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ABSTRACT In recent years, to fix the shortcomings of traditional bus service and meet the diversified
needs of passengers, a new type of transit system, the customized bus (CB), has been proposed. However,
how to define and mine the CB’s demand is still less being addressed. Since the data of bus smart cards
can provide more travel information, it makes the mining of potential CB’s demand spots more possible,
which can be helpful in CB service design. In order to mine the demand spots more scientifically, this paper,
for the first time, quantitatively defines the CB demand characteristics and criteria of selecting potential
area, and develops a demand hotspots extraction methodology for CB. The methodology solves two issues
primarily. One is how to organize massive smart card data and obtain the space-time pattern and mobility of
passenger efficiently; the other is how to mix the CB demand characteristics into the method. This demand
spots extraction method can generate multi-style maps, including the heat and origin-destination maps, for
spatial cluster of CB’s demand spots in rational areas in terms of the CB demand characteristics based on
geographic information system. By using the bus smart card data in Beijing, China, this paper carries out a
case study to validate the method. The empirical data mining analysis shows that our proposed method can
define demand spots ideally. Our work can provide a valuable reference for decision makers to design CB
system.

INDEX TERMS Bus smart card data, customized bus, potential demand area, geographic information
system, spatial clustering analysis.

I. INTRODUCTION
Customized Bus (CB) is a new and innovative demand-
responsive transportation system (DRTS) that provides
advanced, user-oriented transportation services to specific
customers, especially commuters, by using online informa-
tion platforms to aggregate similar travel demand patterns [1].
The CB system is more reliable, comfortable and convenient
than traditional public transportation (PT) systems, and more
efficient, cost-effective and environment friendly than pri-
vate cars, which makes it become a more competitive PT
system in metropolis [2]. Accordingly, CB have their unique
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advantages in reducing traffic congestion, reducing pollutant
emissions, and serving PT, especially in commuting travel.
Therefore, CB is increasingly valued by the PT administra-
tion departments of major cities. However, many cities lack
complete thinking about the planning and management of CB
system currently. The design of CB sites and routes is mainly
determined by experience, so it is difficult to find out the huge
potential demand of CB and thus maximize its due advan-
tages. Existing studies are widely focused on the optimization
of CB service patterns, bus network optimization, pricing
strategies and so on [3]–[5], but the research on the mining
demand of CB has not been discussed. At present, with the
accelerating development of communication and information
technology, more and more traffic data are available. How to
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scientifically and effectively mine CB demand hotspots based
on existing traffic data, especially bus smart card/intelligent
card (IC) data, to provide data support for follow-up CB
service system design has become an urgent problem to be
studied.

A. SOURCE OF MINING CB’S DEMAND
To mine CB demand, bus smart card data are an important
source. With the continuous development of related tech-
nologies, the travel information stored by bus smart cards is
becoming more and more abundant. Bagchi and White [6]
summarized the information that the smart card can contain
and summarized it as the linking of data, the volume and
scope of the data, and continuous information. They pointed
out that the analysis of smart card data can collect more long-
term information and provide more accurate predictions than
traditional sampling survey methods.

Since smart card stores so much information, privacy
issues need to be considered first. Although the Automatic
Fare Collection (AFC) system itself is helpful to improve
the security of the card holder’s travel information [7], [8],
the generated data set contains potential privacy issues. The
research by Dempsey and Stephen and Pelletier et al. [8], [9]
suggests that perfecting relevance laws and statutes and plac-
ing smart card data under the common supervision of PT
enterprises and governments is an effective means to protect
privacy. The recommendation was supported and the privacy
of smart card holders was strictly protected throughout this
paper.

Pelletier et al. [9] summed up the previous scholars’
research and divided the study of smart cards into the level of
strategy, tactics and operation. The strategic level of research
includes long-term network planning, passenger behavior
analysis and demand forecasting. It also illustrates the impor-
tant position of smart card data in the analysis of urban PT
services. Therefore, more and more studies have begun to
pay attention to the analysis of bus smart card data. Ma et al.
and Zhong et al. [10], [11] separately paid attention to the
distribution characteristics of smart cards in time and space.
The temporality of PT travel is more likely to be obtained
from its long-term regularity, and the spatial distribution
reflects the relationship between passenger travel and land
use. Both have positive significance for bus service plan-
ners and even city planners to adjust PT services perfectly.
Therefore, the temporality and spatiality of smart card data
had best be studied together. When analyzing the spatial
distribution of housing prices and housing (including new
home purchase and personnel relocation), Gao et al. [12]
analyzed the relationship between travel and housing prices
through data analysis of smart cards, and then conducted
short-term forecasts of spatial residential distribution after
housing prices rose. Ingvardson et al. [13] used the bus smart
card data to study the time characteristics of passengers’ wait-
ing for bus, and based on this, made a reasonable timetable,
thus shortening the waiting time of passengers and improving
the service quality of the bus [14]. Smart cards data can also

be combined with other data to explore the intrinsic link
between urban PT and other urban systems. Wei et al. [15]
combined the bus smart card data with the buses’ GPS data
to obtain the link between passengers and population, land
use, and transportation factors. Qi et al. [16] used smart card
data and points of interest (POI) data to analyze and predict
passenger regional mobility patterns. However, similar to
previous studies, this study did not pay enough attention to
the demand characteristics of the passenger.

B. POTENTIAL PROBLEMS OF USING BUS SMART
CARD DATA AND SOLUTIONS
It is undeniable that at present, the smart card being the
source of CB’s demand still has its limitations, which can
be divided into three types: (1) the problems in the operation
of the AFC system, including potential fare evasion and the
erroneous data (missing data, illogical values and duplicate
transactions) generated by the AFC; (2) the adoption the
entry-only charging system, that is, only taping the smart card
once during the whole ride; (3) the usage volume/rate of the
smart card. The existence of these problems will affect the
study of subsequent bus cards, resulting in analytical errors.
The first two will cause errors in the data set itself, and when
the smart card usage volume/rate is low, the analyzed results
will be one-sided and cannot provide effective guidance to the
PT manager. Therefore, if smart card data are expected to be
used as the source of mining CB’s demand, these problems
need to be carefully considered.

According to Delbosc and Currie [17], fare evasion is a
problem that cannot be neglected by transportation agencies.
Reddy et al. and Barabino and Salis [18], [19] analyzed the
main scenes of fare evasion and proposed solutions such
as video monitoring equipment and an appropriate number
of inspectors. Although AFC cannot avoid the occurrence
of fare evasion, it can help drivers or inspectors reduce the
chances of fare evasion, and improve the efficiency of charg-
ing efficiency [20]. The study by Guarda et al. [21] also
shows that the probability of fare evasion can be reduced with
the improved AFC system such as Back-door entry system,
the supervision of drivers and reasonable bus design. During
data acquisition, AFC generates three types erroneous data,
including missing data, illogical values and duplicate transac-
tions due to software or hardware errors [22]. These problems
usually can be found through comparisons between data, such
as a record lacking the necessary attributes, two records at
the same time and place from one card. Barabino et al. [23]
created a model that used the individual and the entire route
tap in& out records as constraints to detect data anomalies.
Considering that the amount of data from smart cards is large
and the proportion of erroneous data is very small usually,
the main processing method is directly eliminating [23]–[26].
And some researchers use historical data and similar data to
make estimation supplements [27]–[29].

Currently, entry-only charging systems are adopted by
most cities’ AFC, such as New York, America, Chicago,
America, San Diego, America and Guangzhou, China.
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And the entry-exit charging system requires the passengers
to tap in& out their smart cards when they take a ride. The
South East Queensland, Australia, Seoul, South Korea and
Beijing, China adopt this system in their AFC [30]. The
entry-only charging system can only accurately provide the
passenger’s pick-up location. This is obviously not conducive
to passenger origin-destination (OD) extraction, which is one
of the main goals of mining smart card data [23]. Therefore,
how to estimate the passenger’s possible drop-off location
has become the focus of many scholars’ study. Nunes et al.,
Trépanier et al. and Munizaga et al. [27], [29], [31], [32]
designed models to estimate the possible drop-off position
of passenger by using multi-day card data, and both models’
accuracy reached 80%. At this stage, the estimation model
needs to be improved to improve the accuracy rate. Or, entry-
exit charging system could be used to get accurate passenger’s
drop-off position directly.

The smart card usage volume/rate is critical for demand
mining, and even has bad impact on the passenger drop-
off position estimation for entry-only charging system with
low usage volume/rate [29]. According to the study from
Li et al. [30], the sample size below 10000 is low smart
card usage volume. Although there is no clear correlation
between card usage volume/rate and accuracy of demand
mining, it is still worth noting that many scholars acknowl-
edged that smart cards offer convenience for commuters,
and they identify commuters by analyzing smart card data
sets [9], [10], [12], [25]. Fayyaz et al. [33] conducted an
interesting study. They analyzed the bus dwell time at station
to obtain the proportion of different payment methods and
achieved good results. Considering that the use of AFC is the
overall development trend of PT [7], the feasibility of using
large smart card data as the source of mining CB’s demand
is becoming higher and higher. But nonetheless, for the low
smart card usage volume/rate cases, auxiliary investigations
are still recommended to conduct to verify the results of
mining CB’s demand.

In summary, it is feasible to find CB demand spot by
mining a large number of smart card data, especially for the
AFC which adopting entry-exit charging system, with the
premise that the three problems have been properly solved.

C. MINING METHODOLOGY OF TRAFFIC DEMAND
Data mining is a common method used in traffic system
analysis, such as road accidents analysis, identifying conges-
tion events, and searching internal relations between various
traffic data [34]–[36]. The main methods include statistics,
genetic algorithms, artificial intelligence (AI) algorithms, and
visualization [37]. Bus travel data characteristics in large
cities presents complex, mass and spatial-temporal. And the
results generated by a single mining method are difficult to
achieve sufficient validity and accuracy. In order to reconcile
the data patterns and demand characteristics, the visualization
and spatial clustering methods are selected as the methods of
demand mining in this paper. Because the former can make
complex and spatio-temporal data easy to be understood and

applied, while the latter can take into account the point-to-
point service, which is one of the CB service characteris-
tics [38], [39].

The temporality and spatiality of bus smart card data make
the heat map and the OD map be selected as the visualization
method. A heat map (or heatmap) is a graphical represen-
tation of data, which is represented as colors according to
its value [40]. The heat map can evaluate a series of indi-
cators such as the demand distribution of urban PT, vehicle
operating conditions, and the rationality of station location
according to passenger flow volume, bus speed and so on,
thus providing positive guidance for the operation of urban
PT system [41], [42]. Similarly, it can also be used to present
bus passenger pattern [10], [16]. But using only one style,
heat map, is not sufficient for passenger pattern analysis.

The OD map provides the other side of geographic
data, showing the interaction between different regions, and
studying the spatio-temporal patterns and trends of large-
scale passenger mobility [43], [44]. So, it can be a powerful
complement to the heat map. Geographic Information Sys-
tem (GIS) is a computer-aided system for capturing, storing,
retrieving, analyzing,managing and displaying spatial or geo-
graphic data [45]. It is a common tool for data visualization
and has been widely applied in the field of PT. GIS can
generate isochronous lines of PT trips (lines with equal travel
time) to show the status of urban PT, and is used to evaluate
the accessibility of urban PT to enhance the attractiveness of
PT, thus providing city manager or policymaker with opti-
mized plan for integrated land use and transportation system
design [46]–[48]. Agrawal and Nagrath [49] used GIS to
construct heat maps when exploring the autonomous route
allocation of urban bus. The area is gridded and the color of
different grid is dyed according to the population, and the bus
route will be allocated according to the change of grid color
to serve the most demanding area. Domènech and Gutiér-
rez [50] used GIS to present the proportion of population
near the station and the connectivity of different areas when
evaluating the coverage and utility of PT systems in tourist
areas, so as to determine the bus plan in different seasons.
Lee and Miller [51] used GIS to outline the spatio-temporal
accessibility maps of different bus network combinations
when evaluating the urban redesigned PT system and the new
rapid transit system, CMAX. This improved the efficiency of
PT assessment. At present, the most mature GIS tools include
ArcGIS, TransCAD, Google Earth, etc.

Cluster analysis can be used to group objects with similar
degrees of similarity [52], while spatial clustering can be
used to process data with temporality and spatiality, which
has been used in study of hotspot extraction on traffic. For
example, K-method or spatial clustering method are used to
extract congestion hotspots, accident hotspots, or some vehi-
cle’s demand hotspots, like taxis [53]–[55]. The main way
to locate bus sites is to establish a certain cost function (like
company’s cost, convenience, site spacing), then use different
methods to gradually approach the optimal solution to obtain
the optimal site location [56]–[58]. The extraction of the
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TABLE 1. Comparison of existing researches.

demand spot can be used as the initial solution of the existing
model, thereby improving the efficiency and accuracy of the
solution. Iliopoulou et al. [59] used time-space clustering to
observe the phenomenon of bus gathering on the line, and
pointed out that the bus gathering phenomenon will be more
significant during peak hours.

As the research on traffic data mining and analysis is
becoming more sufficient, for the sake of better understand-
ing, this paper makes a comparison on the related research
fields among some key literatures (shown on Table 1).

In light of the review, though some contribution on mining
CB demand has been made recently, several questions still
need to be addressed further. Firstly, currently there is still
no clear and accepted definition of the characteristics of CB
demand at home and abroad, not to mention the criteria of
selecting CB demand spot. Secondly, the research level is
only at the city or regional level, which may be sufficient for
those researches, but it is inflexible to mining spots through-
out the whole city. In addition, the visualization plan is sim-
ple, often only one or two styles of map. Therefore, many
researchers only focus on the spatial-temporal distribution of
their research objects, while ignoring the mobility, which is
a powerful complement to the former. Finally, some papers’
applications are too macroscopic and theorization, resulting
in a lack of consideration of passenger demand character-
istics. In fact, exploring the demand from the perspective
of the passenger can amplify the reliability of the research
results.

As the development of CB has become more and more
important, there is a lack of research on how to exploit its
potential needs through more resources, such as smart card
data. At the same time, limitations of previous studies need
to be overcame and the CB demand definition and criteria
are needed to be quantitatively presented for mining demand
accurately. Therefore, aiming at above research limitations,
this paper seeks to provide a general method for mining CB
demand spots during the peak period based on bus smart
card data.

The remaining paper is organized as follows. In Section II,
the demand characteristics of CB and how to incorporate
them into the mining method are discussed. In Section III,
a general methodology, designed for entry-exit charging sys-
tem, of the extraction of CB demand spots based on smart
card data is introduced, which includes data preprocess, data
visualization and demand spots extraction. A case study, with
bus smart card data from Beijing, China, is carried out by
applying this method in Section IV. Lastly, in Section V,
the results of the process and analysis are summarized to
arrive at pros and cons of the method and to make recom-
mendations.

II. CB DEMAND CHARACTERISTICS AND SELECTION
CRITERION OF POTENTIAL CB DEMAND AREA
Although the source of demand analysis has been identified,
and the potential problems in AFC operation can be properly
tackled, it is still necessary to clarify the demand characteris-
tics of CB, which is the CB’s services expected by potential
passengers. It can help avoiding this DRTS to failure [60],
and work in finding CB’s potential demand area (PDA).

A. DEFINITION OF CB DEMAND CHARACTERISTICS
The analysis of the PT demand characteristics is complex, and
the demand characteristics can be systematically obtained by
using economics demand concepts and comparing other bus
service modes. Economics research indicates that PT demand
shows significant regular fluctuations, while travel distance,
cost and purpose, and other modes of transportation both have
an impact on PT demand [61], [62].

The main PT service modes include the traditional PT
service, the Bus Rapid Transit (BRT), the flex-route transit
services and the community bus system. Compared with
traditional PT service, CB is more reliable, comfortable and
convenient [1], [2]. Compared to BRT, CB only needs to
consider the endpoint site setting, so its route is more flexible,
and its site and route construction costs are lower [2], [63].
Flex-route transit service is another type of DRTS, but it’s
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TABLE 2. Comparison of main PT modes.

TABLE 3. Selection criteria for PDA.

more focus on the service in low-density areas [64], which
is the exactly the opposite of CB. The community bus is
mainly applied for the transfer between hub stations and Inter-
community roads [65]. That means commuting passengers
have to take more than one transfer behavior, which is incon-
venient and may increase their commuting time.

Based on the above, Table 2 is generated to show the
performance indicators of these PT modes in detail. It should
be noted that due to different factors such as city size and
traffic conditions in different cities, the recommended value
of the indicator’s upper limit is defined by referring to Code
for transport planning on urban road [66] of China. And
‘‘Site setting’’ in Table 2 refers to the location of sites on the
route.

Combined with the previous concept of CB, the fluctu-
ations in PT demand characteristics and CB’s advantages
over other bus modes, the demand characteristics of CB can
be summarized. CB demand refers to the requirements of
users who generally have regular trip patterns and expect to
be served by the point-to-point, transfer-free, time-reliable
transit service to achieve longer distance travel, and are
with a certain ability to pay, which is especially suitable for
commuters, who travel for long-distance travel, require time
reliability, and are willing to pay higher fare.

B. CRITERIA OF SELECTING POTENTIAL DEMAND AREA
It will be time-consuming and labor-intensive to mine CB
demand spots across the whole city. The proper consideration
is to find PDA and to mine demand spots in these PDAs.
Based on the work in Section II. A. and the definition of
CB demand characteristics, the selection criteria for the PDA
are summarized in Table 3 including Distance, Economics
condition, Activity and Volume criteria, respectively.

These criteria are used to ensure passengers’ demand for
reliable long-distance services, while to ensure the bene-
fits of bus operators as well. All 4 criteria need to be
quantified to facilitate and prioritize follow-up hot area
selection. And recommended values are also presented
in Table 3.

1) DISTANCE CRITERION (D)
Metropolises with different sizes and traffic conditions have
different standards for measuring ‘‘far/long’’ commuting dis-
tance/ time. Therefore, PT planners can define a suitable
value based on the distribution of commuting CRD/ time
in residents trip surveys and local code. The recommended
values are defined for cities with different sizes by referring
to [66] in China.

2) ECONOMICS CRITERION (E)
It means that the potential areas should be in a quite high
level of affluence so that there will be potential CB users
who can afford higher fare in these areas. Most of the current
research on defining high level of economics is qualitative,
hence there is also still no implementing quantitative stan-
dards to be implemented. Here, the Position Affordability
Index proposed by the US Department of Housing and Urban
Development and the Department of Transportation is ref-
erenced to determine economics criterion. It indicates that
the personal total cost of housing and transit (CRE ) accounts
for 45% of personal total revenue is ‘‘affordable’’ [67]. As
the economic situation varies in different regions, in practice,
local PT planners should conduct survey to investigate eco-
nomic conditions such as the average rent price, per capita
disposable income (PCDI) or Gross Domestic Product (GDP)
for adjusting the value of CRE in terms of 45%.
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FIGURE 1. Total process of hotspots extraction.

3) ACTIVITY CRITERION (A)
Activity refers to the sum of passenger production and attrac-
tion (PA) at the peak period within this area. It means that the
area should be active enough in trips, so there are probably
existing potential CB users. Generally, the value of CRA
should be larger than the capacity Cv of a CB vehicle at
least. Considering that there may be only a proportion of
commuters for all PAs to use CB, we define the activity value
as CRA ≥ Cv/fco/fcb, here, fco stands for the commuter ratio
of PA within this area and fcb is the CB potential CB user
ratio of commuter.

4) OD VOLUME CRITERION (V)
Because CB is a type of DRTS, its operation and route set-
tings are flexible, which can be flexibly subscribed, changed
and cancelled [1], [2], the passenger flow (CRV ) between
origin and destination areas should meet at least one busload.
As different size of bus has different capacity Cv, different
cities should set differentCRV as theV criterion. For referring
to [4], [5] and this Beijing case, the recommended value
should be greater than 20 or Cv/fco passenger per hour.
It should be emphasized that if an area has met the V

criterion, whether the A criterion is met is not important.
Because A criterion cannot guarantee that it can support

the existence of CRV completely, but can help PT planners
quickly narrow down the searching scope.

III. METHODOLOGY OF CB’S DEMAND SPOTS
EXTRACTION FROM SMART CARD DATA
The research methods proposed in this paper are as follows:
(1) First, the smart card data are preprocessed to eliminate
the erroneous data, to match the passenger travel, to calculate
passenger PA and to extract commuting OD by self-designed
preprocessing algorithm. (2) After that, interpolation analysis
and dyeing algorithm are applied to generate preprocessed
data as heat maps. And the GIS tool is used to visualize
and analyze the processed data, and generate the commuting
OD map, 3D heat maps and PA ratio maps of the peak
period. Through the analysis of the different colors and lines
contained in thosemaps, the passenger demand pattern can be
summarized, the hot areas where patterns are matched with
the selection criteria of PDA can be identified. And these
hot areas are set as PDAs. (3) Finally, the demand spots are
positioned in those PDAs by means of a spatial clustering
algorithm, the AFW k-means algorithm.

It should be noted that this method is primarily designed
for the entry-exit charging system due to the structure of the
data samples. For the entry-only charging system, the paper
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TABLE 4. Smart card attributes information (partial).

will also give corresponding supplementary instructions. The
specific process is shown in Figure 1 below.

A. SMART CARD DATA PREPROCESS
The goal of preprocessing data is to make it available in GIS,
thus making it easier for planners to observe the passenger
travel patterns. The individual smart card datum has limited
attributes and is not directly associated with geographic infor-
mation. In addition, erroneous data exists in the original data
set. Therefore, the overall preprocessing work consists of four
parts: the cleaning of erroneous data from AFC, the matching
of passenger travel data, the calculation of passenger PA
within each traffic analysis zone (TAZ), and the extraction
of the main commute OD.

1) THE ELIMINATION OF ERRONEOUS DATA FROM AFC
Data cleaning is mainly to improve the quality of data,
thereby improving the accuracy for follow-up analysis.
As stated in Section I. B, AFC has two problems in its opera-
tion, which are potential fare evasion and the erroneous data
generated by the AFC. For the former, the impact on smart
card data set is small, as some fare dodgers may not hold
smart cards. At the same time, CB’s passengers should have
good economic capability (Section II. A). And if a person
does not expect to pay for traditional bus fare, then he or she
will have a lower demand for a more expensive type of bus
service. Based on these two points, this method ignores the
loss of data caused by the fare evasion.

There are two ways, elimination [23]–[26] and supplement
[27]–[29], for the processing of erroneous data. But there is
currently no standard available for referring to choose which
way, and choice needs to be determined according to specific
research objects or conditions. For example, if the cause of
erroneous data can be clearly understood, data supplement
is necessary [27]. But that is based on a good understanding
on the local AFC operation. In fact, with the development of
smart card technology and the growing popularity of smart
card, the proportion of erroneous data in smart card data
is becoming smaller and smaller, hence the feasibility of
elimination will become higher and higher. And elimination
can also help save calculation cost and avoid the risk of
producing new erroneous data in supplement. Therefore, this
method recommends the elimination for dealing with the
erroneous data.

For the entry-exit charging system, the attributes of card
data usually include the unique card ID, boarding site number
(Mark station) and time (Mark time), alighting site num-
ber (Trade station) and time (Trade time), etc., as shown

in Table 4. And for the exit-only system, there are no
attributes of Trade station& time. The elimination consists
of three parts, (1) missing data, (2) illogical values and (3)
duplicate transactions elimination.
(1) Missing data elimination. It refers to the default of

one or several attributes in a record. Missing attributes can
be found directly by the ‘‘find’’ command, and the records
containing these attributes are deleted.
(2) Illogical values elimination. It consists of two types,

¬ getting on and off at the same site and  abnormal long-
time interval between getting on and off. The former is mainly
caused by passenger taping out too early when the vehicle
is still in the range of the initial site. Abnormal long-time
interval means the length of time exceeding the normal riding
time, for example, 24h, which is an impossible time length.
The latter may be caused by passengers forgetting to tap out
their cards when they get off from the previous bus. For ¬,
the station number of the Mark station is subtracted with the
station number of the Trade station. If the result is 0, the
record will be deleted. For , the time of Mark and Trade
are compared. If the time interval between the two is longer
than 3h, the record will be deleted.

This part is mainly designed for the entry-exit charging sys-
tem. For the exit-only system, it should be adjusted according
to the actual case. For example, the changeover between
consecutive vehicle trips can cause passengers’ abnormal get-
ting on at the terminal station [27], which can be eliminated
directly.
(3) Duplicate transactions elimination. Firstly, all records

in data set are sorted according to the Card ID, which can
gather all the records of each passenger. Secondly, each pas-
senger’s records are divided into temporary groups. Thirdly,
records in each temporary group which have same Mark and
Trade station and time are located and deleted.

2) THE MATCHING OF PASSENGER TRAVEL
The matching of passenger travel data mainly includes two
steps of matching, (1) one is to match the travel chain of
passengers with transfer behavior. As for passengers with-
out transfer behavior, this step is skipped directly. And (2)
the other is to match passenger travel data and geographic
information to find passengers’ geographical starting point
and end point.
(1) Match of passengers’ travel chain. The travel chain

need to be matched because some passengers have transfer
behavior, that is, two or more rides are required to reach the
final destination, and the final OD statistics maybe error if the
behavior wasn’t be identified. As shown in Figure 2, where
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TABLE 5. Bus station information table (partial).

FIGURE 2. Passenger transfer behavior.

M (M hereafter) stands for Mark and T (T hereafter) stands
for Trade.

It is worth noting that this method is mainly designed for
entry-exit charging system. For entry-only charging system,
Reference [27], [29], [31], [32] have proposed some models
to estimate the possible drop-off sites, and the follow-upwork
can be based on these models.

To match the travel chain, the transfer behavior needs to
be identified. At present, there are two ideas for screening
the transfer behavior, which are to consider the Euclidean
distance and time interval between the two rides. For a pas-
senger, if the distance between T station1 and M station2 or
the time interval between T time1 and M time2 is lower than
the threshold, his or her two rides should be considered as
a transfer behavior. And the choice of identifying idea and
threshold setting needs to be based on a specific sample.

The specific processing method is as follows: ¬ the card
information table is sorted according to the Card ID; 
starting from the i-th row of the table, create a temporary table
with the i-th row as the control row and the i-th to (i+4)-th
row (i starts at 1); ® in the temporary table, the search is
based on the control row (i-th row). If the Card ID of a row is
found to be the same as the control row, and the distance or
time interval is lower than the threshold, the trade time and
station of this row will replace the corresponding attribute of
the control row, and this row is deleted. There are two consid-
erations for sorting and creating a five-line temporary table.
One is to simplify the operation and shorten the calculation
time, the other is to consider that few people actually transfer
more than five times during the peak period. The flow chart
of the travel chain matching is shown in Figure 3.
(2) Matching the travel data with the geographic infor-

mation. The bus station information table (shown in Table 5)
includes the site ID, the line ID, the site name, and the latitude
and longitude, etc.

FIGURE 3. Match of passengers’ travel chain.

However, at this step, directly matching is still not avail-
able. In order to extract the distribution of passenger demand
perfectly, thus to obtain the heat distribution of passengers’
OD, it is necessary to aggregate the travel information of
all passengers and count their departure and arrival. But if
aggregated at the site level, the statistical results will be
complicated in the case of so many sites in metropolis. For
example, looking for ODs between more than 50,000 sites
requires billions of cumulative processes. Further, the results
presented on the map are also inconvenient for follow-up
processing by the researcher. Therefore, it is considered to
select a suitable size range as a TAZ and count the travel OD
of each zone. At the same time, the zone needs to be linked
to the bus stop to prepare for subsequent matching.

Considering that most passengers will use the bus stop
nearby, the bus stop service area is used as the reference
for the TAZ. For the service radius (Rs) of the bus station,
400m [68] given in the Transit Capacity and Quality of
Service Manual is usually used. But in fact, different scholars
adopt various Rs. For example, Ingvardson et al. [13] used
500m as Rs. Li et al. [69] confirmed that it is more reasonable
to use 500m as the bus Rs in major cities in China. Alsger
et al. [26] tested the accuracy of OD extraction with 400m,
800m, 1000m and 1100m as the walking distance. The result
indicated that 400m can get very accurate OD, and further
increasing the Rs length cannot increase the accuracy a lot.
Nunes et al. [27] performed sensitivity analysis with 400m,
640m and 1000m walking distance respectively. The results
also proved that the increase in Rs length is not significant
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TABLE 6. Supplementary bus station information table (partial).

TABLE 7. Matched smart card attributes information (partial).

FIGURE 4. PA volume accumulation for every TAZ.

enough for the accuracy of the get-off station estimation, and
the accuracy in 400m is high enough. Therefore, the selection
of the Rs should be based on the actual situation, and a value
near 400m should be selected.

For the convenience of processing, the processing area is
divided into 2Rskm × 2Rskm lattice area by ArcGIS, and all
grids are considered as separate TAZs, that is, the sum of the
PA volume of all stations in the grid are taken as the passenger
volume of the zone, as shown in Figure 4. This setting can
be considered that there is a symbolic station in the middle
of each TAZ, which serves the entire TAZ. Since the service
radius is Rs, the service area is a circle with a diameter of 2Rs.
And to ensure that the TAZs can cover all the research area,
their shape is designed as a square with the length of the
diameter of its embedded circle.

All stations are projected into the map by applying GIS
tools, and the TAZs to which they belong are confirmed. The
TAZ code of each station is added to the station information
table (Table 5) as a new attribute. This attribute is taken
as ZID and the new table is taken as supplementary sta-
tion information table. Finally, the passenger travel data and
geographic information are matched, by matching the M&T
station in the card information table (Table 4) with the same
station ID in the supplementary station information table
(Table 6). The final supplementary station information table
and the matched card information table results are shown
in Tables 6 and 7. TF represent the number of transfers.

3) THE CALCULATION OF PASSENGER PA AND ACTIVITY
WITHIN EACH TAZ
Based on previews steps, the OD of each TAZ can be
accumulated. Through computer programming, firstly, the

TABLE 8. OD volume of each zone (partial).

departure and arrival TAZ of each travel in smart card infor-
mation table (Table 7) are counted; then according to the
TAZ code, the travel PA volume of each TAZ are accu-
mulated. The final processing results are shown in Table 8.
Among them, OV and DV are the passenger origin and
destination volume of the zone respectively, and the SV is
the sum of the first two, which is defined as the activity
of the zone, and prepared for the follow-up generation of
the commuter OD. Correspondingly, the unit of activity is
‘‘passenger’’.

4) THE EXTRACTION OF THE MAIN COMMUTING OD
As stated in Section II. A, commuters are potential customers
of CB. Reliable time and higher comfortability during the
travel are important for them. The establishment of the com-
muting OD matrix helps us to further observe the regular
mobility patterns between the TAZs, thus to determine which
hot zones meet the CB demand characteristics. This helps to
further narrow the range of feasible areas, or PDAs, for CB
demand. The OD matrix is generated as follows:

¬ Merge the morning peak data table (the matched smart
card table, ie, Table 7) of one weekdays, retain only three
attributes, including Card ID, M ZID, and T ZID. Keep
records with different Card ID, and the obtained new data
table are used as a passenger table. Compare the daily peak
data table with the passenger table, select the passengers that
havemore than 4 trips in 5 days with sameM&TZID. Finally,
all of commuters are selected in this step.

 Select the top-ranked TAZs with the highest zone activ-
ity (the SV), then use their zone ID (ZID) as the row and list
header of the OD matrix;

® Accumulate the OD volume of each grid in the OD
matrix against the attributes, the M&T ZID, in the commuter
table (obtained in step ¬ ).

And the flow chart of generating commuting OD matrix is
shown in Figure 5.
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FIGURE 5. Generation of commuting OD matrix.

The reason why passengers who have more than 4 trips in 5
days with same M&T ZID are regarded as commuters is that,
according to the results of reference [10], 75% of commuters
have more than 15 trips per month. When generating the OD
matrix, it’s appropriate to selects only the top-ranked TAZs,
rather than all of them, with the highest zone activity as the
basic header of the OD matrix, if a city can be divided into
a lot of TAZs. The number of selected TAZs is to ensure
that the main OD can be outlined while reducing the amount
of computation. The structure of the generated OD table is
roughly as shown in Table 9 below.

TABLE 9. The main commuters’ OD.

It should be noted that this method is designed for high card
usage volume/rate. As mentioned above (Section I. B), if card
usage volume/rate is low (below 10000), the OD extraction
results still need to be verified with auxiliary investigations.

B. DATA VISUALIZATION
Using GIS, the geographic data obtained in the previous part
can be visualized to generate heat maps and the OD map.
The generationmethod of the heat map is spatial interpolation
analysis.

In this paper, the production (OV) and attraction (DV) of
each TAZ are taken as the ‘‘heat’’ attribute of the heat map.
¬ First, generate center point in the middle of each TAZ and
assign it ‘‘heat’’ value of the TAZ;  with the interpolation
analysis tool provided by MATLAB, the original ‘‘heat’’ data

are supplemented to obtain a new one, so that the discrete
heat data become more continuous; ® arrange and group
the original heat data and the new heat data, and dye the
corresponding (Red, Green, Blue) RGB color according to
its value from small to large; ¯ project the heat pattern on the
map to generate a heat map.

The purpose of using interpolation analysis is to make
the generated image smoother, that is, to supplement the
discrete data set as a continuous data set. A smoother map can
characterize the spatial distribution of demands better, thus
assisting planners in follow-up passenger’s pattern analyzing
perfectly. This process not only makes the heat map easier to
understand, but also preserves the true patterns of the ‘‘heat’’.
Because in the follow-up step of confirming which TAZ can
be selected into PDA, the heat value of each TAZ’s central
point is decisive, rather than the points from interpolation.

The generation of OD maps is relatively easy. Because the
geo-traffic analysis software, TransCAD, is very mature,
the main OD map can be generated by directly importing the
OD matrix (Table 9) to it.

C. EXTRACTION OF CB’S DEMAND HOTSPOTS
The overall size of heat map generated by previous step
is large, thus a two-step selection is applied to obtain the
demand spots, which is the selection of the PDAs and the final
demand hotspots.

The selection of the PDA can be performed from analyzing
the multi-style maps and selecting hot areas that meet the
selection criteria (stated in Table 3). In this step, the heat
map is used to judge whether the areas satisfy the D, E &
A criterion because it is more convenient and efficient in
this respect; and the OD map is more accurate in judging V
criterion, so it can be a powerful complement to the heat map
as described above (stated in Section I. C).

But the range of potential hot areas selected is still large,
and often contains dozens to tens of TAZs, which means
that demand hotspots should be explored in areas of dozens
to tens km2. In practical situation, it is feasible to consider
road flow, building layout and other factors as demand spot
selection criteria, but conducting such research work in such
a large area will bring heavy workload for PT planners.

Cluster analysis is the task of grouping a set of objects in
such a way that objects in the same group (called a cluster)
are more similar (in some sense) to each other than to those in
other clusters [52].Many sites have already been built in those
PDAs. As there are no selection criteria, it is reasonable to use
the activity of the station (ie, the SV of Table 8) as the criteria
for selection. The calculation of stations’ SV is similar to the
calculation of TAZs’ SV. First, the stations belonging to the
PDAs are selected based on Table 6. After that, the number
of records in Table 7 which M/T station are same with station
ID of selected stations are counted. Then, the OV, DV and SV
can be calculated.

Each station in the hot area will be clustered as the analysis
object, and the center of each cluster is taken as the final
demand hotspots. Because the cluster center is closest to
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the most active points in the cluster it represents, and it can
radiate the entire region relatively uniformly. In other words,
the closer to the cluster center, the stronger the CB demand.
Therefore, the spatial cluster analysis method is used as the
method of demand hotspots extraction in this paper.

In this paper, the k-means method is used for spatial three-
dimensional clustering. The three dimensions are the latitude
xi, longitude yi and activity of the station zi. The idea is to
find k center points in the stations sets, and after repeated
iterations, the sum of the cost functions is minimized. The
cost function used in this paper is Equation 1.

F (C) =
∑m

i=1

[
α × (xi − cxi)2 + α

×
(
yi − cyi

)2
+ β × (zi − czi)2

]
(1)

where xi, yi, zi represent the three-dimensional values of the
station i, Cxi, Cyi, Czi represent the three-dimensional values
of the nearest cluster center point, m represents the number of
station, and α and β respectively represent different weights,
which should have 2α+β = 1, β > α. Since xi and yi repre-
sent latitude and longitude, they should have the sameweight;
in actual cases, the more active the station, the higher the
probability that it becomes the selected spot, and the weight
of the activity should be higher than the former two. However,
there are no clear criteria for determining the α and β. And at
the data level, there is no clear connection between latitude &
longitude and activity itself. Therefore, this paper will use the
AFW (Adaptive Feature Weighted) k-means algorithm [70],
which can generate reasonable weight values according to the
data set itself. The process of assigning weights is as follows:

¬ Assuming α = wx = wy = β = wz, the first cluster is
executed by Equation 1. K groups are got with n1, n2, . . ., nk
objects in each group;

 Sum of the intraclass distances on the j-th dimension of
all groups are calculated by Equation 2.Where j can be x, y or
z, and j̄k is the mean of No.k group on the j-th dimension.

dn =
∑K

k=1

∑nk

i=1

(
ji − j̄k

)2 (2)

® Sum of the distances between classes on the j-th dimen-
sion of all groups are calculated by Equation 3. Where j̄ is the
mean of all data on the j-th dimension.

dw =
∑K

k=1

(
j̄k − j̄

)2 (3)

¯ Contribution of the j are calculated by Equation 4.

coj = dw/dn (4)

The weight of j (wj) is coj/
3∑
j=1

coj. And there must be wx =

wy = (1-wz)/2 to keep only one same α.
° The new α and β are put into Equation 1 and the next

iteration is executed.
± Repeat  to ° many times to obtain stable values of α

and β. And the stable α and β are put into Equation 1. After
many iterations, when there is the smallest F(C), the demand
spots are extracted.

IV. CASE STUDY
A. DESCRIPTIONS
Beijing, which is studied in this paper, is an international
metropolis with an area of 164.1 million m2 and a resident
population of 21.707 million (2017 dat,1 provided by the
Beijing Municipal Bureau of Statistics). There are currently
53,422 bus stations, mainly located within the 6th Ring Road
in Beijing, where is the main research area. Beijing suffers
a serious congestion problem, so many studies have attached
importance to easing the congestion through the development
of PT [10], [16], [35], [45], [71]. It is worth noting that there
are many colleges and commercial districts near the 2nd and
3rd Ring Roads in Beijing. And, because Beijing is the capital
of China, a large number of government agencies are also
widely distributed in this region. The 3rd Ring to the 6th Ring
are mainly residential areas. Outside the 6th Ring Road is not
urban area, which goes beyond our research. According to
the administrative district, Beijing can be divided into 16 dis-
tricts, including Dongcheng, Xicheng, etc. The six ring roads
and administrative regions can be represented by Figure 6.

FIGURE 6. Beijing administrative regions and ring roads.

According to the official website, all buses running in
Beijing adopt the entry-exit charging system. There are only
two payment methods, smart card and cash. Even if the smart
card can be set as a season ticket or a monthly ticket, the card
holder still needs to tap in and out their card when riding. If a
smart card holder does not tap out when getting off the bus,
the systemwill automatically deduct the penalty money at the
next ride, which effectively circumvents the fare evasion.

From January 30 to February 26, 2017, the morning and
evening peak passenger flow of these four weeks are shown
in Figure 7. The travel chain of passengers has been matched.
According to Figure 7(a) and (b), except the first week from
January 30 to February 2 when most of people are still on
vacation because of the most important festival (i.e. Spring
Festival) in China, we can see that there are similar travel

1http://tjj.beijing.gov.cn
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FIGURE 7. Three week’s passenger flow in morning and evening peak.

patterns for other three weeks. To study the commuter’s
pattern in workdays, the data of 2nd, 3rd and 4th weeks are
used to analyze the flow variability further. (c) and (d) show
the daily peak flow variability. Variability is the flow rate of
change between two days. The calculation method is shown
in Equation 5. Flow(i) represents the peak flow on the i-th
day, and V(i, j) represents the variability on the i-th day and
the j-th day. If Flow(j) is greater than Flow(i), in order to unify
the color distribution, their ratio is subtracted by 2 to ensure
that the distance of the ratio from 1 is constant.

Variability (i, j)

=

{
Flow(j)/Flow(i),Flow(j) < Flow(i)
2− Flow(j)/Flow(i),Flow(j) ≥ Flow(i)

(5)

The yellower the color of a grid indicates that the two-day
flow represented by the horizontal and vertical coordinates is
closer. Conversely, if the color is blue, the two-day flow is
quite different. As shown in Figure 7(c) and (d), it is clear
to find that for workdays, there is little variation in daily
flow and the difference between workdays is small. There-
fore, the second week’s workday data, from February 6 to
February 10, are used as research data.

The total number of records we studied is more than
2.5 million, and about 93% of passengers pay with smart card
while the rest use the cash, which is enough to support the

entire study (Section I. B). Again, the privacy of smart card
holders was strictly protected throughout this study. The five
days are working days, and there is no rain or snow, and the
temperature is not abnormal. Therefore, the demand for PT
within these five days is less affected by the external interfer-
ence, and its regularity better represents the PT demand on
the working day.

B. RESULTS AND DISCUSSION
1) PRODUCTION AND ATTRACTION HEAT MAPS FOR
MORNING PEAK OF WORKING DAYS
The heat maps can be generated in this section by applying
the method given in Section III. However, the paper aims
to provide a general framework based on entry-exit charg-
ing system, so for a practical case, some settings in mining
method need to be adjusted or supplemented accordingly,
which includes: (1) Idea of identifying transfer behavior, (2)
Bus service radius and (3) the number of top-ranked TAZs.
(1) Idea of identifying transfer behavior

(Section III. A. 2). (1)).The amount of every peak period data
in case of Beijing is very large, which usually counts above
fifty thousand, hence the cumulative calculation time will
be long if adopt the idea of Euclidean distance. Therefore,
the time interval, that is the interval between T time1 and
M time2 of the same card, is chosen to screen travel chain.
According to Wang, J. [72], the average bus to bus transfer
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time is 8.1 minutes and 20% of passenger’s total travel time
is below 30 minutes. To save the computational time when
calculating the time interval, the M&T time (Table 7) need
to be rounded to ten. Referring to the morning peak data on
February 7, there are 45000 passengers who transfer among
7.1 billion passengers, and 81.35% of their transfer time is
within 20 minutes, 87.39% within 30 minutes, and 92.43%
within 40 minutes. The differences among the three are small
in terms of quantity. So, the time interval is rounded to
30 minutes in this identifying method.
(2) Bus service radius (Section III. A. 2). (2)). Previous

studies have shown that a value of around 400m is preferably
taken as the Rs (Section III. A. 2). (2)), and since this case
using a Chinese city, according to the recommendation of
Li et al. [69], Rs = 500m in this case.
(3) The number of top-ranked TAZs (Section III. A. 3)).

The number is set 1000, which has two advantages: on one
hand, it can reduce the amount of computation as much as
possible, because even if only 1000 zones are selected, there
will be one million data in the final matrix; on the other hand,
these TAZs almost covers the areas within the 6th Ring Road,
which is the main research areas in this case, as shown in
Figure 8. The red squares are the top 1000 TAZs, and the blue
ones are the other TAZs.

FIGURE 8. The first 1000 TAZs.

The five-day production heat map and the attraction heat
map of Beijing in morning peak (7 to 9 a.m.) are plotted,
as shown in Figure 9 (a) to (o).

The five figures ((a), (d), (g), (j) and (m)) on the left side of
Figure 9 are the PA ratiomaps fromMonday to Friday, and the
figures ((b), (e), (h), (k) and (n)) and figures ((c), (f), (i),
(l) and (o)) are production and attraction heat maps of work-
days respectively. The x and y axes in the heat maps represent
longitude and latitude, respectively. The legend on the lower
left side is the legend of the PA ratio maps, and the color bar
on the lower right side corresponds to the heat maps. The
patterns that can be directly obtained by analyzing the heat
maps are as follows:

I. The main area of PT travel is concentrated within the
6th Ring Road of Beijing, and the heat gradually increases
as it approaches the city center, but decreases within the 2nd
Ring Road;

II. During the peak of the workday, the daily regularity of
the passenger travel is basically fixed. In the heat map from
Monday to Friday, the overall heat intensity and range of each
hot zone does not change much;

III. During the early peak period, the range of the produc-
tion heat map is larger than the attraction heat map, while the
latter is more concentrated.

From these patterns we can summarize some regularities
about the travel patterns of bus passenger. For I, the reason
why the heat intensity increases as it approaches the city
center is because Beijing’s urban construction is spread from
the interior to the exterior, that is, the closer the area is to
the outer ring, the less the population is, and the heat is not
as strong as the city center. Naturally, the decrease in heat in
the 2nd Ring Road is because those areas are mostly the old
city of Beijing. It contains many government agencies and
historic sites (such as the Forbidden City, covers 720,000m2).
There are fewer residents, so commuting travel in this area is
not as much as the outer. For II, it reflects that commuting
travel accounts for a large proportion of PT trips, because the
characteristics, fixed travel time and locations, of commuter
determine that the daily variation is not very significant.
In addition, the external influence was small, which also
led to the stability of PT travel. This phenomenon is also
confirmed in the reference [11], that is, the spatial mobility
of the smart card user is fixed during the working day. For
III, it reflects that the general flow of bus passengers during
the morning peak hour is from the external to the internal.
In order to further verify this feature, the PA pie charts of
the top 1000 activity zone (generate by the method given
in Section III. A. 3)) are plotted by ArcGIS, as shown in
Figure 9 (a), (d), (g), (j) and (m). As it shows in the new chart
sets, the green ratio of the pie chart is larger in the outer zones,
while the center zones charts are the opposite. And it reflects
bus passengers moving from the exterior to the interior during
the morning peak.

The 3D heat map can better show these regularities.
By importing the data into ArcGIS and setting a certain
angle of view, color and scale, 3D heat maps are generated,
as shown in Figure 10. In the figure, the more reddish and the
higher the peak, the larger the amount of PA. These two maps
illustrate the pattern III described above. The similarity of the
heat distribution during the morning peak of the five days is
very high. Therefore, Monday heat distribution is chosen as
an example.

2) PRODUCTION AND ATTRACTION HEAT MAPS FOR
EVENING PEAK OF WORKING DAYS
The evening peak (5 to 7 p.m.) heat maps are generated in the
same way, as shown in Figure 11. And Figure 11 is arranged
in the same way as Figure 10.

The patterns of the heat maps during the evening peak are
as follows:

I. Like the morning peak, the main area of PT is still
concentrated within the 6th Ring Road in Beijing, and the
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FIGURE 9. Monday-Friday morning peak Production and Attraction heat maps, PA ratio maps of main TAZs.

VOLUME 7, 2019 181639



Y. Cheng et al.: Mining Customized Bus Demand Spots Based on Smart Card Data

FIGURE 10. Morning peak 3D heat map.

heat gradually increases as it approaches the city center, but
decreases within the 2nd Ring Road;

II. The overall intensity and range of travel in the first four
days are still small, but the travel intensity on Friday is larger
than in previous days;

III. Comparing with the morning peak, during the evening
peak period, the range of the attraction heat map is larger
than the production heat map. But the difference between
production and attraction heat is smaller than the morning
peak period.

We can further get more conclusions about the regularities
of the passenger patterns. For I, the summary is the same as
previously described. For II, considering that there will be a
weekend after Friday afternoon, people are more enthusiastic
about hanging out and visiting at this time, so heat intensity
and scope is bigger than the previous workdays afternoon. For
III, it reflects the different patterns of the evening peak and
the morning peak. At the morning peak, people need to go to
work on time and the travel time is relatively concentrated,
so the heat difference between production and attraction is
obvious. On the contrary, when people get off work in the
afternoon, people no longer care more for going back in time.
Travel time, even OD, are no longer concentrated as in the
morning. Some people may need to go to other places for
shopping, gatherings, etc. These factors have led to a small
gap in the distribution of heat intensity between production
and attraction during the evening peak. To further demon-
strate these patterns, the production and attraction pie charts
of the top 1000 activity zone are plotted by ArcGIS, as shown
in Figure 11, (a), (d), (g), (j) and (n). From these figures,
it can be observed that the green ration in outer zones is
no longer as large as they are in the morning peak, and the
ratio of blue and green is relatively even. In fact, the blue-
green ratio in the central area is more uniform, and only
part of zones where blue ratio is larger. This reflects the
fact that during the evening peak, the flow of bus passengers
is more dispersed, rather than simply the opposite of the
morning peak.

Similarly, the 3D heat maps of the evening peak can also
be generated, as shown in Figure 12. These figures reconfirm
the above-mentioned Pattern III and its related explanation.

3) MAIN POTENTIAL HOT AREAS OF CB DEMAND
The next step is to identify the main CB PDAs for further
hot spots searching. The selection criteria of PDA are stated
in Table 3. Similarly, 4 criteria need to be quantified with
referring to the case.

a: DISTANCE CRITERION (D)
According to the 2018 China Metropolis Commuting
Research Report(provided by AURORA company),2 the
average commuting distance in Beijing is 13.2km, of which
68.2% of passengers have commuting distance greater than
5km. Therefore, for Beijing, setting the ‘‘CRD ≥ 5km’’ as
D criterion is reasonable, which can guarantee a sufficient
length and number of potential passengers.

b: ECONOMICS CRITERION (E)
According to data from the official website of the Beijing
Public Transport Corporation,3 the average price of CB is
10 yuan per person per trip. Then a passenger will spend about
10× 2× 22× 11= 4840 yuan on CB a year. And according
to the data from the Beijing Municipal Bureau of Statistics,
the per capita housing cost was 13,347 yuan in 2017. If CRE
accounts for 45% of personal total revenue is ‘‘affordable’’,
then PCDI should be no less than (13347+4840)/0.45 ≈
40416 yuan. Therefore, for Beijing, it is reasonable to set
‘‘PCDI≥40416 yuan’’ as the E criterion.

c: ACTIVITY CRITERION (A)
Also based on the introduction from the Beijing Public Trans-
port Corporation, the CB’s capacity is 26-30 passenger. And
a route will be set when there are 20 or more subscribers.

2https://mp.weixin.qq.com/s/AiSrTLEZBwJk6t87wnHaOw
3http://www.bjbus.com/home/index.php
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FIGURE 11. Monday-Friday evening peak Production and Attraction heat maps, PA ratio map of main TAZs.
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FIGURE 12. Evening peak 3D heat map.

FIGURE 13. Potential demand hot areas.

According to the reference [10], about 65% of passengers are
commuters in Beijing in workdays. Since there is currently
no code or survey that can be used to refer for fcb, the ratio
of the CB route’s number to the total number of bus route
is used as reference. Beijing currently has 1,266 bus routes,
of which 144 are CB routes. Based on all of the above, theCv,
fcb, fco are set as 20, 0.114, 0.65 respectively. So, CRA should
be greater than 20/0.114/0.65× 2≈ 540 passenger (The peak
period lasts two hours). But it will undoubtedly narrow the
area of PDA, which is not conducive to the follow-up hotspots
extraction. ‘‘CRA ≥ 500 passenger’’ is set as A criterion by
referring to the previous heat maps.

d: OD VOLUME CRITERION (V)
Since the passenger flow should be greater than 20 or Cv/fco,
and 20/0.65 ≈ 30. ‘‘CRV ≥ 30 passenger per hour’’ is a
rational set for V criterion.

TABLE 10. Selection criteria for PDA in Beijing.

Based on the above, the quantified selection criteria for
PDA are shown in the Table 10.

The heat map shows that commuters in external city
zones are quite abundant, especially during the morning peak
hours, so the point-to-point service is very meaningful for
passengers in these zones. Considering the passenger patterns
observed from the heat maps, the identified demand hotspot
should be in areas far from the city center and with high heat
intensity. Because the heat maps illustrate that passengers in
these areas need to travel to and from the city center and
these areas during peak hours, that means these passengers
have long travel distances and high requirements for time
reliability. Combining with the selection criteria and passen-
gers’ pattern, nine areas meeting D, E & A criterion can be
temporarily selected, as shown in Figure 13 and Table 11.
PCDI data come from the Beijing Municipal Bureau of
Statistics.

Nine red circles represent nine selected areas. The dotted
line circle in the middle of Figure 13 has a radius of 10km,
and the small image in the upper left corner is the area where
the activity is higher than 500. The reason why the radius
of the dotted line circle being 10km is there are fewer com-
muting within the 2nd Ring Road, which is the passengers’
pattern from previous analysis. This is equivalent to taking
the area around the 2nd Ring Road as the ‘‘city center area’’
and expanding it with 5km.

These two settings are used to ensure that D& A criterion
are met, while facilitating the selection of potential hot zones.

To further verify the rationality of the PDA selection,
the ‘‘SV/ stations number’’ of each TAZ is defined as the
station load degree of the TAZ, and bus station load degree
map can also be generated by ArcGIS, as shown in Figure 14.
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TABLE 11. Potential demand hot areas.

TABLE 12. Qualified potential CB demand hot areas and their matching areas.

FIGURE 14. Bus station load degree map.

It can be seen from the map that the selection of the
nine potential hot areas is consistent with the area where
the bus station is heavily loaded, so the previous choice is
reasonable. At the same time, there are three other areas that
can be observed with high degree of station load. They are
in the western part of Tongzhou District, the central part of
Shunyi District and the southwestern part of Pinggu District.
Although none of their activity degree is greater than 500,
it does not mean that they are not likely to meet the V
criterion, which is more important than A criterion (stated
in Section II. B). And only the commuting OD map can be
used to judge whether the V criterion is met. Since they all
meet the D criterion, it is also reasonable to select them as
PDA temporarily, except for the one in Shunyi District, whose
PCDI does not meet the E criterion. They are presented by
blue circles in Figure 13.

4) COMMUTING OD FOR EXPLORING
POTENTIAL CB ROUTES
Far-reaching, high-traffic passenger flows have a greater
potential for CB according to its demand characteristics.
To judge whether those PDAs meet the V criterion, obtaining
the OD between TAZs is necessary. This helps determine
which hot areas have a greater potential. Moreover, it will
help transit agencies make decisions to planning the CB
service routes. As mentioned above, CB route setting is flex-
ible. Therefore, the setting work only needs to determine
the start and end areas of the route. And the two areas are
the PDA and its matching area. Therefore, the next step
is to analyze the commuting OD map to determine which
PDAs are qualified and to find their matching area. The
commuting OD map of the top 1000 active TAZs can be
generated by the method given in Section III. B, as shown
in Figure 15.

In this figure, the darker the color and the wider the
width of the desired line, the greater the passenger flow it
represents. So, it’s easy to tell how the passenger mobile from
the picture. By analyzing the OD map, whether the previous
PDAs meet the V criterion can be judged. Surprisingly,
some hot areas are not even able to meet the D criterion.
Because the OD map not only shows the passenger volume
of these potential hot areas and their matching areas (ie,
the other end of the OD line), but also shows the length
and direction of the OD lines. For example, the hot area 5,
which has an activity of 1600 and 13km away from the city
center, is very close to its matching area. They are only
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FIGURE 15. The commuting OD map.

FIGURE 16. 10 hotspots in Chaoyang and Tongzhou District.

4.3km apart. Therefore, the hot area 5 does not meet the D
criterion. But the hot area 11 is unexpectedly met. The PDAs
that ultimately qualified is shown in the Table 12 below.
And their matching areas are shown in the table
correspondingly.

5) SPATIAL CLUSTER ANALYSIS RESULTS
The final step is to extract the hotspots from the PDAs by
using the clustering method described in Section III. C.

The Tongzhou PDA (4 in Figure 9) and its matching area
is a good example. They are more than 10.2 km apart and
the passenger flow between them is 625/2 ≈ 313 passenger
per hour. The Tongzhou District, where the PDA 4 belongs
to, was planned as the administrative sub-center of Beijing

as early as 2015,4 meaning that a large number of residents
will move to this place. And its matching area is located in
the Beijing CBD, where is home of a number of advanced
companies like GM and Deutsche Bank, meaning people in
here being in good financial condition.

Assuming 30 people per bus (capacity is 26-30), setting ten
stations will be adequate. Therefore, k should take 10, that
is, ten hotspots in each area will be generated. By applying
the AFW k-means, α and β are taken as 0.015 and 0.97.
After using MATLAB to execute 5000 clustering treatments
(or iteration), the cost value of Chaoyang and Tongzhou Dis-
trict are stable below 43 million and 3.3 million respectively.
The clustering result is acceptable. The results are shown

4https://en.wikipedia.org/wiki/Tongzhou_District,_Beijing
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FIGURE 17. 10 hotspots in Chaoyang and Tongzhou District (satellite).

TABLE 13. 10 hotspots in Chaoyang and Tongzhou District.

in Table 13 and Figure 16 below. And Figure 17 shows the
spots in satellite imagery.

The blue and red spots in the maps are the demand spots
in Chaoyang District and Tongzhou District. The small black
dots are the existing stations. As can be observed from the
heat map (Figure 14), the selected demand spots are close to
the hot area in each PDA they belong to, and are also close
to the existing site location, which facilitates follow-up site
planning. As shown in the satellite imagery (Figure 15), these
spots are also close to the main working areas and residential
areas of each region. The above results all indicate that the
selection results are acceptable.

V. CONCLUSION
To extract CB demand spots from a large amount of
smart card data, the multi-step methodology, which incor-
porates self-designed data preprocessing algorithm, interpo-
lation analysis, spatial clustering algorithm and GIS tools,
is proposed in this paper. The contributions of this method
include: (1) Massive smart card data are reasonably orga-
nized and utilized, while the calculation speed is guaranteed,
rather than small amount of calculations [42], [49], which is
very practical. (2) The CB demand characteristics and
selection criteria of PDA are defined. It can not only help

the PDA selection in this research, but also promote CB
demand analysis in future researches. (3) The passenger
spatial-temporal distribution patterns and mobility are clearly
characterized on observing multi-day and multi-style maps,
including OD map, heat maps, 3D heat maps and PA ratio
maps. (4) Accurate and rational extraction from macro to
micro is achieved. And a common framework is provided,
which facilitates the migration of the methodology on various
cities which adopt the entry-exit charging system.

In view of the good performance of proposedmethod in the
case study of Beijing, four recommendations are proposed to
the metropolitan PT planners. First, GIS should be widely
used in the analysis of PT data including smart card data.
Multi-style maps make it easy for PT planners to quickly nar-
row their focus from the entire city to a smaller region, as well
as to observe passenger patterns and connections between
areas. Hence it can give very positive effect on improving the
digitization and information of the city’s Intelligent Trans-
portation System (ITS). Second, the bus and metro operators
should enhance their contact and share each other’s data to
rationally allocate available PT resources. Third, in the initial
stage of the CB system establishment, the criteria for PDA
selection should be strictly adhered to. But the criteria can
be gradually lowered in the later stage, so that more hotspots
can be provided to consumers, thus attracting more potential
users as much as possible. For tourist cities, during the peak
season, this method can also be used to quickly establish CB
sites so as to serve foreign tourists.

However, the research in this paper is still relatively
basic, and there is still room for further improvement. First,
the fusion of AFC data from bus and subway. In fact,
the bus-subway and subway-bus transfer modes are com-
mon during commuting. The fused data can identify more
commuters and their OD accurately, which facilitates follow-
up research. Second, the spatial clustering method considers
only one attribute, ‘‘activity’’, as the third dimension. More
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attributes can be added to it as well, such as POI, housing
prices, bus GPS data, etc. [12], [15], [16], thus improving
the accuracy of the extraction. Third, due to the limited data
collected, weather, events, and holiday impacts [50] have not
yet been incorporated into the methodology. The inclusion of
these influence factors helps to make the methodology more
general. Fourth, the discussion of the impact of the proportion
will be one of the focuses in future research, because the use
of mobile payment will inevitably affect the original AFC
system, which is the source of data using in proposed method.
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