost by
a factor of 75 at minsup 70%. The factor is 40 when minsup
is decreased to 30%.

Figure 24 shows the peak memory consumption for the
PowerC dataset. Baseline algorithms consume colossal mem-
ory. On the whole, RElim consumes the most massive mem-
ory. TRICE consumption of memory is almost 42 times less
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FIGURE 25. Assessment of memory use for Online Retail dataset.

FIGURE 26. Assessment of memory use for Record Link dataset.

at minsup 40% and 37 times less at minsup 1% than that
of the others. Figure 25 shows the assessment of memory
use for the Online Retail dataset. RElim takes the lead by
consumingmostmassivememory. TRICE consumes 15 times
less memory than FP-Growth and SaM and 16 times less
memory than RElim at minsup 3%. The almost similar trend
continues throughout all minsup thresholds.
Figure 26 shows the evaluation of memory use for Record

Link dataset.
Now FP-Growth requires the most massive memory, but

the difference among the baseline algorithms is not remark-
able. TRICE consumes almost 33 times less memory than
the other algorithms at minsup 70%, and this margin drops
slightly to 27 times at minsup 0.1 %. Figure 27 shows
the assessment on the Extended Bakery dataset. FP-Growth
consumes the largest more memory among all algorithms.
TRICE consumes the least memory at minsup 2%. On other
minsup values, SaM and RElim consume less memory than
TRICE, but the difference is not significant at all. This dataset
is quite small in size and contains a fewer number of distinct
items.

Figure 28 shows the comparison on the Food Mart dataset
FP-growth consumes themost massivememory on the whole.
At higher minsup values, TRICE consumes the least memory

FIGURE 27. Assessment of memory use for Extended Bakery dataset.

FIGURE 28. Assessment of memory use for Food Mart dataset.

whereas, SaM consumes the least memory on lower minsup
values.

Figures 23-28 show that memory consumption of TRICE is
minimum whenminsup is higher, but it tends to increase with
the decrease in minsup. This behavior is apparent because,
at higher minsup, fewer frequent 1-itemsets exist. Conse-
quently, the intersections are not longer, resulting in smaller
power sets. But as minsup decreases, a large number of item-
sets become frequent 1-itemsets. As a result, the intersections
and corresponding power sets tend to grow in size. However,
TRICE consumes least memory on the majority of datasets
due to the following reasons.

1) Transactions occurring, again and again, are kept once
in D1. It helps in conserving memory because several
duplicate transactions exist in large real-world datasets.

2) Large memory is required to store the power set of the
whole transaction because a transaction contains both
frequent and non-frequent items. Therefore, TRICE
intersects each transaction to Ls at Step (2) in Frequen-
tItems ( ) ahead of building its power set. It trims the
transaction due to the removal of its non-frequent part.
Thus, the resulting power set is smaller in size needing
a lesser amount of memory to be stored.

3) Numerous conditional FP-trees are constructed by the
FP-Growth algorithm. Furthermore, shared common
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prefixes exist in a few numbers for real-world sparse
datasets. Therefore, conditional FP-trees become
larger, thus needing large memory for storage.

4) The split and merge steps of SaM and RElim involve
recursive processing. One of the drawbacks of recur-
sion is the extensive memory consumption, which can-
not be left unattended when the problem size is too big.
Eventually, the size of the underlying data structure,
as well as the stack space, will grow substantially for
large datasets.

Memory requirements of the descendants of FP-Growth
are even higher because FIN, PrePost+, and PrePost keep
PPC-tree, including 2-itemset representation, which consists
of nodes existing in PPC-tree [58]. Additionally, size of
PPC-tree is larger than that of associated FP-tree. According
to the results, TRICE is quicker than others by almost up
to two orders of magnitude. Additionally, TRICE consumes
the least memory because it efficiently trims the dataset and
handles duplicate transactions.

Above results manifest that TRICE consumes the least
memory because it holds same transactions once, and prunes
each distinct transaction by removing infrequent 1-itemsets
from it. Therefore, the corresponding power sets are not
bigger.Moreover, TRICE has shown exceptional runtime per-
formance, because the intersection of identical transactions
with Ls is done once. Besides, if an itemset is found within Fs
during first containment check, TRICE skips the forthcoming
processing for that itemset, and immediately starts checking
the next itemset. This phenomenon also helps in getting
efficiency.

VII. CONCLUSION
Voluminous sparse big data is being generated at a rapid pace
from a variety of applications such as pervasive computing,
IoT, and imbalanced behavior data. Sparse real-world data is
found to be extremely useful for companies, and its inclu-
sion leads to improved predictive analytics. Frequent itemset
mining, a cornerstone of data science finds collections of
items occurring together in a database. Current algorithms
for mining frequent itemsets are not often validated for real-
world sparse datasets, and the difference among their running
times on such datasets is insignificant. This paper presents
TRICE, a novel algorithm to mine frequent itemsets from
real-world sparse datasets.

TRICE optimizes the HARPP algorithm by introducing the
idea of Iterative Trimmed Transaction Lattice (ITTL). Instead
of generating transaction lattice of entire transaction done
by HARPP, TRICE cutoffs the infrequent part of a transac-
tion first. Afterward, TRICE iteratively creates the lattice of
trimmed transactions to find frequent itemsets. Furthermore,
TRICE compresses the database by storing identical transac-
tions once that prevents TRICE to do redundant processing
in later steps. TRICE has been applied on six real-world
sparse datasets and compared with HARPP, FP-Growth, opti-
mized SaM and optimized RElim algorithms. TRICE has

outperformed these algorithms on all datasets for all mini-
mum support thresholds. Moreover, its memory consumption
is considerably minimal on most datasets.

Modifications can be made in TRICE for solving other
linked problems such as maximal frequent itemsets mining,
closed frequent itemset mining, high utility itemset mining,
frequent weighted itemset mining, and top-rank-k frequent
pattern mining. TRICE can also be customized for mining
streaming data.
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