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ABSTRACT Cognitive radio (CR) is an adaptive radio technology that can automatically detect available
channels in a wireless spectrum and change transmission parameters to improve radio operating behavior.
Due to the dynamic nature of spectrum availability and wireless channel condition, it is very hard to maintain
reliable network connectivity. Cluster-based CR ad-hoc networks (CRAHN) arrange CR nodes into groups
to effectively maintain reliable autonomous networks. Clustering in CRAHN supports cooperative tasks such
as spectrum sensing and channel managements and achieves network scalability and stability. In this paper,
we proposed a Q-learning based cluster formation approach in CRAHN, in which Q-value is used to evaluate
each node’s channel quality. To form a distributed cluster network, channel quality, residual energy and
neighbor node/network conditions are considered. By exchanging each node’s status information in terms
of channels and neighbors, each node knows neighboring topology and which node is the best candidate for
cluster head (CH). Distributed CH selection, the optimum common active data channel decision, and gateway
node selection procedures are presented in this paper. The proposed mechanism can extend the network
lifetime, enhance the reachability not only between member nodes but also with other cluster networks,
it can also provide stable and reliable service using the selected data channel and avoid possible interference
between neighboring ad-hoc clusters.

INDEX TERMS Reinforcement learning, clustering, cognitive radio, Q-learning, ad-hoc network.

I. INTRODUCTION
The term cognition has come from a Latin phrase cognoscere,
means getting to know, or knowledge. Cognitive radio (CR)
has been the propitious field for future generation wireless
communication. In the cognitive radio system, the secondary
users (SUs) can explore and exploit any licensed spectrum
which is owned by primary users (PUs) without causing
any harmful interference to the PUs. In the era of excessive
demand for wireless communication, with the scarcity of
licensed spectrum, CR is the promising choice to expand the
communication systems and provides the proper utilization of
spectrum. With the limitation of licensed spectrum, the Fed-
eral Communications Commission (FCC) has endorsed the
licensed bands available for the unlicensed devices when it’s
free [1]. IEEE has a standard for CR networks, IEEE 802.22,
designed for a centralized network where CR devices use the
white space of TV frequency bands. CR was first introduced
by Mitola III [2]. In CR networks, SUs sense the spectrum

The associate editor coordinating the review of this manuscript and

approving it for publication was Qing Yang .

with their dynamic spectrum access (DSA) functionality and
determine the idle primary channels, decide the optimum
operating channel, and vacate the channel when PUs arrive.

Considering the spectrum sharing schemes, cognitive radio
networks (CRNs) can be classified into two network types, (i)
a centralized network which consists of a base station (BS)
and nodes where nodes send their information to the BS and
BS decides most of the functions, (ii) a distributed network
which consists of a number of nodes where each node com-
municates with others and form network without any pres-
ence of fixed infrastructure. A network can also be divided
into a single channel and multi-channel aspects where nodes
can utilize single or multiple primary channels, respectively.
In our proposed approach to capture the dynamicity of CR
nodes, we have considered the distributed CR ad hoc net-
work (CRAHN).

Clustering is the process of making groups of nodes in
geographic proximity where nodes in each group have many
common features. The main advantage of clustering in CRN
is providing network scalability, maintaining spectrum stabil-
ity, and achieving cooperative tasks such as channel sensing
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and access. Scalability in cluster-based CRAHN can be
achieved by reducing communication range limited by cluster
domain so that energy consumption and routing overhead are
also reduced. Since CRN is dynamic in nature in terms of
channel availability and node connectivity, if the network is
maintained as a small group, then the stability is achieved
through mitigating the dynamic channel assignment issue
within a group.

Clustering can make further benefits in topology man-
agement via assigning control channel and enhance sensing
performance. Generally, in a cluster-based CRAHN, there
are cluster head (CH), gateway nodes (GNs) and member
nodes (MNs). CH is the central processor which maintains
the communication within a cluster (intra-cluster commu-
nication) as well as between clusters (inter-cluster commu-
nication). GNs provide communication links between two
neighboring clusters. In this paper, we assume that there
exists a common control channel (CCC) to exchange control
messages between neighboring nodes. To form a cluster at the
initialization procedure, nodes will broadcast and exchange
messages using the predetermined CCC for CRN. In con-
ventional clustering algorithms in CRN, they usually defined
different objective functions such as increasing spectrum
sensing accuracy, reducing energy consumption, maximizing
the number of member nodes that utilize the same available
channel, mitigating interference between neighbor networks,
or fast reconfiguring the cluster when PU appears.

In cluster formation, the cluster head selection is the most
important process because network topology, network life
time, the cluster common data channel quality, connectivity
with member nodes and neighbor clusters will be affected
by CH selection. In this paper, we propose a Q-learning
based cluster formation method for distributed CRAHN. As a
reinforcement learning, Q-learning is used to evaluate and
estimate channel quality at each node in terms of opportunis-
tic channel access possibility and sustainable operation time.
The Q-values for the available channels at each node are
exchanged between neighbor nodes and then the proposed
CH selection and common active data channel (CADC) deci-
sion processes are applied. We also propose a GN selection
method that can provide effective inter-cluster connectivity.
In the proposed cluster formation for CRAHN, we have
defined multi-objective function that considers channel qual-
ity, network life time, even energy consumption, number of
member nodes, network connectivity and coexistence with
neighbor networks.

This paper is organized as follow: In Section II, we discuss
related work. The proposed system architecture is presented
in Section III. The Q-learning based cluster formation proce-
dures are delineated in Section IV. The simulation results are
presented in Section V and in Section VI, we conclude this
paper.

II. RELATED WORK
In recent time, several clustering approaches in CR have taken
place to increase network operation efficiency. Chen et al. [3]

introduced a cluster-based framework to form a wireless
mesh network in the context of open spectrum sharing for
CRN, in which they proposed a decentralized cluster-based
architecture to form a large-scale network. It only focused on
the cluster formation but did not deeply considered the selec-
tion of active common data channel and effects of dynamic
changes in clustering.

In [4], a distributed cluster-based routing algorithm is pro-
posed for CRN for maximizing the network throughput and
minimizing the end-to-end delay. Initially, nodes organize
themselves into several clusters by the clustering algorithm
based on location, communication efficiency, network con-
nectivity and spectrum availability. Following completion of
cluster formation, routing is done according to the spec-
trum usage and interference metrics. Santosh Kumar et al.
proposed a weight-based clustering algorithm for CRN [5],
in which each node computes its weight in terms of the num-
ber of available channels, speed of a node and PU interference
level and shares with its one hop neighbors. Then a node
with maximal weight becomes the cluster head. In [6], an
improved k-means clustering algorithm is applied in cogni-
tive radio ad hoc networks.K centroids are selected randomly
and each node measures the distance from the centroids and
updates the information with neighbors where the process
continued. The closest node of a centroid is selected as
CH. The problem with k-means algorithm is the number of
centroids or clusters should be predefined which sometimes
make the clustering process vulnerable. For example, if the
number of nodes in a system is very few but centroids are
defined quite close to the number of sensors, then the cluster
size will be very small. The opposite case occurs when there
exist lots of nodes but centroids are few.

In [7], another popular method called CogLEACH is pro-
posed for cluster formation for CR sensor networks, which
is a spectrum-aware extension of the Low Energy Adaptive
Clustering Hierarchy (LEACH) protocol. CogLEACH uses
the number of vacant channels as a weight in the probabil-
ity of each node to become a CH. Here inter-cluster com-
munication is maintained through Direct Sequence Spread
Spectrum (DSSS) spreading codes which are secure but
comparatively time worthy and complex. In [8], a robust
clustering algorithm for CRAHN is proposed, in which the
spatial variations of spectrum availability are considered for
clustering. A parameter named Cluster Head Determination
Factor (CHDF) is used to select CH. Each node constructs an
undirected bipartite graph using its neighbor and accessible
channel lists and calculates their CHDF value. A node with
higher CHDF value is selected as CH. Each cluster com-
prises a secondary CH to combat the re-clustering issue for
mobile nodes. In [9], a cluster formation approach using fault-
tolerant backbone construction is introduced for CRN. They
implemented a cluster-based back-bone formation protocol to
provide virtual backbone without common control channels.
Each node sends their node ID and node degree to all its
neighbors and compares its node degree with other nodes.
The node with the highest node degree amongst neighbors
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becomes a CH and in case of same node degree, the node with
the lowest ID is selected as a CH. Node degree is referred to as
the number of neighbor nodes. They also considered dynamic
change of network conditions such as the link failure between
ordinary node and its CH, departure of CH and departure
of GN.

In [10], a multi-channel-based clustering is proposed
where the CH is being selected through the node degree.
The node with the highest node degree is selected as CH
and the closest node to the CH joins as an MN. However,
they didn’t deeply consider other aspects in cluster formation
such as residual energy and channel quality. Energy-efficient
Cluster Head Selection (ECHS) protocol is proposed in [11]
for CR sensor network, where the nodes that have a larger
number of available channels and more residual energy are
selected to serve as CHs. To reduce co-channel interfer-
ence between neighboring clusters, the frequency assignment
depends mainly on the coordination between CHs inside a
given region and between neighboring regions via message
exchange over CCC. To tackle the hot spot problem caused
by the high traffic near the sink, ECHS forms many small
clusters near the sink to share the forwarding load of the
rest of the network. A new Virtual Links Weight-Based Clus-
tering (VLWBC) algorithm for mobile ad-hoc network is
presented in [12] to increase network stability. VLWBC not
only determines the node’s weight using its own features
but also considers the direct effect of the feature of adja-
cent nodes such as link stability and consumed energy by
two linked nodes. It determines the weight of virtual links
between nodes and the effect of the weights on determining
node’s final weight and the highest weight is assigned to the
best choices for being the CHs. An energy efficient reser-
vation based-based clustering approach has been proposed
in [13], where each node knows the time of being a CH and
no need to send a message for identification of CH in the
network. Therefore, the number of control messages has been
decreased and more energy is saved. This method is a round
based method consisting of reservation and clustering phase.
In [14], a greedy heuristic algorithm is proposed to identify
the effect of channel heterogeneity on cluster formation. They
considered each member of a cluster should have at least
two common channels, one as the main common channel
and another act as backup. Each node computed its selection
factor using common channel availability matrix and relative
channel reward matrix and node with higher selection factor
declared itself as CH.

In the most of CRAHN researches, it is assumed that
there exists a predetermined CCC. However, in some real
environments, it has some problems such as jamming
attack and traffic concentration on the dedicated common
control channel. In [15], Min-Gyu Kim et al. proposed
a cluster-based reliable dynamic common channel setup
method without any predetermined channel, in which com-
mon channels are dynamically setup based on each node’s
channel availability. In [16], a graph cut based cluster-
ing algorithm for CRAHN is described without considering

the predefined CCC. They performed spectrum aware clus-
tering where hoping based discovery protocol is used for
neighbor selection. SU similarity matrix is made using two
components ratio of common channels (RCC) and relative
position similarity (RPS) and then based on the min-cut algo-
rithm they performed clustering. They also considered three-
phase transmission period for intra-cluster and inter-cluster
communication.

Machine learning in cognitive radios has recently gained
a lot of interest in the literature to reduce the complexity
and achieve efficiency in real-time spectrum sensing and
resource allocation [17]. Among the many different machine
learning techniques, reinforcement learning (RL) plays a
key role in dynamic and complicated wireless environments.
It allows an agent to discover the spectrum situation and
take actions using trial and error to maximize the cumula-
tive rewards. Q-learning is the representative reinforcement
learning.

In [18], a reinforcement learning-based spectrum-aware
clustering algorithm is proposed that allows amember node to
learn the energy and cooperative sensing costs for neighbor-
ing clusters to achieve an optimal solution. By modeling the
network energy consumption in terms of cooperative channel
sensing and data communication, the optimal number of clus-
ters is determined. For clustering, it allows thatmember nodes
to learn an optimal policy for choosing optimal clusters based
on local decision accuracy and energy consumption. In [19],
spectrum-aware cluster-based routing (SMART) algorithm
is implied for route selection scheme in CRN utilizing RL.
In this method, the node with maximum common channels is
selected as a CH. It estimates channel state for the next time
instant and uses this estimation to rank and select the operat-
ing channel in clustering. In [20], the optimal band and chan-
nel selection mechanism for cluster-based CRN is proposed.
Based on each MN’s reporting in terms of spectrum sensing
and traffic demand, CH determines cluster’s operating band
and channel usingQ-learning.Medium access control (MAC)
protocols plays a significant role in CRAHN like exploiting
spectrum opportunities, scheduling resources, managing PU
interference, and coordinating the coexistence of PUs and
SUs. In [21], an ample review of MAC protocols in CRAHN
is described in details. A maximum edge biclique (MEB)
based clustering is discussed in [22], where spectRum Aware
cRoss-layEr (RARE) MAC protocol is proposed not only
for cluster formation but also a delay-aware routing pro-
tocol is proposed for faster data delivery from sender to
receiver.

Note that in CRAHN to form and maintain network clus-
ters we need to take into account many considerations as
indicated in this section such as energy, member node con-
nectivity, primary statistics, channel quality and coexistence
with neighboring clusters. In addition, due to the dynamics of
CR environments, interaction with environment as a form of
learning is required. In this paper, multi-objective functions
using reinforcement learning are taken into account in the
clustering design.
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FIGURE 1. Proposed network model.
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FIGURE 2. Proposed system architecture for CRAHN.

III. PROPOSED SYSTEM ARCHITECTURE
In this paper, we consider distributed cognitive radio ad-hoc
networks, in which in the given geographical area there exist
P primary users PU =

{
pu1, pu2, · · · , puP

}
and S secondary

users SU = {su1, su, · · · , suS}. Each primary user may
occupy one of C channels CH = {ch1, ch2, · · · , chC }. SUs
are equipped with a single transceiver and able to sense the
spectrum to determine the vacant channels that are not used

by near primary users temporary so that the use of the vacant
channels by SUs does not cause any harmful interference to
PUs. We assume that there exists a predetermined common
control channel (CCC) for CRAHN so that SUs are able
to exchange some control messages using the CCC to form
initial CRAHN clusters or reconfigure the clusters.

Fig. 1 shows the network model considered in this paper.
PUs are randomly located in the network area and each
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one utilizes one of channels. PU operation is modeled as
ON(busy)-OFF(idle) process in this paper. The busy and idle
periods of any PU channel is assumed to be independent
random variables. SUs are assumed to sense the primary
signal if they are within the PU range. Nodes that are within
the PU range and the PU is in active (busy) should not use the
PU’s channel. In Fig. 1, node su1 can’t use the channel of pu1
since it stays within the PU range of pu1. The actual PU range
is determined by the required minimum primary signal power
that should be sensed by the SUs. The PU range depends
on PU transmission power, sensing requirements for primary
protection and wireless channel statistics. For simplicity,
in this paper we modeled the PU range as a predefined circle.

As shown in Fig. 1, CRAHN consists of CHs, MNs and
GNs. Each cluster has one CH and multiple MNs and GNs.
As explained in Section I, the CH is elected by distributed
manner using the proposed Q-learning based multi-objective
functions and it determines a common active data chan-
nel (CADC) and a common backup data channels (CBDC).
GNs are connected more than two CRAHN clusters and can
relay data from one cluster to other cluster that is known as
inter-cluster communication. MNs and GNs of a cluster are
one hop neighbors of the CH.

Fig. 2 shows the system architecture of the proposed
method. The wideband (band group) spectrum sensing mod-
ule periodically monitors wideband spectrum and computes
channel quality metric for all channels. Based on the histori-
cal channel quality metric and expected rewards, the Q-values
for channel and band group are updated at the Q-learning
module. The neighbor discovery module is used to obtain
neighbor node’s status, their channel Q-value and reach-
ability information with other nodes and clusters that are
broadcasted on the CCC as NCCI (Node Channel Cluster
Information) message. Based on the local and neighbor node
information, each node determines which node deserves to
be a CH and sends the CH_REQ (Cluster Head Request)
message to that node, which is done at the CH candidate eval-
uation module. According to the criteria used in this paper, if
a node received enough CH_REQ messages, then it can be a
CH and determines the optimum CADC and CBDC. CADC
is used for the intra data transmission within the cluster and
CBDC is an alternate channel. If the primary system appears
on CADC, then the cluster nodes switch to the CBDC for their
data communication. The CH broadcast CH_ANM (Cluster
Head Announcement) message, in which CH identification
and CADC/CBDC are included. At any node that received
CH_ANM, if the CADC is available channel to the node,
then it replies JOIN_REQ (Join Request) message to the CH.
Based on the member node’s other cluster reachability and
channel Q-value, among the member nodes the optimum GN
set for inter-cluster communication is derived by the CH. The
CH broadcastsMN&GN_ANM (Member Node andGateway
Node Announcement) message.

Fig. 3 describes the proposed channel operation procedure.
In our proposed approach, a CCC is considered network wide
initially for cluster formation initiation and reconfigure the

cluster. After each cluster formed, CH will select a CADC
and CBDC to maintain intra- or inter- cluster communi-
cation. Each node in cluster should periodically exchange
NCCImessages to report current channel and neighbor condi-
tions. Each node periodically senses the wideband spectrum
(procedure (1)) so that it is able to derives all available chan-
nels and channel statistics. Aswe assumed, there exists a CCC
to exchange control messages at the initial clustering (proce-
dure (2)) or reformation of the cluster (procedure (7)). Once
the cluster is formed, then intra- or inter- cluster communi-
cations are performed on the CADC (procedure (3)). Using
the CADC, nodes periodically exchange NCCI messages
to report current channel and neighbor conditions (proce-
dure (4)). After cluster formation, CH needs to periodically
broadcast CH_ANMmessage on CCC to allow new nodes to
join the cluster or the nodes of other clusters to recognize the
CH and its CADC (procedure (5)). When primary signal is
detected, nodes in the cluster switch to CBDC for their data
communication (procedure (6)).

FIGURE 3. Proposed channel operation procedure.

In the proposed system architecture, we have considered
the cluster formation in CRAHN that can maximize the pro-
posedmulti-objective functions. It should be noted that in this
paper we mainly focus on distributed cluster formation but
details about time synchronization between nodes, medium
access control (MAC) protocol and inter-cluster routing pro-
tocol are out of scope of this paper. The contributions of this
paper are summarized as follows:
• Learning based channel quality evaluation: We have
used Q-learning for measuring the available channel’s
quality metric. The Q-value is used in several purposes
such as band group decision for spectrum sensing, CH
selection, CADC/CBDC selection and GN selection.

• Neighbor cluster reachability: In our approach, we have
used neighbor cluster reachability information as a fac-
tor for CH selection. Since we consider distributed net-
works, inter-cluster networking is also very important
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FIGURE 4. Reinforcement learning model.

during cluster formation period. If any node has the
reachability towards neighboring cluster then it has a
higher probability to be CH as well as a GN.

• Multi-objective CH selection: Since CH is the
forerunner in a cluster, it’s important to define the CH
selection function efficiently. In our algorithm, we have
presented the multi-objective functions, in which resid-
ual energy, intra-cluster member node connectivity,
inter-cluster reachability, available channel list and
channel quality are taken into account for CH selection.
In this way, the cluster lifetime, node degree, network
connectivity, number of common channels and common
data channel quality in a cluster can be enhanced.

• Gateway node selection: GNs play a pivotal role in
maintaining communication between clusters. In our
method, the optimum set of GNs is derived that can
minimize redundancy and maximize inter-cluster reach-
ability. While nominating the GN, we used Q-values to
provide reliable inter-cluster communication links

IV. Q-LEARNING BASED CLUSTER FORMATION
In this section, the details of the proposed Q-learning based
CR cluster formation are explained. First Q-learning for the
proposed system architecture to update Q-value is introduced.
Then for neighbor discovery, NCCI message format and its
properties are presented. Using the channel Q-values and
neighbor node information, CH and common data channel
selection mechanisms are explained. GNs are determined
by GH also based on the channel Q-value and inter-cluster
reachability.

A. Q-LEARNING MODEL
Reinforcement learning (RL) methods essentially deal with
the solution of optimal control problems using on-line mea-
surements by interacting with an environment. RL is suitable
to apply the CRAHN clustering because it can well capture
the dynamics of the network topology and spectrum usage.
Q-learning is a model-free reinforcement learning algorithm
which includes an agent, a set of states S, and a set of

actions A. By performing an action a ∈ A, the agent tran-
sitions from state to state. The agent in a state s interacts with
the environment with an action a to learn the environment,
while depending on outcome it acquires a reward value r(s, a)
as shown in Fig. 4.

The goal of the agent is to maximize its total reward. It does
this by adding the maximum reward attainable from future
states to the reward for achieving its current state, effectively
influencing the current action by the potential future reward.
This potential reward is a weighted sum of the expected
values of the rewards of all future steps starting from the
current state.

Suppose at each time t , the agent selects an action at ,
observes a reward rt , enters a new state st+1, then Q-value
of Q (st , at) is updated as in (1).

Q (st , at) = (1− α)Q (st , at)

+α

rt + γ · max︸︷︷︸
a

Q (st+1, a)

 (1)

where α is the learning rate; γ is the discount factor for the
future reward.

B. CHANNEL QUALITY MONITORING AND Q-VALUE
UPDATE FOR CR CLUSTERING
As shown in Fig. 2, each node periodically senses spec-
trum and measures channel quality. In this paper, based on
the channel quality metric, the Q-value of (1) is updated.
The Q-value is used for optimum band group decision for
wideband spectrum sensing and for clustering procedure.
Generally, in spectrum sensing, it is impractical to sense the
entire spectrum (kHz∼GHz) during the given sensing time.
Therefore, in our model, the entire operational band is parti-
tioned into G band groups BG =

{
bg1, bg2, · · · , bgG

}
and

each band group consists of M channels as shown in Fig. 5.

FIGURE 5. Band group structure.

Thewideband spectrum sensing is performed for one of the
band groups. The band group to be sensed is determined by
Q-learning algorithm. The Q-table architecture used in this
paper is shown in Fig. 6. The states in the Q-table represent
SU node identifications so that each node has single state. The
actions represent band groups for spectrum sensing.

The Q-value for band group bgg of sus is Q
(
sus, bgg

)
and

it is computed as,

Q
(
sus, bgg

)
=

1
M

∑g·M

c=(g−1)·M+1
Q (sus, chc) (2)

where, Q (sus, chc) is the Q-value for channel chc of sus.
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FIGURE 6. Proposed Q-table architecture.

As in (2), Q
(
sus, bgg

)
is the average of the Q-values of

sus for the channels of bgg. The Q-learning module of the
secondary user sus selects the band group bg∗g for spectrum
sensing that has the highest band group Q-value as,

bg∗g = argmax
bgg

Q
(
sus, bgg

)
(3)

Once the band group bg∗g is determined by the Q-learning
module, the spectrum sensing module periodically performs
wideband spectrum sensing Ns times consecutively for bg∗g
as shown in Fig. 7. After Ns times, based on the measured
channel quality metric, the channel Q-values and band group
Q-values are updated. Then the next band group for sensing
is selected again. The sensing interval is defined as Tsi so
that the band group section action decision interval can be
Ns×Tsi. The same band group can be reselected consecutively
so that the band group sensing time (Tbg∗g ) for the selected
bg∗g, is the multiple integer times of (Ns × Tsi).

FIGURE 7. Band group sensing and channel quality measurement.

The channel-based Q-values are updated as in (4) when the
current band group sensing is finished, i.e., the new different
band group is selected for spectrum sensing.

Q (sus, chc) = (1− α)Q (sus, chc)

+α

rchcsus + γ · max︸︷︷︸
chc

Q (sus, chc)

 (4)

The reward rchcsus is the weighted sum of the normalized aver-
age idle time and the estimated idle time probability for each
channel during the channel observation time as in (5).

rchcsus = ω1 · T chcsus + ω2 · Pchcsus (5)

T chcsus =
average chc channel idel time
band group bg∗g sensing time

=

E
[
T chcidle

]
Tbg∗g

(6)

Pchcsus =
number of idle observations for chc

number of chc sensing trials during Tbg∗g
(7)

where, ω1 + ω2 = 1; T chcsus and Pchcsus are the normalized
average idle time and estimated idle time probability of chc
for sus. Busy or idle decision can be made using any sensing
algorithms. In the case of energy detection-based spectrum
sensing, if the energy received signal is greater than a thresh-
old then it indicates the channel is occupied by a primary user.

For the example case in Fig. 7, for the secondary user
sus, band group bg1 was selected for spectrum sensing and
after Ns(= 5) sensing intervals, band group bg2 is selected.
For ch1 and ch2 of bg1, even though the estimated idle time
probabilities are the same (3 idle times among 5 sensing
trials), the normalized average idle times are different. ch2
shows longer normalized average idle time than that of ch1.
In the proposed cluster formation procedures, channels qual-
ity Q-values play a vital role in selecting the CH as well as
selecting the common data channels and gateway nodes.

C. NEIGHBOR DISCOVERY AND
NODE-CLUSTER-CHANNEL INFORMATION EXCHANGE
In the proposed system, for initial cluster formation, each
node performs neighbor discovery procedure. Each node
builds a NCCI (Node Channel Cluster Information) message
and broadcasts it to its one hop neighbors through CCC,
in which NCCI consists of the node property, channel quality
Q-values, neighbor node information and reachable neighbor
cluster information. The NCCI message format is shown
in Fig. 8.

Node property field includes node ID (id) and the current
residual energy level

(
ERid
)
. Channel quality field contains

the available channel list (ACid = {acid }) and the updated
Q-value set Qid = {Q (id, acid )} for all available channels
that are measured by spectrum sensing. Neighbor node con-
nectivity field has the neighbor node list (NNid = {id}) and
each neighbor node’s available channel list that are obtained
by receiving the broadcasted NCCI messages from one hop
neighbors. Neighbor cluster reachability field consists of the
set of connectable neighbor clusters (NCid = {id}) and their
current CADCs (NCDCid = {dcid }). The cluster ID uses the
CH ID of the cluster. The neighbor cluster information can be
acquired by receiving CH_ANM messages that are periodi-
cally broadcasted on CCC by neighbor CHs.

For the example case of Fig. 8, the NCCI message is
broadcasted by node A and it has four available channels.
Node A has four neighbor nodes {B,D,E,F} and it is also
connectable two neighbor clusters {K ,L} (i.e., node A is
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FIGURE 8. NCCI message format.

already a MN of the neighbor cluster or it can join the cluster
using the cluster’s CADC). The CADCs of the neighbor
cluster K and L are channel 3 and channel 4, respectively.
To avoid possible interference between neighbor clusters,
the CADCs used by neighbor clusters should not be used
by the newly forming cluster. Therefore, the new cluster that
covers nodeA should not use channels {3, 4} that are currently
used by neighbor clusters {K ,L}. Once the cluster has been
formed, all member nodes periodically update and broadcast
the NCCI on its CADC.

D. MULTI-OBJECTIVE CLUSTER HEAD FITNESS FUNCTION
By exchanging NCCI messages, each node can have all
required neighbor information. In the proposed distributed
CH selection procedure, each node evaluates the CH fitness
for all neighbor nodes and itself. CH fitness value for a node
indicates that how appropriate is the node to be a CH.We pro-
pose a multi-objective fitness function to compute the CH
fitness value, in which we considered each node’s residual
energy, channel quality, the number of available channels,
the number of connectable neighbor nodes and the number
of reachable clusters.

For node j, the channel fitness value CF j is computed as
follows:

CF j =
∑

k∈EACj

(
Q (j, k) ·

∣∣∣Nkj ∣∣∣) (8)

EACj = ACj −
⋃

n∈(NNj
⋃
j)
NCDCn (9)

Nkj =
{
n ∈ NNj|k ∈ ACn

}
(10)

where, EACj is the set of effective available channels (EACs)
for node j; Nkj is the set of neighbor nodes that can be
connected with node j using the channel k; |S| cardinality
operator is a measure of the number of elements of the set
S. The set of effective channels of node j is computed such
that from the available channel set of node j, the CADCs of
neighbor clusters are removed. As in (8), the channel fitness
value is the higher for the larger number of effective available

channels, the higher Q-values for the EACs and the more
number of connectable neighbor nodes using the EACs.

The CH fitness value of node j is defined Vj as in (11).

Vj = β1
ERj
Emax

+ β2
CF j
CFmax

+ β2
RNC j

NRCmax
+ β4

∣∣NNj∣∣
NNmax

(11)

RNC j =

∣∣∣∣NCj⋃(⋃
n∈NNj

NCn

)∣∣∣∣ (12)

where, β1 + β2+β3+β4 = 1; ERj is the residual energy of
node j; CF j is the channel fitness value of node j; RNC j is the
number of reachable neighbor clusters through node j itself
and node j’s neighbor nodes;

∣∣NNj∣∣ is the number of neighbor
nodes of node j. Emax , CFmax , NRCmax and NNmax are the
predetermined maximum values for normalization.

E. CH AND COMMON DATA CHANNEL SELECTION
PROCEDURE
Each node i computes CH fitness values for its all one hop
neighbors and node i itself using Eq. (11). Then node i selects
the node that has the highest CH fitness value and it is
considered as a CH candidate for node i (CH c

i ) as in (13).
If node i’s Vi is higher than those of any other its neighbor
nodes, then node i’s CH candidate can be node i itself.

CH c
i = argmax

jε(NNi
⋃
i)
Vj (13)

After selecting a CH candidate node, each node sends
CH_REQ message to its CH c

i node using CCC. If any node j
received CH_REQmessages, including self-requesting, more
than predetermined ratio as in (14), then node j can be a CH
for its neighbor nodes.

nCH_REQ
j ≥ η ·

(∣∣NNj∣∣+ 1
)

(14)

where, nCH_REQ
j is the total received CH_REQ messages

including self-requesting; η is the percentile threshold.
Fig. 9 shows an example case for the proposed CH selec-

tion procedure, in which we assume that there exists no
neighbor cluster. After several NCCI message exchanges,
each node has the neighbor information as in Fig. 9. Using
Eq. (8) and (11), each node computes channel fitness value
CF j and CH fitness value Vj for its neighbor nodes and the
node itself. In this example case, VC of node C is the highest
so that every node transmits CH_REQ message to node C
and node C will be the CH for node A, B and D. In this
example case, we set η = 0.5; β1 = β2= β3 = β4 = 0.25;
Emax = CFmax = NRCmax = NNmax = 5.
Fig. 10 shows the cluster formation example, in which

multiple clusters are generated simultaneously. As the same
way in Fig. 9, each node computes CH fitness value for its
neighbor nodes and itself and sends CH_REQ message to
the node that has the highest CH fitness value. Node A, B,
D and K received at least one CH_REQ message. In this
example, we used η = 0.5 so that node A cannot satisfy
the requirement of Eq. (14). As a result, node B, D and K
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FIGURE 9. Proposed CH selection example: single cluster case.

become CHs and configure their clusters. Suppose node E’s
available channels include node D cluster’s CADC and node
K ’s CADC. Then, node E will be the gateway node for inter-
cluster communication.

The CH node j needs to determine the common active data
channel for the cluster. To avoid the possible interference
between neighbor clusters, the CH should avoid using the
CADCs of the neighbor clusters. In this paper, for CADC
selection, we considered channel Q-value and possible num-
ber of connectable neighbor nodes using the channel. The
CADC selection rule for CH j is as follow:

CADC j = argmax
k∈EACj

(
Q (j, k) ·

∣∣∣Nkj ∣∣∣) (15)

where, EACj = ACj −
⋃

n∈(NNj
⋃
j) NCDCn and Nkj ={

n ∈ NNj|k ∈ ACn
}
. The channel among EACj having

the second largest Q (j, k) ·
∣∣∣Nkj ∣∣∣, if exists, is assigned as the

common backup data channel (CBDC), which will replace
the current CADC when primary signal is detected on the
CADC.

CH j then broadcast CH_ANM message to its one hop
neighbors using CCC, in which it contains CH node id,
CADC and CBDC.

FIGURE 10. Proposed CH selection example: multiples cluster case.

F. MEMBER NODE JOIN AND GATEWAY NODE SELECTION
If a node receives a CH_ANM message and the CADC
included in the message is one of the available channels
of the node, then the node can join the cluster by sending
JOIN_REQmessage on the CCC. If a node i receivedmultiple
CH_ANM messages from different CHs, then the node will
select the optimum CH j that has the largest CH fitness value
as in (16).

CH∗i = argmax
jε(CHAi)

Vj (16)

where, CHAi is the set of neighbor nodes that have transmit-
ted CH_ANM message received by node i.
After broadcasting CH_ANM message, CH j receives

JOIN_REQ messages from its neighbor nodes and the nodes
that sent JOIN_REQ message are assigned as member nodes
(MNs). Since CH already has the neighbor cluster reachabil-
ity information for all neighbor nodes, it knows that which
neighbor clusters exist, what CADCs are used by the neighbor
clusters and which join requesting nodes can be reachable
to which neighbor clusters. This can be derived using the
received NCCI messages during the neighbor discovery pro-
cedure. If a MN is the only node that can interconnect certain
neighbor cluster l, then it is assigned as a gateway node
(GN j−l) for neighbor cluster l. If there are multiple member
nodes that are able to interconnect with cluster l, then the CH j
selects one gateway node (GN j−l) that has the largest average
Q-value for CADC j and CADC l as in (17).

GN j−l

= argmax
m|CADC j,CADC l∈ACm

(
Q
(
m,CADC j

)
+Q (m,CADC l)

2

)
(17)
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After selecting GNs, the CH broadcasts MN&GN_ANM
message, which includes MN id, GN id and neighbor cluster
id for each GN.

V. SIMULATION RESULTS
The proposed Q-learning based clustering algorithm has been
evaluated using MATLAB. We have randomly deployed sec-
ondary nodes in the simulation area of 100 × 100 m2. The
distribution of the initial energy of each secondary user node
is uniform in [0.7J, 1.5J]. The simulation parameters used
in our system are given in Table I. We have chosen three
well-known cluster formation methods to evaluate the perfor-
mance of our proposed scheme. K-means clustering [6] for
cognitive radio condition, which is one of the simplest and
popular unsupervisedmachine learning algorithms andmulti-
channel-based clustering (MCBC) [10], where the cluster
head is being decided based on node degree that can com-
municate using the common available channels. The third
method is maximum edge biclique (MEB) based clustering
approach [23] based on Spectrum availability, node speed,
power level on each node. In [23], both static and mobile
nodes are considered for cluster formation. Since we have
only considered static nodes, to compare with this clustering
approach we have chosen the node velocity is always 1 for all
nodes.

Fig. 11 is one of the generated clustering topologies derived
from our proposed algorithm when the transmission range
of the nodes is 30m. PUs and secondary nodes are dis-
tributed randomly and CH, MNs, GNs as well as CADCs are
selected based on the proposed approach. In our proposed
distributed network-based algorithm, node without having
neighbor cluster information will initiate cluster formation
procedure.

TABLE 1. Simulation parameters

From Fig. 12 to Fig. 15, we show the clustering perfor-
mance of the proposed method for various conditions. Except
the cases that we explicitly change some parameters, the num-
ber of PUs is 12; SU transmission rate is 30m; β1 = β2 =

β3 = β4 = 0.25.
As shown in Fig. 12, it is observed that as the transmis-

sion range of nodes is increasing, the number of member
nodes in each cluster is also increasing. This is because as

FIGURE 11. Simulation topology of the proposed approach.

FIGURE 12. Transmission range vs number of member node in a cluster.

FIGURE 13. Transmission range vs number of common channels in a
cluster.

the transmission range of SUs is extending the number of
neighbors of a CH is also increasing.

Fig. 13 represents the number of common channels in each
cluster with respect to the SU node transmission range. When
the PU range is fixed to 50m, as the transmission range of SU
node increases, the number of common channels in a cluster
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FIGURE 14. Number of PUs vs number of member nodes in a cluster.

FIGURE 15. Number of PUs vs number of common channels in a cluster.

decreases. If we increase the SU transmission range, then
some of one hop neighbors of a CH can be located in the
PU range so that those PU’s channels are not included in
the common channels. Also, we can observe that the more
number of nodes in the network results in the smaller number
of common channels in a cluster because it makes the higher
possibility that some SU nodes are within PU ranges.

Fig. 14 shows the number of member nodes with respect
to the number of PUs in the system. The number of MNs
in a cluster is decreasing with the increase in the number
of primary users in the system. When the number of PUs
are increasing the number of available channels for SUs are
decreasing which results less number of common idle chan-
nels within neighbors of SUs. That’s why when the number of
PUs are increasing the cluster size is decreasing i.e., member
nodes in a cluster is decreasing even if nodes are within the
range of the CH. In our simulation, we have used 12 primary
channels whereas the number of PUs are varied from 4 to
12. As shown in Fig. 15, the number of common channels is
decreasing with the growth of PUs in the system.When all the
channels are assigned to PUs, the cluster size is the lowest as
well as the number of common channels within a cluster.

FIGURE 16. Effect of node energy in CH selection.

FIGURE 17. Comparison of lifetime of a cluster.

Fig. 16 shows the average energy level of the selected CHs.
As we can see the proposed method selects CHs that have
more residual energy compared with those of other conven-
tionalmethods.Whenwe set all β parameters for fitness value
of CH of Eq. (11) be 0.25 (β1 = β2 = β3 = β4 = 0.25),
the average residual energy of the selected CHs is about 0.65J
which is 35% higher than other compared methods. When
we set β1 = 0.8, β2 = β3 = β4 = 0.066, which means
that we give more weight for the energy factor in Eq. (11)
than those for other factors, the average residual energy of
CHs is about 0.91J and it is almost 90% energy performance
increasing compared with others. In MEB based clustering,
the node energy is being normalized for which reason CH
election almost depends on node degree and common idle
channel but it performs better than the other two methods.

In Fig. 17, we observe that the lifetime of the cluster in our
proposed method is much higher than those of two compared
methods. This is because we have formulated each process
of cluster formation in such a way that enhances the lifetime
of clusters. The constructed cluster can be broken or should
be reconfigured when the CH does not have enough energy,
the CADC (or CBDC) is not any more available. In the
proposed method, we utilize Q-learning based channel eval-
uation model and we have chosen the CH which have higher
CH fitness value as well as gateway node which have the
largest average Q-value of CADCs in connecting CHs. As we
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FIGURE 18. Comparison of proposed method with existing methods in
terms of node degree.

FIGURE 19. Number of reachable neighbor clusters.

can see in Fig. 17, the proposed method can have 30% longer
cluster life time compared with conventional methods. MEB
based clustering performs better than K-means and MCBC
only because it has more common idle channel within the
cluster but it doesn’t perform better than our proposedmethod
since we’ve considered CADC (as well as CBDC) as with
highest Q-valued channel.

In Fig. 18, the number of member nodes of a cluster is
compared. In K-means clustering, the node that is closest to
the centroid of the cluster is selected as CH and in multi-
channel-based clustering the node that has the largest number
of neighbor nodes that can share the common available chan-
nels is selected as CH. Since Cluster size should be higher
in MEB based clustering and MCBC is node degree-based
clustering, both methods outperform our method when all
variables in CH selection is considered with equal impact
factor. But when we increase the beta value for node energy
then our method performs better than MEB based clustering
is quite competitive with the multi-channel-based clustering.

In Fig. 19 and Fig. 20, we evaluated the performance
of inter-cluster communication, in which neighbor cluster
reachability and selected gateway node channel quality are
compared. For this simulation, we used 10 different topolo-
gies where for each topology the transmission range of

FIGURE 20. Comparison of average Q-value of CADCs.

SUs is 25m ∼ 45m. We have 40 SU nodes and 12 PUs.
Fig. 19 shows the ratio of CHs having the given number
of reachable neighbor clusters. Although in K-means algo-
rithm they didn’t consider the neighbor reachability infor-
mation, we have assumed that neighbor cluster information
is delivered to CH by the member nodes even in K-means
algorithm. After a cluster is formed, we have checked the
number of reachable clusters for each CH. In the proposed
method, the reachable number of clusters is also considered
in the CH fitness function. For the proposed method, only
5% of CHs did not have any neighbor cluster, but about
50% of CHs have three reachable neighbor clusters. On the
other hands, about 50% of CHs in K-means clustering did
not have any reachable neighbor clusters and only 2% of
CHs were able to have three reachable neighbor clusters. In
this paper, we propose a Q-learning based cluster formation
method for distributed CRAHN. As a reinforcement learning,
Q-learning is used to evaluate and estimate channel quality at
each node in terms of opportunistic channel access possibility
and sustainable operation time. TheQ-values for the available
channels at each node are exchanged between neighbor nodes
and then the proposed CH selection and common active data
channel (CADC) decision processes are applied. We also
propose a GN selection method that can provide effective
inter-cluster connectivity. In the proposed cluster formation
for CRAHN, we have defined multi-objective function that
considers channel quality, network life time, even energy con-
sumption, number of member nodes, network connectivity
and coexistence with neighbor networks

VI. CONCLUSION
In this paper, we proposed a Q-learning based clustering
mechanism for cognitive radio ad-hoc networks. For initial
wideband spectrum sensing, the dynamic Q-table update pro-
cedure for each channel and band group has been defined to
select a band group to be sensed. The Q-value of a channel
captures primary user’s activity and their operation patterns
and it is used to evaluate channel quality at each secondary
user. One of the prime concerns in cluster formation in how to
construct a stable cluster despite the influence of PU activity.
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For CR ad-hoc cluster formation, multi-objective CH selec-
tion functions have been defined, in which the node residual
energy, channel quality fitness value using Q-learning, neigh-
bor cluster reachability and number of neighbor nodes having
common available channels are considered. The neighbor
cluster reachability information helps each node to reduce not
only the inter-cluster interference but also ensure effective
communication with neighbor clusters. For CADC and GN
selection, we utilized Q-values of channels to provide reliable
and stable intra and inter cluster communication service.

For the simulation study, we implemented CR ad-hoc net-
work simulator using MATLAB that could set various CR
network topologies and network conditions. For the proposed
clustering mechanism, we discussed the effects of various
network conditions on the number of member nodes and the
number of common available channels of clusters. Compar-
ing with other conventional clustering schemes, it is evident
that the performance of our method outperforms in terms of
CH residual energy, cluster lifetime, neighbor cluster reach-
ability and channel quality of the selected GNs. As a further
research, we will focus on the optimal routing path selection
through inter cluster communication using some machine
learning techniques such as reinforcement learning, fuzzy
logic, or neural network.
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