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ABSTRACT In recent years, research focused on (semi)automatic radiographic inspection methods has
gained more attention. The present work proposes a method for detecting defects in radiographic images
of welded joints of oil pipes. Real condition images obtained by the double wall double image (DWDI)
technique usually present a lower quality when compared with images traditionally considered in many
studies reported in the literature. First, the proposed approach detects discontinuities in DWDI radiographic
images of welded joints, and then, based on a hybrid paradigm encompassing artificial immune systems
(AIS) and deep learning (DL), it classifies each discontinuity as ‘defect’ and ‘non-defect’. The proposed
method performs two phases in the AIS module: early classification (based on negative selection) and
evolving classification (based on clonal selection). In both phases, the pattern recognition task is performed
using a set of features extracted from each discontinuity through a detector genetically encoded into immune
cells. As an attempt to improve the classification performance, DL models (AlexNet and autoencoders)
are incorporated aiming to increase the number of extracted features. Experiments performed on a set
of 727 discontinuities show that the proposed approach achieves an Fscore of 70.7%, outperforming each of
its modules running by themselves: AlexNet with Fscore= 64.86% andAISwith Fscore= 66%. Considering
the challenges imposed by real conditions on image acquisition - and the low rates of false negatives -, results
demonstrate that the proposed approach can be used to assist in inspection works when dealing with DWDI
images.

INDEX TERMS Artificial immune systems, deep learning, radiographic images, discontinuities
classification, defect detection.

I. INTRODUCTION
In petrochemical facilities, networks of fluid-conductive
pipes are constructed by attaching pipes and other compo-
nents by means of welded joints [1], [2]. These facilities are
carefully designed to withstand critical conditions of tem-
perature and pressure; however, failures can occur. Serious
consequences can be avoided with careful monitoring by
periodic inspection programs through nondestructive testing
(NDT) [3]. NDT consists of procedures and methods for
examining products andmaterials without interfering or alter-
ing their functioning [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Gangyi Jiang.

Radiography is one of the most widely used NDT methods
for detecting internal defects in welded joints, since the radio-
graphic image is a permanent visible record of the material
volumetric inspection [5].

Weld inspection is performed by certified operators [5],
called ‘weld inspectors’ or ‘laudist inspectors’. Due to the
large quantity of images to be inspected, the work can be
exhausting, thus affecting time and quality of the inspection
process [2]. The correct interpretation depends essentially
on the experience, knowledge, and visual accuracy of the
inspector as well as on image quality [6]. The inspection
process of industrial radiographs is, therefore, quite subjec-
tive, increasing the possibility of errors [2], [7]. For all the
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previously mentioned reasons, there has been a trend toward
developing automated techniques able to efficiently assist
inspectors in detecting defects in welded joints.

Several researches [2], [8] – [28] have proposed auto-
matic or semiautomatic methods for detecting defects in
welded joints (weld beads) from radiographic images. Most
researchers use images obtained by the single wall simple
image (SWSI) technique. A few works [24]–[28] address
Double Wall Double Image (DWDI) exposure and they differ
from one another in the way they use the images and the final
goal of the work (weld x defect detection x both).

The present work uses real world DWDI radiographic
images and a previously published procedure [26] to detect
discontinuities. Additionally, it proposes a method based on
Artificial Immune Systems (AIS) and deep learning to clas-
sify such discontinuities as ‘defects’ and ‘non-defects’. The
AIS mechanisms considered in this paper are ‘negative selec-
tion’ and ‘clonal selection’. Aiming to improve the classifica-
tion performance, the proposed approach incorporates deep
learning models (AlexNet and autoencoders) to expand the
number of extracted features beyond those initially obtained
by AIS.

In addition to AIS’s main characteristics of memory, diver-
sity, and reinforcement learning capacity, the reason for
choosing AIS is also based on its known capability of rec-
ognizing anomalies and internal and external patterns of the
system.

On the other hand, some significant contributions
have recently been achieved through the use of deep
learning-based methods, mainly by doing feature extraction
using Convolutional Neural Networks (CNN) [29]. However,
due to the huge quantity of computational resource necessary
to train CNNmodels from scratch, for the present paper it was
decided to explore the use of transfer learning (TL). Besides
saving training time, TL can also be used to overcome the
lack of training samples in different application domains.
Zhuang et al. [30], for example, uses an algorithm based on
autoencoders to find a good representation of instances in dif-
ferent domains. Yosinsk et al. [31] and Oquab et al. [32] use
a CNN as a generic feature extractor that is pre-trained using
ImageNet data set and then reused for other tasks. Inspired
by the literature, the present paper (i) uses an AlexNet model
pre-trained with ImageNet data set and (ii) fine-tunes its
full connected layers to perform two different tasks: deep
features extraction and whole classification. Therefore, first,
AlexNet is used in the proposed approach to provide addi-
tional features that are further compacted through the use of
two autoencoders; second, in the experiments, it is considered
as a unique module performing the whole classification task,
which is further compared with the proposed approach.

The approach proposed in this paper is named ‘deep
AIS’ and is inspired by both, human activities performed
by inspectors and the basic functioning mechanisms of the
biological immune system associated with artificial immune
therapies. First, deep AIS preprocesses the image, investigat-
ing the regions of attention (discontinuities). Then it separates

discontinuities that can be clearly classified as non-defects
and defects. For this, it uses the mechanisms of censoring and
monitoring performed by the negative selection algorithm.
Then the system starts the clonal selection phase aiming to
improve the classification. To this end, first, it tries to improve
data through evolution by using lenses-like transformations
performed by decoders located in the B cells (antibodies).
Second, it reduces, from time to time, the threshold value
necessary to classify a discontinuity as a defect aiming to
reduce the false negative rates as much as possible. The
experiments consider a set of 20 images of DWDI obtained
in real conditions which result in a set of 727 discontinuities
to be used in the training, validation, and testing phases.

The present work aims to evaluate two main hypotheses
that also represent the two main contributions of the pro-
posed approach: 1) using a dynamic threshold whose value
decreases from time to time in the AIS module is better than
using a fixed one, set with a low value from the beginning
of evolution; 2) using the hybrid approach is better than
using its standalone versions. For testing the first hypothesis,
the experiments compare the static with the dynamically set
threshold versions on a set of validation data. To test the sec-
ond hypothesis, the deep AIS (hybrid version) is compared
with two other methods (pure AIS and pure deep learning
approach - AlexNet) on the test set.

The article is organized as follows: Section II presents a
brief description of the fundamental concepts necessary to
comprehend the proposed approach. Section III describes the
related works. Section IV details the method proposed to
detect defects in welded joints. Section V presents the results
obtained with real field images. Finally, Section VI concludes
the paper and presents suggestions for future works.

II. BACKGROUND
A. DOUBLE WALL DOUBLE IMAGE TECHNIQUE
The DWDI technique is used in pipes with a 31/2 diameter or
less that do not allow internal access [33]. In this technique,
the source is positioned slightly away from the pipe and
the radiation beam passes through both walls, producing an
image of the two pipe sections. The radiation source can
be positioned in two ways: aligned to the weld bead or
slightly inclined. When the source is aligned to the weld
bead, the weld bead projections of the two pipe walls are
overlapped.When the source is positioned with an inclination
of 12 to 15 degrees, projections of the two pipe walls result
in an elliptical image (Figure 1).

B. ARTIFICIAL IMMUNE SYSTEMS
Similar to Evolutionary Computation, Artificial Immune Sys-
tems (AIS) are inspired by nature (more specifically, Biolog-
ical Immune Systems), aiming to simulate mechanisms and
create artificial systems for solving complex problems [34].
Research onAIS is extensive, and the choice of the bestmech-
anisms/models depends on the objective and the addressed
problem. Unlike other bio-inspired techniques, which usually
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FIGURE 1. DWDI technique.

have a unique general algorithm, in AIS there is no gen-
eral scheme of what essential elements an algorithm should
possess.

The Immune System protects the body against infections
originated from the attack of a disease-causing agent. Cells
and molecules that do not belong to the body are recognized
and eliminated [35]. Therefore, pattern recognition, which
encompasses the defect detection problem addressed in the
present paper, appears as a main application of AIS.

Every element that can be recognized by the immune sys-
tem is called an ‘antigen’ (Ag). Cells that originally belong
to our body and are harmless to its functioning are termed
‘self’ (or self-antigens), while the disease-causing elements
are named ‘nonself’ (or ‘nonself antigens’) [36].

Among several already studied AIS models, this work uses
clonal selection and negative selection, considering that both
have specific characteristics for the pattern recognition task
performed here.

1) NEGATIVE SELECTION ALGORITHM (NSA)
NSA [37] is an algorithm based on the pattern recognition
process performed by the natural immune system, which
classifies T lymphocytes within the thymus as self (known)
and nonself (unknown) cells [38], [39], [40]. Defining the
repertory of self cell patterns, the negative selection algorithm
generates a set of detectors capable of identifying all elements
that do not belong to the self cell set. As depicted in Figure 2,
the algorithm runs in two phases as described below [36]:

a: CENSORING
- Define the set of self standards (S);

- Randomly generate a set of candidate samples (C) and
evaluate the affinity (match) between each sample and the
set of self standards. If an element of set S is recognized
by a sample in C, that is, if the affinity is greater than a
certain value (called ‘self threshold’), delete the sample of C;
otherwise, store it in a set of detectors (R).

After the R detector set is generated, system monitoring is
performed to detect nonself elements.

b: MONITORING
- For all elements in R, given the chain set to protect (pro-
tected chains), evaluate the affinity between each of them

and the R detector set. If the affinity is greater than a certain
threshold, then a nonself element has been identified.

2) CLONAL SELECTION ALGORITHM (CSA)
This algorithm is based on the biological clonal selection
principle [41], [38] and is initially proposed to solve machine
learning and pattern recognition (antigen) problems where
there is a random population of antibodies evolved to learn
how to recognize a set of antigens. Antigens are the elements
of the set of pattern templates, and antibodies are the elements
of the set of possible solutions [42], [43].

The CLONALG algorithm developed by De Castro [44]
encompasses the principle of clonal selection and affinity
maturation and can be explained by the following steps:

1. Start with a set of antibodies;
2. Present each antibody to antigens and calculate an

affinity measure (fitness function);
3. Select Antibodies with the highest affinities to antigens

to be cloned in proportion to their affinities: the higher
the affinity, the greater the number of clones;

4. Submit clones to the affinity maturation process; each
one mutates at a rate inversely proportional to its affin-
ity: the higher the affinity the lower the mutation rate;

5. Calculate the affinity between the set of mutated clones
and antigens. Mutated clones with higher affinity val-
ues replace antibodies with lower affinity introducing
diversity into the repertoire;

6. If the number of iterations is complete, finish the algo-
rithm; otherwise, return to step 2.

In each iteration, the CLONALG algorithm allows the artifi-
cial immune system to become increasingly better to perform
the pattern recognition task.

According to Dasgupta and Gonzalez [38], this algorithm
resembles evolutionary algorithms based on mutation with
some interesting features, such as: dynamically adjustable
population size, exploration of the search space, ability
to maintain optimal local solutions, and defined stopping
criteria.

C. DEEP LEARNING
1) CONVOLUTIONAL NEURAL NETWORKS (CNN’S)
The convolutional neural network [45] is a multilayer
perceptron network specifically designed to recognize
two-dimensional shapes with a high degree of translation
invariance, scaling, tilting (rotating), and other forms of
distortion [46].

CNN’s are formed by layer sequences and each layer
has a specific function in propagating the input signal.
Figure 3 illustrates the architecture of a specific CNN - named
AlexNet [47] - and its three main layers: convolutional, pool-
ing, and fully connected layers (FC).

Convolutional layers extract attributes from input vol-
umes (3D size), which are images with width, height, and
depth (RGB). Pooling layers reduce the dimensionality of
the resulting volume after convolutional layers and help ren-
der the representation invariant to small input translations.
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FIGURE 2. Negative selection algorithm. Source: Adapted from [37].

FIGURE 3. Example of CNN architecture, AlexNet, with their respective layers. Source: Adapted from [47].

Fully connected layers (FC) are responsible for signal prop-
agation through peer-to-peer multiplication and also use an
activation function. CNN output is the probability that the
input image belongs to one of the classes the network was
trained to detect.

a: CONVOLUTIONAL LAYER
Convolutional layers are composed of a set of filters (kernels)
able to learn from training. Each filter has a small size but
extends throughout the depth of the input image. Automati-
cally, during the net training process, these filters are adjusted
so that they are activated in the presence of relevant features
identified in the image, such as edge orientation or color
spots [48]. Each of these filters gives rise to a locally con-
nected structure that runs the full length of the image, an oper-
ation known as ‘convolution’. The resulting values after the
convolution operation go through an activation function - the
ReLU (Rectified Linear Units Units) function being the most

common [48] - which can be calculated by Equation (1).

f (x) = max(0, x) (1)

To control the size of the image resulting from the convo-
lutional layer, there are three parameters: depth, stride, and
zero-padding [49]. The resulting image depth is equal to the
number of filters used, and each of these will be responsible
for extracting different characteristics from the input image.
Therefore, the higher the number of filters, the greater the
number of features extracted, but the computational complex-
ity related to time and memory use will also be greater.

The resulting image depth depends only on the number
of filters used, while the resulting image’s height and width
depend on stride and zero-padding. The stride or step spec-
ifies the size of the jump in the convolution operation. The
higher the step value, the smaller the height and width of
the resulting image will be, but important features may be
lost. For this reason, it is unusual to use a jump value greater
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than two. Zero-padding is a technique that allows preserving
the size of the original image by adding a pixel border to the
input image, and all with the value zero.

b: POOLING LAYER
After a convolutional layer, there is usually a pooling layer.
The purpose of this layer is to progressively reduce the spatial
dimension of the input image and, consequently, decrease the
computational cost of the network and avoid overfitting [48].
In pooling, values belonging to a region of the attribute
map, generated by convolutional layers, are replaced by some
metric for that region. Themost common form of pooling is to
replace the values of a region with the maximum value [50].
This operation is known as maxpooling and is useful for
eliminating negligible values, reducing the size of the data
representation, and accelerating the computation required for
the next layers. Besides, it creates invariance for small local
changes and distortions. Note that the depth of the input
volume is not altered by the pooling operation.

c: FULLY CONNECTED LAYER
The output of the convolutional and pooling layers represents
the characteristics extracted from the input image. The pur-
pose of the fully connected layer is to use these features to
classify the image into a predetermined class. Fully connected
layers are exactly the same as a conventional Artificial Neural
Network (Multi Layer Perceptron or MLP) [51] that uses the
SoftMax activation function [52], defined by Equation (2),
on the last layer (output).

S(yi)=
eyi

6jeyi
(2)

where yi represents the input of neuron i, and S(yi) represents
its output. The expression ‘fully connected’ means that all
neurons in the previous layer are connected to all neurons in
the next layer.

The SoftMax activation function receives a set of values as
input and produces the probabilistic distribution of the classes
in which the network was trained. A technique known as
‘dropout’ [50] is also widely used between fully connected
layers to reduce training time and avoid overfitting. This
technique consists of removing - randomly in each training
iteration - a certain percentage of neurons from one layer and
then re-adding them to the next iteration. This technique also
gives the network the ability to learn more robust attributes,
since a neuron cannot depend on the specific presence of
other neurons.

2) ALEXNET ARCHITECTURE
AlexNet, proposed by Krizhevsky et al. [47], is a basic,
simple, and effective CNN architecture composed mainly of
cascading stages of convolution layers, ReLU activation func-
tion, maxpooling, dropout layers, and fully connected layers,
totaling 25 layers presented in Table 2 - in the Appendix.

In this architecture, filters are obtained during the training
phase based on optimization routines with the Stochastic

Gradient Descent (SGD) algorithm. Convolutional layers typ-
ically act upon input of feature maps with sliding filters to
generate convoluted feature maps. As discussed in the pre-
vious section, pooling layers operate on convoluted feature
maps to aggregate information from within the neighborhood
region provided with a maxpooling operation. Another char-
acteristic of AlexNet consists of some practical strategies,
such as the ReLU activation function and dropout technique.

As will be discussed in Section IV, the AlexNet model is
used to expand the set of characteristics to be used in the AIS
matching process. In this case, the layer just before the full
connected layer is the output of a cascade of two autoencoders
used to reduce the dimensionality of the extra feature vector.
In Section V - in the comparison test - AlexNet is adapted to
perform a 2-class classification task in a standalone mode.

3) AUTOENCODER
Autoencoder is a multilayer neural network with a minimum
of three layers whose output layer is defined with the same
number of nodes as the input layer [53], [54]. It has the
purpose of learning how to reproduce on output y its own
input data x. Internally, the network has a hidden layer h
describing a code used to represent the input. The network
can be understood as containing two parts: the encoder having
function h= f (x), and the decoder having function r= g (h);
thus, the autoencoder can be described by the function g (f
(x)) = r [55].
Figure 4 presents an example of autoencoder that reduces

the dimensionality while maintaining the main information.
The hidden layer is smaller than the input layer and can have
multiple layers.

The hierarchical levels of data representation - low and
high levels - can be organized by abstractions, characteris-
tics, and concepts. For example, low-level features that are
invariant to small geometric variations (such as edge detec-
tors from Gabor filters), gradually transform such resources
(e.g., to make them invariant to contrast changes and contrast
inversion) in order to subsequently detect the most frequent
patterns and obtain high-level resources [56].

A single layer network can extract resources seen as low
level, but by adding a second layer and the output of the first
being input of the second, the extracted resource may be of
slightly higher level [56]. Therefore, the output generated by
the hidden layer training of the first autoencoder becomes the
training input of the second autoencoder and, therefore, a new
pre-training is performed by the second autoencoder. The out-
put generated by the hidden layer of the second autoencoder
is the high-level characteristics.

D. MORPHOLOGICAL IMAGE PROCESSING
The basic principle of mathematical morphology is to extract
geometry and topological information from an unknown set
(an image). This is performed by transforming the input
through another completely defined set, called the ‘struc-
turing element’ (SE). Figure 5 presents some examples of
structuring elements. In this figure, the darkest point indicates
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FIGURE 4. Autoencoder scheme used for dimensional reduction. Source:
Adapted from [54].

FIGURE 5. Example of structuring elements. (a) Cross 3×3. (b) Square
3×3. Source: Adapted from [57].

the origin of its coordinate system, i.e. the position of the pixel
the result will be assigned to [57].

Morphological operations act on the neighborhood of a
certain pixel, the shape and size of which are determined by
the superposition of the SE on each pixel of the image. The
new value of each image pixel depends on the pixel values in
the SE-defined neighborhood [57].

1) MORPHOLOGICAL OPERATIONS OF
EROSION AND DILATION
Erosion is defined by Equation (3), whereA is the input image
(Figure 6(a)), and B is the SE. Thus, A	B results in the set of
points x such that B, translated from x, is contained in A [57]
(Figure 6(b)).

A	 B = {x|(B)x ⊂ A} (3)

Dilation is obtained through Equation (4). The dilation
process consists of obtaining the reflection of B about its
origin and then displacing this reflection of x. The expansion
of A by B is then the set of all x offsets for which the
intersection of ˆ(B)x , and A includes at least one nonzero
element so that B and A overlap at least by one element [57].

FIGURE 6. Example of morphological operations. (a) Input image.
(b) Eroded image. (c) Dilated image.

Figure 6(c) illustrates the result of morphological operation
dilation.

A⊕ B = {x|(B)x ∩ A 6= ∅} (4)

E. PERFORMANCE MEASURES
A classifier can have its performance evaluated by several
methods. The effectiveness of a classification can be assessed
as: number of correctly recognized class samples (true pos-
itives); number of samples that were correctly assigned as
not belonging to the class (true negatives); samples that were
incorrectly assigned to the class (false positives); and, finally,
samples that were incorrectly classified as not belonging to
the class (false negatives).

Sokolova and Lapalme [58] and Powers [59] carry out stud-
ies to prove that, with the confusion matrix, there are some
statistical results such as accuracy, sensitivity, and precision.
These results are calculated as a function of true and false
positive and negative values, as follows:

- Accuracy: Calculated by the ratio between the total num-
ber of samples that are correctly classified and the total
number of samples (Equation 5).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

- Precision: Calculated by the ratio of the number of true
positives to the total of samples classified as positive
(Equation 6).

Precision =
TP

TP+ FP
(6)

- Sensitivity: Calculated by the ratio of the number of
true positives to the number of truly positive samples
(Equation 7).

Sensitivity =
TP

TP+ FN
(7)

- Fscore: Calculated by the weighted average of precision
and sensitivity (Equation 8). The Fscore measure is
indicative of the overall performance of the classifier.
This statistical measure is often the combination of pre-
cision and sensitivity.

Fscore =
2x(Precision× Sensitivity)
(Precision+ Sensitivity)

(8)

III. RELATED APPROACHES
Most studies presented in the literature for detecting weld
defects consider radiographic images obtained through the
SWSI technique. Among those works, many researchers ini-
tially perform digital processing to reduce noise and improve
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quality according to each image. Subsequently, they perform
the extraction of the weld bead, as well as the extraction and
classification of defects. Most traditional approaches include
different models of neural networks ([10], [12], [20], [60]),
neural network combined with binary logic ([13]), surface
thresholding method ([61]), neuro-fuzzy (ANFIS) ([19]),
support vector machine (SVM) ([22]), as well as approaches
with more than one model like fuzzy, KNN and neural net-
works ([9]); minimum distance, KNN and fuzzy KNN ([14]);
SVM, neural networks and KNN ([18]).

There are few studies reported in the literature based on
the DWDI exposure technique, and they are presented below.
Four of them on weld detection [23]–[28] and only one [26]
on defect classification.

Rathod and Anand [23] develop a method based on genetic
algorithm (GA) for detecting weld bead in radiographic
images obtained by the DWDI technique. Sets of sample
pixels, corresponding to candidate solutions provided by a
genetic algorithm (GA), are compared to pre-defined syn-
thetic weld beadmodels in an imagematching procedure. The
evolutionary process automatically selects the best individual
in the population and, thus, provides information such as
position, orientation, and dimension of the detected object.
This approach successfully detects pipes and weld beads in
radiographic images of different complexities.

Suyama et al. [25] present a methodology to detect the
central region of weld beads in DWDI radiographic images.
The method is based on three steps: pre-processing (isolating
selected regions), optimization (defining the ellipse that best
fits the selected region), and decision (choosing the best
region based on its extracted features). The results show that
the Particle Swarm Optimization (PSO) algorithm satisfacto-
rily converges to select the region that is most similar to the
central weld region in the optimization and decision steps.
The authors conclude that the proposed technique can work
as a support for detection and extraction of weld in DWDI
radiographic images.

Miranda et al. [27] present an automatic weld bead detec-
tion approach in DWDI radiographic images, combining
two known techniques: Particle Swarm Optimization (PSO)
and Dynamic Time Warping (DTW), which is suitable
for handling comparison between series of different sizes.
PSO-based optimization is responsible for extracting the
image profile. The quality calculation of each solution is
based on a comparison with the synthetic profile model and
considers the cost function calculated by the DTW. A fine-
tuning process is used as an attempt to find a better similarity
profile after the PSO search is completed. Similar to the
conclusions of [25], the proposed approach can support pro-
fessionals by automatically segmenting weld beads to further
performed defect detection.

Suyama et al. [26] develop an algorithm for automatic
detection of weld bead discontinuities using image process-
ing techniques and ensembles of classifiers with Multilayer
Perceptron and special models of NN called Extreme Learn-
ing Machines. A set of characteristics (features) is extracted

from the detected discontinuities to be used as the classi-
fier input. These features are also extracted and used in the
approach proposed in this paper. For each discontinuity, there
are eight geometric shape features and five texture features.
For each discontinuity, one has the following geometric shape
characteristics:

1. Area (A): area of discontinuity (defect) detected,
i.e. total number of pixels within the discontinuity,
including its outline;

2. Extension (Ex = A/Ar ): ratio between the area of the
defect and the area of the smallest rectangle surround-
ing the defect;

3. Ratio 1 (R1 = d/A): ratio between the smallest axis
of the rectangle surrounding the defect and the defect
area;

4. Ratio 2 (R2 = D/A): ratio between the largest axis of
the rectangle surrounding the defect and the defect area;

5. Ratio 3 (R3 = D/d): ratio between the largest axis
and the smallest axis of the rectangle surrounding the
defect;

6. Rounding: ratio (p2/4. π . A), where p is the perimeter
of the defect contour and A is the defect area;

7. Eccentricity (Ec = c/a): ratio of the distance between
the foci of the ellipse and its major axis length;

8. Solidity (S= A/Ac): ratio between the area of the defect
and the convex polygonal area of the defect.

For each discontinuity, one has the following texture
characteristics:

1. Difference (D = max_gray_level – min_gray_level):
difference between the lowest and highest gray level
of the defect;

2. Contrast (C = D – gray_variation): ratio between the
gray level variation in the defect and the gray level
variation in the image crop;

3. Standard deviation (Equation 9): measure of dispersion
in relation to the average gray level of the defect, where
N is the number of pixels, B is the gray level and i is
the level position;

σ = [(6N
i=1| Bi − Ḃ|2)/(N− 1)]1/2 (9)

4. Entropy (E = −6(p. log2 (p))): Quantifier number of
the grayness randomness of the defect. The higher this
number is, the more irregular, atypical or unpatterned
the analyzed image will be.

5. Asymmetry (s = E. (x−µ)3/σ ): Asymmetry regarding
the center of the gray level values of the defect, where
x is the input data, µ is the mean of x, σ is the standard
deviation of x, and E(t) represents the expected value
of the quantity t .

Suyama et al. [28] present a methodology to detect weld
joints of oil pipelines in radiographic images with DWDI
exposure. The proposed approach extracts information (win-
dows of pixels) from the pipeline region in the radiographic
image and then applies Deep Neural Network (DNN) mod-
els to identify which windows correspond to welded joints.
The experiments consider 13 DNN models and 3 DNN input
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FIGURE 7. Overview of the proposed approach: deep AIS.

settings: stretched, proportional, V and proportional H. Sim-
ilar to the conclusions of [25], [27], the proposed approach
can also support professionals by automatically segmenting
weld beads to further performed defect detection.

Based on the related approaches review, it is pointed out
that many works for the detection of weld defects in radio-
graphic images are presented in the literature; however, few
researchers work on radiographic images obtained through
the DWDI technique, most on the identification of the weld,
and quite few on the detection of defects. In addition, many
works use ideal images rather than real field images, which
are generally low quality images. Besides, for classification
purposes, most researchers use only one system (Neural Net-
works) for pattern recognition. Thus, the present work applies
some image processing techniques, such as: noise reduction
filters, histogram, equalization, morphological operations,
among others, to highlight existing weld bead discontinu-
ities. For the classification of a discontinuity as defect or
non-defect (pattern recognition), two techniques are used
in the same model: deep learning and AIS. The choice
for AIS is based on its main characteristics (uniqueness,
recognition of internal and external patterns of the system,
anomaly detection, imperfect detection, distributed detection,
diversity, reinforcement learning, memory) [35], [36]. The
approaches presented in the present paper are not compared
to Boareto’s [26] approach to defect classification, since his
work was tested on other bases and the authors did not have
access to the code.

On the other hand, deep learning has been successfully
applied to a lot of pattern recognition tasks like the one
performed in this paper, although only one work has been
found dealing with radiographies of petroleum pipes [28].

IV. DEEP AIS
For the classification of discontinuities detected in a pre-
processing phase, a hybrid system joining artificial immune
system and deep learning is proposed. As depicted in
Figure 7, the AIS module (blue boxes) encompasses the
Negative Selection Algorithm (NSA) and Clonal Selection
Algorithm (CSA), and is used to:

1. separate self cells (non-defects detected in the censor-
ing phase of NSA);

2. separate nonself cells (defects detected in the monitor-
ing phase of NSA);

3. evolve, bymeans of CSA, antibodies aiming to improve
detection of nonself elements.

The deep learning module (green boxes in Figure 7)
encompasses two neural models (AlexNet and autoencoder)
and is used to extend the number of features used in the
matching phase of NSA and CSA.

Initially, in the pre-processing phase, discontinuities are
detected in the weld bead cut-out images. Discontinuities are
identified by the (x, y) coordinates of their centroid, and their
limits are based on their borders, which are obtained through
image processing techniques (see [26] for more details).
As will be detailed in the next section, the discontinuity size
defines the class of possible defects into two classes: large
and small ones.

Subsequently, the method extracts features from each dis-
continuity encompassing window. Two databases are then
constructed: the set of non-defects and the set of defects.
Part of non-defect set composes the bank of self cells, and
part of defect composes the bank of nonself (called ‘antigen
bank’). The other part composes the set of samples used in
the validation and test phase. One of the main challenges in
this work is the lack of data to compose training, validation,
and test set, the labeling of which depends on oil pipe experts.

A. AIS MODULE
As illustrated in Figure 7 and detailed in Figure 8, the AIS
module is composed of negative selection and clonal selec-
tion algorithmswhose basic components are the T andB cells.
In the context of this application, each T cell represents a set
composed of a detector, AIS, and deep features; and each B
cell is similar to a T cell (they differ only in the detector
genetic encoding, since B cells consider all the detector alle-
les, and T cells disregard the last two genes: morphological
operator (MO) and structuring element (SE)) (see Figure 9 for
more details).

The first step is performed by Negative Selection Algo-
rithm (NSA). By recognizing its own elements, it eliminates
discontinuities clearly representing non-defects. For this,
NSA calculates the affinity between the T cell representing
the pre-detected discontinuity and each cell stored in the self
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FIGURE 8. Pure AIS system proposed for the recognition phase.

FIGURE 9. Example of T or B cell (antibody) leveraged by deep learning
(in green).

repository (bank of self). As will be detailed in the clonal
selection phase, the affinity is calculated based on a distance
metric between feature vectors of both cells.

A discontinuity is recognized as non-defect if it matches
one of the cells present in the self repertory. In other words,
it is recognized if its affinity with a self cell is higher than
the threshold of self (γs). A high value for γs must be set
for negative selection so that only discontinuities strongly
characterized as non-defects are excluded from the process.

In NSA, cells that match self cells are eliminated, and their
associated discontinuities are labeled in the original image.
Discontinuities not associated with self cells, i.e. those that
are not eliminated by NSA, are possible defects and must be
further analyzed using the antigen bank. The set of possible
defect cells is divided into two groups: large and small cells.
As depicted in Figure 8, the large group goes directly to be
used in the nonself matching phase. The second one is stored
in the system backup for further analysis.

During the nonself testing phase, the current set of cells
under analysis is compared with the antigen bank, for

FIGURE 10. SE’s used. (a) Disk of radius 1. (b) Line with length 3 and
angle 45◦. (c) 2×2 square. (d) 2×3 rectangle.

classification purposes. Cells classified as defects (i.e. those
with affinity higher than the initial threshold, γ 0

d ) have their
discontinuities labeled and are excluded from the process.
The remaining ones are still considered as potential defects
and evolve based on the clonal selection algorithm (CSA),
which is based on antibody evolution.

Each antibody has a detector (Figure 9) composed of the
following genes:

- position of each discontinuity (x and y coordinates),
- a numerical value determining not only the morpholog-
ical operator (erosion or dilation), but also the number
of iterations that this operator will be applied to the
discontinuity,

- a numerical value indicating which structuring ele-
ment (SE) will be used in the morphological operation.

Thus, each antibody detector is represented by a set of genes
encoding two localization alleles and twomorphological alle-
les, as shown in Figure 9.

The values of x and y identify the position (line, column)
of the discontinuity in the whole image. The value of the
morphological operator (MO) can range from (−M to +M)
M εN (natural numbers) allowing different variations. For
example,−3 encodes three erosion iterations and+3 encodes
three dilation iterations. The value of the structuring element
(SE) may vary in the range (0 to |{SE}|) encoding an SE type
or no SE (0). Some types that could be used for SE are shown
in Figure 10: (1) disk of radios 1, (2) line with length 3 and
45◦ angle, (3) 2×2 square and (4) 2×3 rectangle.

In CSA, during the initialization of the population, each
T cell gives rise to an antibody (see Figure 9) by randomly
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setting MO and SE alleles values in the detector genetic
encoding. In the proposed approach, besides the features
extracted in the pre-processing phase that can be further
improved by the evolved detector, the set can be expanded
through the deep module as detailed in Section IV.B.
In the proposed approach, at the first generation of CSA, there
is a population PAb of antibodies that will evolve along C
cycles of evolution. Each antigen in the antigen bank is also
represented by its feature vector. However, unlike antibodies,
antigen alleles do not change during the evolutionary process
as well as their associated features, which remain fixed along
all the process.

As previously mentioned, during the initialization of PAb
population, alleles x and y define the position of the window
used to extract the features and the other alleles (MO and SE)
receive random values. During the cloning process, each
antibody creates n clones of itself, each clone undergoes a
hypermutation process that changes the alleles of its detector.
Clonal selection controls the rate of hypermutation that is
related to the affinity value. The higher the affinity, the lower
the hypermutation rate is.

During the matching process that occurs at each generation
of the clonal selection phase, affinities are calculated between
each antibody and all antigens by Equation (10).

fi= maxf (Abi,Agj) = max(1− d ij) i = 1, . . . , |PAb| and

j = 1, . . . , |Ag| (10)

where |PAb| is the total of individuals (antibodies) in the
current population and |Ag| is the cardinality of the set of
antigens (antigen bank).

The affinity of each antibody i is given by the maximum
affinity value between it and all antigens, and dij is any metric
used to calculate the distance between feature vectors of
antibody i and antigen j.

If fi is greater than or equal to γ c
d (that is, if fi is greater

than the defect threshold value that was set in the current
cycle c of evolution), the antibody is considered a defect.
Antibodies classified as defect have their associated discon-
tinuity labeled in the original image and are suppressed from
the evolutionary process. This elimination creates space for
the analysis and further evolution of randomly chosen backup
cells. Conversely, if the affinity does not exceed the γ c

d value,
the antibody remains as a potential defect and, by mutating its
detector alleles, it can be classified as a defect (by matching
one cell in the antigen bank) in further stages of the evolu-
tionary process.

In the context of biological inspiration, aiming to improve
the efficiency of the immune response upon close contact
with antigens, antibodies of the PAb population go through
cloning and hypermutation processes. In the context of image
processing, one considers that the image of detected discon-
tinuities does not always cover a defect due precisely to some
detection failure. Therefore, antibodies evolution is like an
attempt to allow an improvement in features extracted for
classification purposes. To this end, hypermutation causes

variations in the antibody detector genes (which in turn may
cause variations in the discontinuity dimension and contour).

The detector genes perform like lenses, since they encode
changes to be made by the way each discontinuity associated
with the antibody is viewed (the original image is not altered).
The goal is to enable the antibody to fit the antigens by trans-
forming the detector genes aiming to improve the affinity
value that classifies it as a defect. Thus, each discontinuity
located at (x, y) coordinates has its dimensions and shape
changed according to the detector gene values. An example
of this transformation is shown in Figure 11.

FIGURE 11. (a) Original discontinuity view. (b) Altered view with
dilation +3 with SE radius disk 1.

In this example, MO and SE alleles are 3 and 1, respec-
tively; therefore, the discontinuity undergoes three iterations
of dilation with SE set as radius disk 1. Due to hypermu-
tation, discontinuities can be subjected to different types
of modification by combining MO and SE variations. The
hypermutation step generates random antibody changes and
helps the proposed algorithm to avoid local optimal values,
creating a higher level of diversity.

In the proposed approach, the antibodies of the PAb popu-
lation are evolved based on the steps shown in Figure 12.

The entire evolutionary process is completed when one
of the following stopping criteria is met: there are no more
discontinuities to classify or the maximum number of gener-
ations is reached.

B. DEEP LEARNING MODULE
As shown in Figure 7, the proposed deep AIS system for clas-
sifying discontinuities utilizes an AIS module, together with
deep learning. The deep learning module has been included
as an attempt to improve the defect classification performance
by increasing the number of features to be analyzed.

In the proposed approach, two deep learning models
(a CNN and an autoencoder) are plugged in into the AIS
module to expand the information stored in the feature vector.
This step is inspired by immune therapies present in some
disease treatments in which the immune response is leveraged
by external artificial mechanisms.

First, one considers the CNNAlexNet model - described in
section II.C.2 - to extract features. Second, the autoencoder -
described in section II.C.3 - is used to reduce the dimension-
ality of features extracted by CNN.

AlexNet considers 227 × 227 × 3 dimensions images
(227 rows, 227 columns, and 3 color channels) [48] as input.
Since the image window sizes of detected discontinuities
may be incompatible with the image dimensions used by
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FIGURE 12. Pseudocode of clonal selection.

FIGURE 13. Extraction of discontinuity characteristics with AlexNet.
(a) Image obtained from Antibody detector. (b) Dilated image with black
border. (c) Image resized to fit AlexNet input dimensions.

AlexNet preliminary tests showed that some procedures on
the discontinuity images must be performed before apply-
ing the necessary resize step (see Figure 13 and Figure 16
with the modified version of the AlexNet, described in the
Section V.C).

For each discontinuity, an iteration of dilation is applied
with the SE radius disk 5, and its encompassing rectangle
is obtained. The region outside the discontinuity boundary
is filled with gray level 0 (black) (Figure 13b) so that other
elements present in the image do not influence the feature
extraction. All discontinuity images are scaled to the size
used by AlexNet, in both training and testing phases, and
the channels are replicated so that all images have 3-channel
(Figure 13c).

The first level of deep features is obtained at the first full
connected layer, resulting in a vector with 4096 elements
as described in section II.C.2. Figure 3, section II.C.1, and

Appendix A show, respectively, the AlexNet model used in
this paper and the detailed description of each layer, as well
as the respective values of the parameters used.

Features extracted by the AIS module could be used in
conjunction with the features directly obtained by AlexNet.
However, some experiments showed that, due to the large
number of characteristics obtained by AlexNet (4096 charac-
teristics), this combination did not perform well. Thus, in the
proposed deep AIS, the dimensionality of the feature vector
obtained by AlexNet is reduced using autoencoders.

In the deep AIS version, in order to reduce dimensionality
of the AlexNet feature vector and simultaneously increase
the level of characteristics, two autoencoders are used. The
input layer of the first autoencoder receives the training vec-
tors, each one with 4096 characteristics. After finishing the
first autoencoder training process, the output provided by
the hidden layer of the first autoencoder is used as input to
the second autoencoder. After its training process, the second
autoencoder returns the deep features vector (green part of the
whole vector in Figure 9) as its output. The feature vector is
then joined with AIS features (blue part of the whole feature
vector in Figure 9).

V. EXPERIMENTS
A. MATERIALS
Twenty computerized radiographic images of welded joints
were used in the experiments - all obtained by the GE or Dürr

VOLUME 7, 2019 180957



C. C. B. Fioravanti et al.: Deep AIS to Detect Weld Defects in DWDI Radiographic Images of Petroleum Pipes

FIGURE 14. Image of the pipe, highlighting the weld bead clipping.

computer radiography systems. All images are taken by the
65,536 grayscales (16 bpp) DWDI technique and are obtained
from actual operating conditions. Consequently, they are
affected by different capture and scanning parameters, such
as amount of radiation and exposure time, leading to different
levels of brightness, noise, and contrast. Figure 14 shows one
of the weld bead clipping extracted from the pipe and used in
the training of the proposed systems.

As reported by experts, the most frequent discontinuities
of welded joint defects are: cracks (CR), lack of fusion (LF),
lack of penetration (LP), undercut (UC), slag inclusion (SI),
and porosity (PO). Figure 15(b) shows the report of image
depicted in Figure 15(a) manually processed by the laudist,
in which the presence of defects porosity and inclusion of
tungsten is highlighted.

FIGURE 15. Images of the weld bead. (a) Cropping the original image.
(b) Report with defects identified on the image manually processed by
the laudist.

B. DEEP AIS PARAMETERS
Based on the detected discontinuities, an image bank was
structured containing 727 discontinuities, out of which
362 samples are instances of non-defects, and 365 samples
are instances of defects. To detect and identify discontinuities
in each image, digital processing techniques are used, such
(i) as filters for noise removal (average, median, Gaussian and
Wiener) or smoothing, (ii) morphological image processing

(erosion, dilation, top-hat transformation and bottom-hat
transformation), (iii) thresholding (Otsu and adaptive thresh-
olding), sharpening and labeling. Although important, this
pre-processing phase is out of the scope of the paper since
this phase has been extensively investigated in a previous
work [24]. Notice that the amount of discontinuities obtained
in each image can different, therefore for some images there
might be few discontinuities and for others this total can be
large. Since most of discontinuities represent non-defects,
aiming to provide a balanced dataset only 362 examples
of non-defects were chosen considering discontinuities with
sizes and shape similar to defect discontinuities but with
different textures.

In the experiments performed in the present paper,
the same 13 geometric and texture features used in Boaretto’s
work [26] are considered (area, extent, ratio 1, ratio 2, ratio 3,
rounding, eccentricity, solidity, difference, contrast, standard
deviation, entropy, and asymmetry). Moreover, 100 features
obtained from the output of the second autoencoder in the
deep learning module are added to the 13 features (geom-
etry and texture), totaling 113 features in the whole vector
considered in the proposed deep AIS. Different from the
feature maps that occur in the first layers of a Convolutional
Neural Network (CNN) and usually provide images with
interpretable representation, the 100 features extracted from
the output of the second auto-encoder have no interpretable
meaning. They are only values representing a sequence of
space transformations performed by AlexNet (4096 fea-
tures) + Autoencoder1 (1000 features) + Autoencoder2
(100 features).

Table 1 presents parameters and values used in deep AIS.

TABLE 1. | Parameters and values.

The size of antibody population |PAb| is a parameter set
according to the total number of cells resulting after NSA
algorithms.

In the experiments, it is assumed that the affinity value
f of antibody i is within the range [0.0,1.0] using d =
Euclidean distance. The number of clones (n) generated from
each antibody is based on the affinity value fi. Regarding
the hypermutation rate, the antibody detector genes undergo
one modification from the current gene if (fi ≥ 0.5) and two
modifications if (fi < 0.5).
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FIGURE 16. CNN method - AlexNet.

C. COMPARISON APPROACHES
The deep AIS system consists of two modules: AIS and deep
learning. Therefore, to emphasize the need for the hybrid
approach proposed, the pure AIS system and the pure deep
learning system are considered as comparison approaches.

The pure AIS system considers only the AIS module
(Figure 8) to classify the discontinuities.

The pure deep system is illustrated in Figure 16 and consid-
ers only the AlexNet to classify the discontinuities detected
in the pre-processing phase.

As explained in section II.C.2, the AlexNet network is a
25-layer deep learning model used to classify 1000 classes
(categories). However, it is possible to classify another group
of images with a different number of classes (categories).
To this end, the last three layers are adjusted for the new
classification problem. The pre-trained CNN is adapted to our
dataset using a fine-tuning technique in which the weights of
the convolutional part of the pre-trained CNN are frozen, and
only the last three layers of the AlexNet are trained. These
layers are trained with input images of size 227×227×3
(see Figure 16 for more details) using the Stochastic Gra-
dient Descent (SGD) algorithm and the sigmoid activation
function [29].

In this paper, the last three layers of AlexNet (layers 23,
24, and 25) are adjusted according to the method described
in [62] – [65]. For layer 23 (Fully Connected) the new layer
options are specified to have the number of classes of the
new problem, which, in this case, are two classes for the
discontinuities (defect and non-defect).

VI. RESULTS AND DISCUSSIONS
This section discusses the results obtained by the deep AIS
approach proposed for the classification of discontinuities
into defects and non-defects. Moreover, the proposal is com-
pared with standalone versions of AIS and deep learning.

The first procedure is performed in the pre-processing
phase: detecting the discontinuities in weld bead clipping
images through the approach described in Boaretto [26].
Figure 17 presents the results of pre-processing for one of
the images, in which detected discontinuities are highlighted.

With all discontinuities detected, the whole data set is
divided into three sets: training (50%), validation (25%), and
test (25%). The training phase of the proposed approach
encompasses the definition of the self and nonfself data in

FIGURE 17. Detection of discontinuities to be used by all the approaches.

the AIS module as well as training the deep models. The
validation set is used to tune some parameters of each model
when subjected to a controlled test. Finally, the test set is used
to effectively evaluate the approaches when classifying defect
or non-defect discontinuities, with the parameters fixed with
values defined in the validation phase.

A. VALIDATION PHASE
1) PURE AND DEEP AIS PARAMETER TUNING
Despite the fact many parameters present in the Deep AIS
approach were empirically set (especially those regarding
the deep models), this section aims to investigate the values
of γ c

d used in each cycle of the AIS module, since it was
observed that there was a high sensibility of this module to
this parameter.

Onemust have in mind that, after the pre-processing phase,
identified discontinuities are evaluated by negative selection
in NSA aiming to separate, among all discontinuities, those
that are clearly non-defects. The affinity between feature
vectors of each T cell and the bank of self cells is calculated
and compared with γs (set as 0.99 according to Table 1).
By setting a high value, only discontinuities strongly char-
acterized as non-defects are classified as self, labeled in the
original image, and eliminated from the process. Therefore,
only possible defects remain for future analysis.

Subsequently, cells representing possible defects are
compared with nonself cells. In this recognition process,
the matching between feature vectors is calculated and com-
pared with an initial defect threshold (γ 0

d ) set in the first step
of the monitoring phase. It is important to emphasize that
the main objective of this paper is to propose a method for
detecting defects by verifying the effectiveness of artificial
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immune systems in the repertoire evolution instead of classi-
fying all discontinuities at the beginning of the process. Then,
in nonself matching, the threshold is initially set with a high
value (γ 0

d = 0.99). In nonself classification, cells classified as
defect (affinity with antigens> γ 0

d ) have their discontinuities
labeled in the original image and leave the process. The
remaining cells undergo clonal selection.

In each generation of CSA, the affinity between Ab and Ag
is compared with a dynamic threshold γ c

d . Different values
were tested for the update of γ c

d value: 0.99, 0.98, 0.97, 0.96,
0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.60, and 0.50.

Aiming to define how evolution occurs considering dif-
ferent values for the static threshold (γd), each value was
tested by setting it and running AIS with this value fixed
from the beginning until the end (i.e. from 1 to C∗G gener-
ations). Figure 18 shows the performance (Fscore in y axis)
achieved for each tested value of γd(axis x). One observes
that a) there is room for improvements in performance by
decreasing threshold values; b) there are four different levels
of performances: one with γd = γ 0

d , and three others (level
1 in blue, level 2 in green, and level 3 in yellow). Thus, it was
decided to divide the whole evolutionary process into four
cycles (each one running for G generations with a different
value of γd). During the tuning phase, different combinations
of values were tested to update parameter γ c

d . The conclusion
was that the set γd = {0.97 (for c=1), 0.90 (for c = 2), 0.85
(for c= 3), and 0.75 (for c= 4)} achieves a good compromise
between accuracy and sensibility measured by the Fscore
metric. Therefore, these values were chosen to be used in
the standard versions of pure AIS and deep AIS approaches
considered in the following section.

FIGURE 18. Fscore for each single threshold value mainted fixed along all
G generations.

2) ALEXNET PARAMETER TUNING
AlexNet is used to classify defects or non-defects from
discontinuities in weld bead images, with some modifica-
tions from its original configuration. Ten rounds are per-
formed with different randomly determined initial weights.
Figure 19 illustrates the values obtained during the training.
The best model was chosen as the standard version of the pure
deep model.

FIGURE 19. Training Fscore of each round obtained by AlexNet.

B. PERFORMANCE COMPARISONS
In this section, discontinuities in the output image are color-
coded: the defect-classified discontinuities are shown in
green, and discontinuities classified as non-defects are shown
in yellow. Aiming to compare the classification performed
by all the comparison approaches with the identification
performed by the experts, the manually reported image
is inserted in the lower left corner for each comparison
approach.

An example of the two-class pure AIS classifier output
image (defect and non-defect) can be seen in Figure 20
(right). For this image, out of 19 pre-processed discontinu-
ities, seven discontinuities are misclassified, five are classi-
fied as defects (false positives), and two defects are classified
as non-defects (false negatives), according to the reported
image.

FIGURE 20. Image after the classification of discontinuities. Image
obtained from pure AIS classifier and report of inspection provided by an
expert.

An example of the two-class deep AIS classifier
output image (defect and non-defect) can be seen in
Figure 21 (right). For this image, out of 19 pre-processed
discontinuities in the image, five discontinuities are not clas-
sified correctly: four false positives and one false negative,
as can be observed in the reported image.

An example of an AlexNet output image for both classes
(defect and non-defect) can be seen in Figure 22. For
this image, out of 19 pre-processed discontinuities, six
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FIGURE 21. Image after the classification of discontinuities. Image
obtained by Deep AIS classifier and report of inspection provided by an
expert.

FIGURE 22. Image after the classification of discontinuities. Image
obtained by AlexNet-based classifier and report of inspection provided by
an expert.

discontinuities are not classified correctly - two false pos-
itives and five false negatives - as can be observed with
the reported image. Despite the difference of only on error,
AlexNet provided five false negatives, which might be more
dangerous than false positives.

Analyzing the Fscore criteria obtained for each of the
three methods (Figure 23), one observes that AlexNet had
the poorest performance, with an Fscore of 64.86%, while
the proposed approach obtained the best performance, with
an Fscore of 70.732%, obtaining a gain of 4.356% over pure
AIS, the Fscore of which is 66.376%.

FIGURE 23. Best Fscore obtained by each method.

One hypothesis for the poor AlexNet performance can be
the small available training set. Since CNN are supposed to

work well under large training sets, we can conclude that for
this application CNN might not be suitable to perform the
whole classification task.

In addition to the best Fscore, the Deep AIS classifier
obtained - in the training phase - the lowest false negative
rate (FN) when compared to other approaches presented in
the current article, as can be observed in Figure 24. In the
present case, the lower FN value indicates that there are few
samples incorrectly classified as not belonging to the defect
class.

FIGURE 24. Best FN obtained by each method.

Another interesting finding appears when the results
achieved by the standard versions of AIS (pure and deep)
are compared with those achieved by versions using fixed
thresholds. Thus, one concludes that adopting a dynamic
threshold that decreases its values as long as evolution occurs
is beneficial to the AIS module since both dynamic versions
outperform their static counterparts, even those with the low-
est static values.

VII. CONCLUSION
The main idea behind the approach proposed in this paper
is the attempt to reproduce the way a human being inspects
radiographic images, inspired by the functioning mechanism
of the biological immune system. First, it pre-processes the
image investigating the regions of attention (discontinuities).
Then, it separates discontinuities that can be clearly classi-
fied as non-defects (self cells) and defects (nonself cells).
Then the system starts a process aiming to 1) improve
the non-classified data by means of lenses-like transfor-
mation performed by antibodies evolution, and 2) reduce,
from time to time, the threshold value necessary to clas-
sify a discontinuity as a defect aiming to reduce the false
negative rates as much as possible. Experiments were per-
formed with DWDI radiographic images obtained in real
field situations and which, in most cases, present images
of a lower quality when compared to those used in other
studies.

The proposed approach (deep AIS) uses a CNN AlexNet
plus an autoencoder incorporated into the AIS mod-
ule. AlexNet is used aiming to extract other features
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TABLE 2. AlexNet layers.

that are added to the geometric and texture features to
improve classification. The autoencoder is used to reduce
the number of features extracted by AlexNet to 100 features
considered in the present work.

This paper compared the proposed approachwith two other
methods (pure AIS and a deep learning approach - AlexNet)
for automatic defect detection in oil pipe welds. This com-
parison aimed to answer the question: is it really necessary to
adopt a hybrid approach to perform this task?

The answer is yes, since the standard version of the pro-
posed approach achieves an Fscore of 70.732%, outperform-
ing the pure AIS (Fscore = 66.376%) and AlexNet used to
perform the entire process (Fscore of 64.86%). This poorest
result of the pure deep learning model is probably due to the
low cardinality of training set, even with the use of transfer
learning, but further investigation is necessary to confirm this.
It is important to point out that, with the worst Fscore results,
AlexNet obtained the highest FN value, indicating that many
discontinuities that belong to the defect class were classified
as non-defects; which is a huge problem in the considered
classification context. On the other hand, the hybrid version
outperformed the others not only in terms of Fscore, but also
with the lowest FN value.

Besides their better results, another advantage of AIS mod-
els is their online learning capabilities. Different from CNN
models, which require hard retraining processes, incorpo-
rating new information into the self and nonself banks is
quite easy for AIS models. As long as new detected discon-
tinuities are classified as self and nonself with a high level
of confidence, they can be easily incorporated into the self
repository and antigen banks, and new discontinuities could
take advantage of this new information.

From the conducted experiments, one can conclude that,
using the proposed approach, it was possible to automatically
identify the discontinuities and classify the discontinuities
into defects and non-defects, highlighting the result in the
image. The resulting image helps the expert in preparing
technical reports.

With the obtained results, new perspectives emerge to be
explored in this field, like the analysis and / or incorporation
of other methods for extracting the features; incorporation
of other artificial intelligence methods (including other CNN
models) into the pure AIS method, as it performed relatively
well when used in a standalone mode. Another topic is
the exploration of the online learning capability of the AIS
module.

APPENDIX
see Table 2.
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