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ABSTRACT Webshell is a backdoor web page-based program. Malicious attackers obtain some privileges
through the Webshell so as to realize the operation and control of the website. However, due to confusion
coding technology, Webshell detection becomes difficult. This paper presents a Webshell detection model
based on the word attention mechanism. In the model, we mainly focus on intra-line word association. After
using Word2vec to vectorize the words, we use GRU (Gated Recursive Unit) and the attention mechanism
to train and detect the samples. The experimental results show that the model has a high detection rate and
low loss function.

INDEX TERMS Webshell, text vectorization, GRU, attention mechanism.

I. INTRODUCTION
Webshell is a web page program written in ASP, PHP, JSP,
CGI, or other web scripting languages. Users can use web
pages to upload files, view databases, and execute operat-
ing system commands through browsers. It can be used as
a backdoor because malicious users can also launch web
attacks through malicious web pages [1]. To avoid detec-
tion, attackers often use methods of confusing encryption
to hide Webshells, such as: camouflage, which changes the
name to ‘‘ordinary’’; encryption, which encrypts the execu-
tion code first and decrypts before executing; embellishing,
which inserts a large number of useless random strings into
the intermediate code; and polymorphism, whichmakes some
judgments before executing and only executing when match-
ing conditions [2]. Due to the complex methods used to avoid
detection and the diversity of languages, it is very difficult
to detect and recognize a Webshell. Some typical Webshell
samples in the real environment are as shown in Fig. 1.

Traditional Webshell detection methods are usually based
on the feature functions ofWebshells. Reference [3] proposed
an ASPWebshell search software based on a function library
directory. Reference [4] identified a Webshell that contains
malicious codes by the optimal threshold values. By judging
whether the document uses feature words or not, [5] proposed
a Webshell detection method based on the lexical level of
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FIGURE 1. Some typical Webshell samples in the real environment.

the scripting language. However, it was difficult to detect
Webshells of confusing encryption type.

With the wide application of machine learning in vari-
ous fields, some researchers began to apply machine learn-
ing to Webshell detection by utilizing the text features of
opcode sequences and the common statistical features of PHP
(Hypertext Preprocessor) files. Reference [6] constructed
four different similarity matrices to detect PHP-type mali-
cious Webshells. Reference [7] combined with FastText and
the Random Forest [8], [9] algorithm, and proposed an FRF-
WD (Random Forest with FastText) model for PHP Web-
shell detection. Reference [10] used text features of opcode
sequences and common statistical features of PHP files to
propose a PHP Webshell detection method based on the RF-
GBDT (Random Forest Gradient Boosting Decision Tree)
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model, which combines the Random Forest [11], [12] and
Gradient Boosting Decision Tree [13] algorithms. Although
these methods have high detection rates, they are all aimed
at PHP-type Webshells. Because these methods make use of
the opcode of a particular PHP language, it is difficult to
transplant them to Webshells of other language types. Com-
bining the statistical features and special function features of
Webshells, [14] proposed an XGBoost [15] algorithm based
on statistical features and feature functions. Reference [2]
proposed Webshell detection by transforming the statistical
features and feature functions of Webshells into matrix form.
Although these algorithms can detect all types of Webshells,
their accuracy was not high.

Due to the limitation of feature selection, traditional detec-
tionmethods based on feature functions andmachine learning
have different disadvantages, thus the classification perfor-
mance is not good enough. In referring to the way humans
recognize Webshells, we consider the neural network meth-
ods to learn the Webshells and normal web pages, and then
classify them. ‘‘Neural network’’ is a mathematical or com-
putational model that imitates the structure and function of a
biological neural network. At the same time, through training
and learning, a neural network can have better memory ability
than humans. Recurrent Neural Network (RNN) [16] has
good performance in many NLP (natural language process-
ing) tasks; therefore, this paper considers solving the problem
of Webshell detection using RNN.

The problem of Webshell detection can be regarded as the
classification of Webshells and common web pages, which
is similar to text classification and emotional classification.
In addition, they all require semantic analysis. Nowadays,
there are many mature algorithms for text classification and
emotional classification. Reference [7] averaged all the word
vectors in a sentence and then connected them to the softmax
layer, and proposed an extremely simple model based on
FastText. The influence of word order information on the
result was not considered in the FastText network at all.
Thus, [17] used a convolutional neural network to extract
word order information in sentences and then connected the
full connection layer to classify the text. In the process of text
categorization and due to the fact that some turning points can
change the meaning of the text, it was necessary to retain the
global sequence information to improve the detection effect.
Reference [18] considered introducing LSTM into text cate-
gorization and finally connected the results of the last word
to the full connection layer for categorization. Reference [19]
analyzed the importance of words and sentences in texts at
word-level and sentence-level, and classified them with a full
connection layer by combining LSTM and Attention.

However, in order to apply text categorization to Web-
shell detection, it needs to be optimized and improved.
Webshell detection is different from text categorization
and there may be semantic reversals, such as turning
points between sentences, in text categorization. Therefore,
in text categorization, inter-sentence connection information
is very important, but the meaning of inter-word connection

information in Webshell is higher than that of inter-sentence
connection information. This paper presents a Webshell
detection model based on the attention mechanism [20]. The
model takes the list of arrivals of specific word segments
as input after reading the file content by line and then uses
Word2vec [21], [22] to vectorize the words.

In Section 2, we review some typical approaches to Web-
shell classification. Section 3 describes the details of the
Webshell classificationmodel using the attentionmechanism.
In Section 4, an experimental evaluation of classification
accuracy is carried out for the proposed model.

II. RELATED WORK
For Webshell detection, common research methods are
mainly divided into two aspects: PHP-type Webshell detec-
tion and all types of Webshell detection. These are based
on machine learning algorithms to classify whether they are
Webshells or not. A brief description of each of the methods
used in the experiment is given as follows.

The FRF-WD [7] method first uses the sequence character-
istics of operation codes to average the word representation
into text representation. It then feeds the text representation
to the linear classifier to train the FastText model. Finally,
the Random Forest model is trained to classify the Webshell
by using the results of pre-classification and static features
(longest string, information entropy, index of coincidence,
signature, blacklist keywords) of FastText model accord-
ing to the sequence characteristics of operation codes. The
RF-GBDT [10] method first extracts text features (a 146-
dimensional TF-IDF vector and a 200-dimensional hash vec-
tor) from the sequence of PHP file opcodes. Then, it trains an
RF classifier based on these text features to obtain prelimi-
nary prediction results. Finally, it uses text statistical features
(information entropy, index of coincidence, length of longest
word, data compression ratio, amount of matched signatures)
and preliminary prediction results to train a GBDT classifier
and obtain the final classification results. The matrix decom-
position method [2] extracts text features (number of words,
number of different words, maximum length of words, total
length of text, number of notes, number of special characters)
and other features (character manipulation function call, key
function call, encryption and decryption function call, system
function call, file invocation, ActiveX control call, database
call, number of script), then groups and combines each fea-
ture in all features, and finally using thematrix decomposition
model to train and predict. The XGBoost method unifies
the performance function, file coincidence index, information
entropy, longest string length, and compression ratio as the
features of Webshell, and trains the model to classify using
the XGBoost algorithm.

III. MODEL ARCHITECTURE
The overall architecture of our model is shown in Fig. 2.
It includes four parts: text vectorization, a Gated Recursive
Unit (GRU) [23] layer, a word attention mechanism, and
dense layers. We first need to convert the Webshells into
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FIGURE 2. Overall architecture of the proposed model.

FIGURE 3. Overall architecture of our model.

the vectors commonly used in neural networks through text
vectorization. The state of the LSTM at time t is determined
by time t − 1 and the influence of its state before time t − 1
on the state at time t can only depend on its influence on
time t − 1 [24], [23]. Second, the gated recursive unit (GRU)
preserves information in long-term sequences that cannot be
erased over time or in relation to predictions. In Webshells,
the relationship between words in every line of code is often
very important. The semantics of a sentence can be obtained
by the information of the relationship between words in a
sentence. Third, our model highlights the interaction of words
in each line by introducing the word attention mechanism.
Finally, we use the dense layers to classify.

A. TEXT VECTORIZATION
According to the language characteristics of the Webshell,
the text is segmented as shown in Fig. 3. First, each line
of code is treated as a sentence. If words are segmented
directly according to the blank space in sentences, then it
will lead to more kinds of words, a large vocabulary, and
high memory consumption. Moreover, many words with low
frequency will be directly filled with vectors when they are
vectorized, thus losing their specific meanings and possibly
affecting the meaning of sentences. Therefore, in our model,
we consider the use of special characters of blank, non-
numeric, and non-alphabetic for word segmentation, and the

S ′n of the nth sentence is segmented to get list Sn:

Sn = [Wn,1,Wn,2, · · · ,Wn,m], (1)

where Wn,j is the jth word in the nth sentence and m stands
for the number of words in a sentence.

After word segmentation, the primary work is to get the
vector form of a word. We consider using Word2vec to rep-
resent a word as a vector. The vectors obtained by Word2vec
vectorization are lower dimension and denser than the one-
hot encoder, which uses a vector containing only a 1 and
all other 0 to uniquely represent a word. The dimension of
vectors obtained by Word2vec is much smaller than the total
number of words, but the dimension of vectors obtained by
one-hot encoder is generally the same as the number of words.
Therefore, Word2vec is essentially a dimension reduction
operation. There are many training models for Word2vec and
we choose CBOW. CBOW takes the context of vectorized
words as input and obtains a word embedding matrix through
training. Finally, we use one-hot encoder of words multiplied
by word embedding matrix to get word vectors. Therefore, Sn
obtained from word segmentation is vectorized by Word2vec
to get [Vn,1,Vn,2, · · · ,Vn,m] [21], where Vn,j is the vector
form of the jth word in the nth sentence.

B. GRU ENCODER LAYER
The Gated Recursive Unit (GRU) proposed by [23]
was changed on the basis of long-term and short-term
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FIGURE 4. Architecture of attention layer.

memory (LSTM) as proposed by [25], which includes three
gating units. In Gated Recursive Unit, the input gate, and the
forgetting gate are merged into an update gate, and the output
gate is changed into a reset gate. The overall parameters are
reduced. Therefore, the training speed of GRU is slightly
faster than LSTM. Update and reset gates in gated recursive
units can preserve information in long-term sequences and
cannot be cleared due to time lapse or irrelevance to pre-
diction. Therefore, it can effectively avoid the problem of
gradient disappearance. The vectors Vn,j of the jth word in the
nth line are computed through GRU (j = 1, 2, · · · ,m) layer
to get hn,j of the hidden state, which was computed through
h̃n,j of the candidate activation.

C. WORD ATTENTION MECHANISM
In the process of classification, we need to compress the
information of each sentence into a fixed dimension vector.
At the same time, not all words in the sentence have the
same importance to the meaning of sentence expression,
so we add the attention mechanism to the model [20]. The
architecture of the attention layer is shown in Fig. 4. At each
step of compression, the hidden state is taken as input and
the weight representing the importance of the hidden state
is calculated at each input position. Then, the vocabulary
information in the sentence is added into the sentence vector
by the trainedweight vector. Therefore, we first get the hidden
representation un,j of the word vector through a single multi-
layer neural network and then use the word-level importance
vector un,j, which was based on the sentence and uw, to get
the normalized weight αn,j through the softmax function.
Finally, the weighted sum vector Sn of the word information
is obtained according to the word information hn,j and the
normalized weight αn,j. The calculation equations are as
follows:

un,j = tanh(Wwhn,j + bw), (2)

αn,j =
exp(uTn,juw)∑
j exp(u

T
n,juw)

, (3)

Sn =
∑

j
αn,jhn,j, (4)

where Ww is a multi-layer neural network parameter, bw is a
bias term, and uw is a context vector. The hidden state contains
the information of the whole target sentence.

D. DENSE
The document matrix composed of the sentence vectors of
the file is a high-level representation of the document and
can be used as features for document classification. In the
model, we use their features to classify whether they are
Webshells or not. After obtaining the sentence vectors of the
file, a two-dimensional matrix of the file is mapped to a one-
dimensional vector through a full connection layer of sigmoid
function to reduce the parameters. Finally, we use a sigmoid
function full connection layer to classify each file.

IV. EXPERIMENTAL CLASSIFICATION RESULITS
ANALYSIS
The code we used to train and evaluate our mod-
els is available at https://github.com/leett1/Programe/. The
Webshell samples were collected from Github such as
https://github.com/tennc/webshell, etc. We also uploaded
500 normal web page samples and 500 Webshell samples for
reference.

A. DATASET ENVIRONMENT
We evaluate the effectiveness of our model in classifying
Webshells in various language types. PHP, ASP, ASPX, and
JSP are used more frequently in Web development; therefore,
this paper takes normal web page samples and Webshell
samples written in PHP, ASP, ASPX, and JSP. We collect
about 7,400 normal web page samples and 4,500 Webshell
samples of open source web projects written in PHP, ASP,
ASPX, and JSP languages from Github. To obtain different
training and testing data, we randomly divide the normal web
page samples into 7:3. Then, we use 70% of the samples for
training and 30% for testing. Similarly, we randomly divide
Webshell samples into 7:3 and use 70% of the samples for
training and 30% for testing. Finally, the training samples of
commonweb page samples andWebshell samples aremerged
into the training set and the testing samples of common web
page samples and Webshell samples merged into the testing
set. We implement our model in Tensorflow and train it on
GTX1060GPU.

B. MODEL TRAINING AND PARAMETER SETTING
We divide each file into sentences by using each line as
a unit and then segment the sentences by using the word
segmentation method proposed by us to obtain the word
sequence of each sentence, thereby encapsulating each file
into a matrix and marking each file with a type. When build-
ing a vocabulary, we only retain words that appear more than
20 times in the training set. We use the training set to train
an unsupervised Word2vec model to get word embedding
and then use word embedding to initialize and validate the
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TABLE 1. Confusion matrix.

training data. The hyper-parameters of the model are opti-
mized on the verification set. In the experiment, we set the
embedding dimension to 150, the GRU dimension to 100,
and the dimension of the word context vector to 100, which is
randomly initialized. In the training process, we set the batch
size to 25 and the number of training rounds to 10. At this
time, the model training effect and test effect are the best.

C. EXPERIMENT RESULTS AND ANALYSIS
Webshell samples are labeled as positive and normal web
page samples as negative. The confusion matrix presented
in Table 1 shows that the TP (True Positive) and TN (True
Negative) values are both much higher than for FP and FN.
The TP (True Positive) refers to Webshell samples correctly
classified by the classifier, the TN (True Negative) refers to
normal web page samples correctly classified by the classi-
fier, the FP refers to Webshell samples mistakenly labeled as
normal web page samples, and the FN refers to normal web
page samples labeled as Webshell samples.

Some typical FP and FN samples are shown in
Figs. 5 and 6. On the one hand, it can be seen that there
are a few normal web page samples in order to achieve
certain functions, so they have been confused with coding.
Therefore, our model mistakenly classifies them as Web-
shell samples. On the other hand, in order to hide Webshell
samples, some attackers embed the codes into the image
so that when we classify them they will appear as garbled
phenomena, resulting in less information. Their codes are
embedded at will and may be embedded at the back of a
line. Our model is limited by the number of lines and words
per line, resulting in no important information. Therefore,
we mistakenly classify them as normal web page samples.
In the future, we will conduct in-depth research on the
problem of error classification mentioned in this paper.

To evaluate the performance of the model accurately,
we use the accuracy (ACC), recall rate (Recall), and the
F1 score (F1) [26]. Among them, recall rate represents the
proportion of positive samples correctly predicted in the test
samples, accuracy rate represents the proportion of the whole
sample set correctly predicted, and the F1 value combines
the results of precision rate and recall rate. The calculation
equations are as follows:

ACC =
TP+ TN

TP+ TN + FP+ FN
= 0.9919, (5)

FIGURE 5. Typical example of FP.

FIGURE 6. Typical example of FN.

Recall =
TP

TP+ FN
= 0.9899, (6)

Precision =
TP

TP+ FP
= 0.9891, (7)

F1 =
2PR
P+ R

= 0.9895. (8)

Equations (5)–(8) show that the accuracy, recall, precision,
and F1 values are about 99%. ‘‘Accuracy’’ can judge the
overall accuracy, but it cannot be used as a good indicator to
measure the results in the case of unbalanced samples. The
recall rate is the ratio of the real positive case to the real
positive case in the data, ignoring the influence of erroneous
judgement, and is unable to evaluate the model comprehen-
sively. Precision is the ratio of positive predictions in positive
samples. F1 is the harmonic average of accuracy and recall.
However, by synthesizing the above three parameters, we can
see that the detection effect of our training model on each
index is very balanced and the effect is very good, and it can
distinguish Webshells from ordinary web pages very well.

Figure 7 shows the ROC curve that is a Comprehensive
Index of TP and FP. The horizontal axis is the false positive
rate (FPR), which is the proportion of common web pages
incorrectly classified as Webshell samples and accounts for
all common web pages in the test result. The vertical axis
is the true positive rate (TPR), which is the proportion of
actual Webshells in all Webshell samples. The ideal goal is
TPR = 1, FPR = 0; that is, the closer the area value under
the ROC curve is to 1, the higher the accuracy of recognition
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FIGURE 7. ROC curve of the experimental results.

FIGURE 8. Loss value of each epoch.

for Webshells. As can be seen from this, the comprehensive
performance of our model is good. Figure 8 shows the loss
value of the experimental results of the model. From Fig. 8,
we observe that when the epoch value reaches 7, the loss
value tends to be stable, about 0.02 in the training process.
Hence, one can see that our model has the characteristics of
fast convergence.

D. ALGORITHM COMPARISON
We use a confusion matrix as a quantitative evaluation crite-
rion to compare the performance of our model with that of the
improved algorithm based on traditional machine learning.
The following tables compare machine learning methods
for PHP-type Webshell detection and all types of Webshell
detection with our model.

From Table 2, we can see that the traditional machine
learning methods (RF-GBDT [10], FRF-WD [7]) have better
detection rates than our model because extracting some text
features from opcode sequences can filter out some noise in

TABLE 2. Comparison of detection effectiveness of PHP type.

TABLE 3. Comparison of all types of detection results.

the PHP source code, such as some comments. As a result,
it is more effective than learning directly from PHP source
files. However, although our attention model does not use an
opcode, its detection effect is only slightly lower than that of
the method of extracting an opcode. However, for all types of
Webshell detection, ourmodel detection effect is significantly
better than the general machine learning method.

For all types of Webshells, we compare existing Web-
shell detection models based on traditional machine learning
(Matrix decomposition, XGBoost) and the classical neural
network model. By analyzing and researching the neural
network, we put forward several detection schemes based
on the neural network. We perform word vectorization on
the samples and then use classical neural network models,
such as CNN (convolutional neural network) [27], TextCNN
[17], and LSTM [25] (long-term and short-term memory
network), to train the model. Because we do not extract the
unique features of a language during the training and testing
processes, our model can be targeted at Webshells of various
language types.

Table 3 shows that under the same training and test sets,
combined with the accuracy recall and F1 value, the effect
of the model based on the GRU attention mechanism is better
than that based on other neural networks. Traditional machine
learning models only train by extracting some fixed feature
functions and statistical features; thus, the insufficient feature
library will lead to poor detection results. The model based on
CNN can accurately identify local features, but does not con-
sider the location of features, so the effect is not very good.
Although the recall rate of the model based on TextCNN is
very high, it can only prove that the model can detect the
Webshell well and it can also identify many ordinary web
pages as Webshells. Therefore, the overall effect is not good.
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We use GRU to retain useful information in long sequences
and ignore some unimportant information at the same time.
Compared with ordinary LSTM, we add the word attention
mechanism, which can actively search for the most relevant
information at any time while ignoring the irrelevant infor-
mation; hence, the result of our model is better.

V. CONCLUSION
This paper described the common hidden means and haz-
ards of Webshells and studied traditional machine learning
detection methods. Traditional machine learning methods
mainly use feature words and statistical features to classify
and detect. However, these methods have some shortcom-
ings, such as insufficient feature lexicon and avoiding feature
lexicon, and the detection effect depending entirely on the
extraction of feature words. Therefore, this paper proposed
learning from normal samples and Webshell samples, and
then detected Webshell samples according to the learning
model. This paper compared the improved algorithm based
on traditional machine learning from three aspects: accuracy,
recall, and precision. The experimental results show that our
model can detect Webshell samples accurately. The detection
effect of the model is verified from the aspects of accuracy,
recall, precision, and F1 value, and the model effect is evalu-
ated comprehensively by the ROC curve.
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