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ABSTRACT Different from other human behaviors, sign language has the characteristics of limited local
motion of upper limb andmeticulous hand action. Some sign language gestures are ambiguous in RGB video
due to the influence of lighting and background color, which affects the recognition accuracy. We propose
a multimodal deep learning architecture for sign language recognition which effectively combines RGB-D
input and two-stream spatiotemporal networks. Depth videos, as an effective compensation of RGB input,
can supply additional distance information about the signer’s hands. A novel sampling method called ARSS
(Aligned Random Sampling in Segments) is put forward to select and align optimal RGB-D video frames,
which improves the capacity utilization of multimodal data and reduces the redundancy.We get the hand ROI
by joints information of RGB data for local focus in spatial stream. D-shift Net is proposed as depth motion
feature extraction in temporal stream, which fully utilizes three dimensional motion information of the sign
language. Both streams are fused by convolutional fusion layer to get complementary features. Our approach
explored the multimodal information and enhanced the recognition precision. It obtains the state-the-of-art
performance on the datasets of CSL (96.7%) and IsoGD (63.78%).

INDEX TERMS Sign language recognition, two-stream network, motion features, multimodal data.

I. INTRODUCTION
With the development of computer vision, research on single-
person behavior recognition has made significant progress.
However, it is still a challenging problem to locate small-
scale and low-resolution sign language behavior recognition.
Sign language recognition is a multidisciplinary research
field involving pattern recognition, computer vision, natu-
ral language processing and linguistics. This paper mainly
studies how to use the latest deep learning method with
RGB-D multimodal input to overcome the above difficulties.
Our research can be a good illumination for sign language
recognition, small displacement behavior recognition, and
intelligent systems.

Sign language recognition has always been an impor-
tant research direction in the field of behavior recognition.
In 2019,Microsoft Research brought together a diverse group
of experts for an interdisciplinary workshop about sign lan-
guage recognition, generation, and translation systems [1].
Traditional methods including kinds of pattern recognition
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and machine learning techniques. Young [2] proposed a
Chinese sign language recognition system by exploring the
temporal and spatial features of video sequences. 30 groups
of the Chinese manual alphabet images were classified by
SVM. Wang et al. [3] proposed a Chinese sign language
similarity evaluation model considering visual, contour and
trajectory features. It achieves the similarity estimation of
visual features through comparing histogram. The Longest
Common Subsequence is applied to the two feature strings.
The algorithm calculates the contour similarity, and finally
uses the multiple linear regression process to construct the
similarity evaluation model. With the great success of deep
learning technology in computer vision, the deep learning
method has been proven to have a higher recognition accuracy
than the traditional method. Pigou et al. [4] established an
end-to-end deep neural network that combines temporal con-
volution and bidirectional cyclic neural networks. The net-
work captures the temporal structure of sign language videos
by adding time-dimensional convolutions with loop structure
to improve frame-level gesture recognition in the video.

Most of the above-mentioned sign language recognition
studies only consider the temporal or the spatial features
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FIGURE 1. An overview of the proposed method. The proposed deep
architecture is composed of four components: (a) ARSS, (b) Spatial
stream with local focus, (c) Temporal stream with D-shift Net,
(d) Spatiotemporal feature fusion and classification result.

of sign language, however, neurologists believe that both
temporal features and spatial features play an important role
in human cognition. The spatiotemporal two- stream network
in deep learning divides the video features into time flow
and spatial flow, conforming to the biological human visual
perception. Its feasibility and efficiency have been verified on
multiple behavior recognition standard data sets. Combining
the spatiotemporal two-stream network method and multi-
modal data input, if the effect of the feature extraction can be
enhanced, the performance index of the sign language recog-
nition system will be greatly improved, and the degree of
intelligence of the system will be further strengthened. It will
be of great significance for intelligence and application.

Spatiotemporal two-stream networks generally use optical
flow as input of time stream. The optical flow is the instanta-
neous velocity of moving objects on the observation imaging
plane. This motion is reflected in the movement of the pixels.
It uses the changes of the pixel in the frames sequence to find
correlation between adjacent images. Optical flow method
calculates motion features of objects between sequential
frames. This feature requires continuous video input, and
the huge calculation amount makes the speed of the whole
network model significantly reduced. Therefore, continuous
sampling is difficult to cover the entire video, which restricts
the development of the optical flow two-stream network.

In this paper, a multimodal two-stream convolutional neu-
ral network is used to learn the sign language videos to form
robust features and optimize the fusion mode to achieve the
final sign language recognition. We propose a sign language
recognition method based on multimodal two-stream neural
network, as illustrated in Fig. 1.The main contributions are
as follows: (1) We proposed a sampling method named Align
Random Sampling within Segments (ARSS), which sample
RGB data extraction spatial features, and sample aligned
depth data extraction time features. (2) The D-shift Net is
proposed as a depth motion feature extraction which adapts
to the ARSS sampling method and makes full use of the
temporal features of the depth data.

With the proposed networks, we combine temporal fea-
tures and spatial features of sign language recognition.

It shows advanced performance in behavior recognition even
with small target displacement. This article will introduce
the current work of sign language recognition in Section II.
Section III will focus on the overall structure of the proposed
method and Section IVwill show the experimental results and
analysis of the model. Finally, Section V will conclude the
paper with discussions related to future work.

II. RELATED WORK
With the development of deep learning, the method of
extracting sign language features through neural networks
has displayed excellent performance and gradually replaced
traditional methods. Molchanov et al. [5] perform dynamic
gesture detection and classification by cyclic 3D CNN, and
joins time classification to train the network to predict cat-
egory labels in undivided input streams. Pigou et al. [6]
also follow the idea of using CNN to automatically extract
features, which consisted of two CNNs, one for extracting
hand features and the other for extracting upper body features.
Both CNN are designed to containing of two convolutional
layers sharing the same weights and fully connected layers.
Liu et al. [7] use the trajectory of the four skeleton joint
points as the network input and add the LSTM network for
context information to the study of sign language recogni-
tion. To solve the single input problem of sign language
recognition, Li et al. [8] propose new hand descriptors and
LSTM-based time series modeling on these descriptors to
achieve accurate recognition on 100 Chinese sign language
words. Huang et al. [9] embed input data into the RNN net-
work to concentrate on key frame in order to improve the
recognition accuracy. Yang and Zhu [10], [11] propose a
framework combining CNN with LSTM, and RGB and opti-
cal flow data as two inputs. The method is evaluated on
the constructed small-scale sign language data set and met
the real-time requirements of the small-scale sign language
recognition system. Nasri et al. proposed two novel repre-
sentations for the recognition of moving hand gestures, one
is the contour-based similarity images (CBSIs) [12] and the
other is spatio-temporal 3D surfaces [13]. Both of them can
simultaneously divide the continuous gestures into disjointed
gestures and recognize them.

A. RGB-D
With the application and promotion of depth cameras,
RGB-D multi-mode input has been widely used in computer
vision and object recognition. In addition to traditional fea-
ture extraction methods, RGB-D detection methods com-
bined with deep learning convolutional neural network also
develop fast. Multi-scale deep learning [14] adopts multi-
mode convolutional neural network to integrate various
modal data and learn representations of multiple spatial and
temporal scales. The data modes integrated by the algo-
rithm include the grayscale and depth video, as well as
the joint pose information extracted from the depth map.
They proposed a multi-scale neural model including combi-
nation of single-scale paths connected in parallel. Each path
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learns a representation independently and performs gesture
classification based on the input RGB-D video, joint pose
descriptor, and its own time scale. The network separates
the left and right hand for feature extraction, ignoring the
positional interaction information of the two hands, and the
number of networks is large, making the structure com-
plex. Wu et al. [15] propose a semi-supervised hierarchical
dynamic framework based on HMM for simultaneous ges-
ture segmentation and recognition. Input observations are
skeleton joint information, depth and RGB images, using a
Gauss-Bernoulli deep belief network suitable for input forms
to process bone dynamics, and applying convolutional neural
networks to adjust and fuse batch depth and RGB images.
Konstantinidis et al. [16] propose a sign language recogni-
tion RNN networks based on RGB, skeleton data, and facial
expression features. The data fusion schemes are analyzed.
Miao et al. [17] propose a multimodal gesture recognition
method based on ResC3D network. One of the key ideas is to
find a compact and effective video sequence representation.
They use video enhancement techniques such as neural net-
work and median filtering. Eliminate illumination variations
and noise in the input video and sample key frames using a
weighted frame consistency strategy. Lin et al. [18] propose
a new model combining a masked Res-C3D network with
skeletal data based on LSTM modeling, which process and
segment RGB-D video data at the same time.

However, most of the above sign language recogni-
tion research is based on the traditional method, simple
CNN or 3D-CNN. The framework which combines with
RGB-Dmultimodal input and spatiotemporal two-stream net-
work, is generally blank.

B. SPATIOTEMPORAL TWO-STREAM
Since spatiotemporal two-stream convolution neural network
has proposed by Karen and Andrew [19], it has become a
common method for behavior recognition. With the advan-
tage of two kind of features and excellent recognition accu-
racy. The model integrates motion information by training
another neural network on the optical flow. By using the
appearance features and optical flow features, the accu-
racy of behavior recognition is significantly improved even
by simply merging the probability scores. Many people
have made a series of improvements on two-stream net-
works. Wang et al. [20]–[22] add the idea of segmentation
and sparse sampling on the basis of two-stream network
and proposed TSN network to fuse multiple segments and
obtain more context information. The input of two-stream
network uses warped optical flow fields to replace the orig-
inal optical flow, which can eliminate the impact of camera
movement. In addition, cross-form pre-training, regulariza-
tion, data enhancement and other technologies are conducted
in the training process to optimize. Zhu et al. [23] combine
Flownet2.0 [24] with the two-stream network to extract the
optical flow information, and took the optical flow features
as the temporal ConvNets input. The optical flow information
is generated online, which greatly saved the storage space.

Sun et al. [25] propose optical flow guided feature to rep-
resent motion information. They utilize the Sobel operator
and element-wise subtraction to calculate the spatial and
temporal gradients respectively. Song et al. [26] propose Dis-
criminative Motion Cue (DMC) to reduce noises in motion
vectors and capture fine motion details. They train the DMC
generator to approximate flow using a reconstruction loss
and an adversarial loss, jointly with the downstream action
classification task. Shou et al. [27] introduce a standard 3D
CNN to mimic the motion stream by minimizing a feature-
based loss compared to the flow stream. They show that the
network reproduces the motion stream with high fidelity, and
avoids flow computation at test time.

C. CONVERGENCE
In addition to improving the optical flow method, the final
fusion method is also important. These classic two-stream
networks usually adopt a post-fusion method. After the tem-
poral stream and the spatial stream respectively obtain the
recognition result, the recognition result is fused by the
weight score. Feichtenhofer et al. [28] analyze various fusion
methods for two-stream networks, and verify that the results
of 3D convolution fusion between layers are better than
simple post-fusion, and a convolutional layer fusion and
post-fusion parallel use are proposed. This fusion method
is for further experimentation on the effect of small data
sets. Köpüklü et al. [29] propose the MMF model, which
combines the optical flow andRGB features through theMLP
in the FC6 layer, demonstrating that the feature fusion effect
is better than the post-fusion. Crasto et al. [30] propose the
TACNet, which use a transition-aware classifier in the fusion
part to further distinguish transitional states by classifying
action and transitional states simultaneously.

The above models based on neural network show good per-
formance in sign language and behavior recognition. How-
ever, depth information is only used as a supplement to RGB
spatial information and fused at the end of the networkmodel.
In fact, depth information reflects more important property
of hand language, for example, the distance between the
hand and the upper limb. Thus the use of RGB-D informa-
tion is not sufficient in current research. In view of this,
we propose frameworks for sign language recognition by
combining RGB-D data with spatiotemporal two-stream net-
work. Specifically, a more perfect spatiotemporal two-stream
network model is obtained by combining the depth motion
features with the spatial features after local focusing

III. MULTIMODAL SPATIOTEMPORAL NETWORKS
In this section, we will elaborate the proposed multimodal
two-stream convolutional neural network. The schematic dia-
gram is shown in Fig. 1. There are four core modules: mul-
timodal input, local focus, D-shift Net, and convolutional
fusion. (1) The ARSS method is proposed for optimal sam-
pling and alignment of RGB and depth input, and a relatively
complete key frame set of the video is obtained. (2) For RGB
spatial stream, we use a local focus approach to obtain the
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hand ROI, and try to avoid interference caused by background
when extracting gesture features. (3) For depth temporal
stream, D-shift Net is proposed in order to make the best
use of motion features. (4) Two-stream features are fused at
the convolutional layers to preserve the spatial and temporal
information, in which the RGB and depth information are
complemented effectively. The final recognition is imple-
mented by Softmax.

A. ARSS
Video data is required to be sampled for input to the network.
A good sampling method should cover the features of the
whole video and significantly reduce the computation com-
plexity. The classical continuous sampling method extracts
randomly one concentrated video segment as input but often
loses important information. In recent years, the ECO [31]
and TRN [32] networks perform multiple sets of sampling
on RGB videos, and transfer different sampling segments
into multiple networks. They preserve key frames as much as
possible, but significantly increase the amount of calculation.

A sign language behavior usually consists a series of
several basic actions whose gestures and time coherence
can represent the characteristics of the semantics. Therefore,
the original behavior video can be divided into multiple
segments. Meanwhile, there exists many redundant frames in
each segment. We can reasonably use one frame to replace
its adjacent frames while keeping the behavior’s continuity
and completeness. For this reason, we present an approach
of equal interval segmentation and random sampling in seg-
ments to cover key information and effectively remove redun-
dancy. At the same time, the multimodal input requires not
only temporal information reservation between frames, but
also the time and space alignment of the two-stream images
to obtain meaningful fusion features. Integrating the above
ideas, we propose the ARSS algorithm to corresponding
sample the depth and RGB data of the same sign language
action of the same person. The ARSS algorithm includes two
procedures:

First, aligning the spatial position. Due to the different res-
olutions of the depth camera and the RGB camera, the image
sizes of the two video frames are different. RGB and depth
images are calibrated by unifying the positions of the cor-
responding joint points. When the coordinates of the same
joint point on the two images are the same, we crop the non-
overlapping parts of two images to make them uniform in
size.

Second, aligning the temporal position. RGB data is
extracted for each RGB video by equal interval segmenta-
tion and intra-segment random sampling. The correspond-
ing depth frames are selected from the depth video. We fill
the last frame of the depth video into the depth set in
order to extract the depth motion feature using D-shift Net.
The RGB frame set and the depth frame set are respec-
tively formed. An example of a specific process is shown
in Fig. 2.

FIGURE 2. ARSS diagram. Input videos are divided into M segments, and
random but aligned frames in each video are selected. (1) The RGB video
V is equally divided into M segments, and we sample one frame of RGB
data randomly from each segment to form an RGB frame set S = {s1,
s2, . . . sM} (2) The depth video V’ is divided into M video segments, each
frame of which is selected according to the same RGB frame, and the last
frame of the video is filled to generate a depth frame set T = {t1,
t2, . . . tM+1}.

B. LOCAL FOCUS
In the field of sign language recognition, the hand detection
and location has always been a major problem. In most cur-
rent dataset and application, the operator usually stands still,
only the upper limbs and two hands make movements, Hand
is themost flexible limb of the human body and it can produce
very detailed actions. The direction of the palm, the gesture
of the five fingers and the distance of the hand from the
upper limb, all have an influence on sign language semantics.
Therefore, the hand action has evident locality and indepen-
dence from other parts of human body and the background.
Aiming at this point, we put forward a local focus approach
to get the hand ROI for more direct and precise recognition.
Some studies use deep learning networks to generate this
local information [33], [34], or use attention module to focus
on features from relevant spatial parts as LSTA networks [35].
Differently, we conduct numerical computation to get hand
ROI for less complexity and higher efficiency, as illustrated
in FIG.3.

The Kinect camera captures 25 joints information. Among
them, the left and right hand joints are exactly the centers of
the hand ROI. And the size of the ROI is calculated through
the relationship between the wrist and elbow joints. Obvi-
ously, hand is shorter than forearm even if it is fully open, and
when there are other gestures, such as grasping or indicating,
the hand size is smaller. In order to locate the complete hand
region, we use the length of the human forearm H, as the side
length of the hand ROI. According to the joints data, H can
be calculated by the Euclidean distance formula:

H =
√
(P10x − P9x)2 +

(
P10y − P9y

)2 (1)
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FIGURE 3. We calculate the Euclidean distance H between the joints of
the WristRight and the ElbowRight. The size of ROI is equal to 0.9∗H. The
center of ROI is the joints of HandLeft and HandRight.

where (P9x , P9y) are the coordinates of the right elbow joint,
and (P10x , P10y) are the coordinates of the right wrist joint,
since the number of right elbow joint and right wrist joint in
Kinect are respectively 9 and 10.

In rare cases, when the arm is perpendicular to the cam-
era, the distance between the wrist and the elbow joint is
small, and the length of the arm is not accurately calculated.
Therefore, we set a length threshold Hmin by data analysis to
guarantee the robustness and stability of our algorithm.

Unlike the global-local mode [14], [36], this paper keeps
the left and right hand ROI in the same RGB image without
dividing into two inputs to preserve their relative position and
interaction.

The RGB frame set S is locally focused to S’, and is trans-
ferred to the spatial stream VGG16 for feature extraction,
therefore, the VGG16 pays more attention to the key spatial
information of the sign language behavior.

C. D-SHIFT NET
The ARSS sampling method obtains a set of intermittent
frames, covering the entire sign language action. The ran-
dom method in the segment causes discontinuity between
frames, which cannot meet the fundamental assumption of
optical flow which is small displacement of adjacent frames.
At the same time, in order to capture the property of the sign
language hidden in depth information, this paper uses depth
data to emphasize the motion in the direction perpendicular
to the camera lens, which is very meaningful for the Chinese
sign language with small motion range and a large number of
relative front and rear displacements. As the depth changes,
the pixel value also changes accordingly, which is contrary
to the fundamental assumption that the brightness of the
object in optical flow is constant. Therefore, the classical
optical flow algorithm [23], [37]–[39] is not applicable to the
multimodal input mode of this paper. To this end, we modify
and improve the classic FlowNet2.0 algorithm and present

TABLE 1. Architecture of d-shift net.

a kind of depth displacement network called D-shift Net.
It adapts to the ARSS mechanism and captures the motion
temporal information of the depth data, which better reflects
the feature changes of the sign language in 3D space.

The specific improvements include: (1) First, deleting the
first convolutional layer with a large receptive field, and
reducing the step size of the second convolutional layer to
one. (2) Second, we made the beginning of the network
deeper by exchanging the 7×7 and 5×5 kernels with multiple
3 × 3 kernels. Detailed parameters are shown in TABEL I.
(3) Third, a convolution layer is inserted between each decon-
volutional layer of the expanded convolution portion to obtain
a smoother depth displacement characteristic.

Further, the original network is modified to be an unsuper-
vised model as Fig. 4. We calculate the moving matrix in the
horizontal direction (X direction) and the vertical direction
(Y direction) of the adjacent frames in depth frame set T
and denote it as depth motion feature D. Each value in
the matrix represents the distance in the X direction or Y
direction between the pixel tp+1 (i, j) and the pixel tp(i

′

, j
′

)
with the same value, denoted as Dxi,j and D

y
i,j. Then the frame

tp is reconstructed by frame tp+1 and D. The reconstructed
frame is recorded as t

′

p. The formula of reconstruction is
expressed as:

t ′p = tp+1
(
i+ DXi,j, j+ D

Y
i,j

)
(2)
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FIGURE 4. The unsupervised model is divided to 5 step. (1)Input frames tp and tp+1 into the D-shift Net. (2) Extract the depth motion feature D between

two frames. (3) Reconstruct the tp by tp+1 and D. (4) Compare tp and t
′

p and calculate three kinds of loss. (5) Optimize D-shift Net.

Three kinds of target functions is used to minimizing the
difference between tp (i, j) and t ′p(i, j) and improve the qual-
ity of the feature D. The specific calculation method is as
follows.

1) PIXELS ERROR
We subtract per-pixel value to represent the pixel-level differ-
ence of tp (i, j) and t ′p(i, j). The loss function takes the form:

Lpixel =
1
N

∑m

j=1

∑n

i=1
ρ
(
tp (i, j)− t ′p(i, j)

)
(3)

where N is the total number of pixels of a frame image, n and
m are the height and width of the current frame, so N= n×m;
ρ is Charbonnier error.

2) STRUCTURAL SIMILARITY ERROR
LSSIM represents the structural similarity index of two frame.
It is a fully referenced image quality evaluation index, which
measures image similarity from brightness, contrast and
structure.

LSSIM =
1
N

∑m

j=1

∑n

i=1

(
1− SSIM

(
tp (i, j) , t ′p (i, j)

))
(4)

SSIM is specifically expressed as:

SSIM (x, y) =

(
2µxµy + c1

) (
σxy + c2

)(
µ2
x + µ

2
y + c1

) (
σ 2
x + σ

2
y + c2

) (5)

µx , µy is the average value of pixel (x, y). σx , σy is the
standard deviation of x, y. σx,y is covariance. c1, c2 is a
constant to avoid a zero denominator.

3) APERTURE ERROR
Calculating the aperture error: Similar to the optical flow,
the depth motion feature also has an observation window
problem, that is, the aperture problem, and the aperture error
is calculated by the objective function Lsmooth:

Lsmooth=ρ
(
∇Dxi

)
+ ρ

(
∇Dxj

)
+ρ

(
∇Dyi

)
+ρ

(
∇Dyj

)
(6)

wherein,∇Dxi and∇D
x
j represent the gradient of the horizon-

tal depth flow in the horizontal and vertical directions, ∇Dyi
and ∇Dyj represent the gradient of the vertical depth flow in
the horizontal and vertical directions, ρ is the Charbonnier
error.

4) TOTAL ERROR L

L =λ1 · Lpixel + λ2 · LSSIM + λ3 · Lsmooth (7)

where λ1, λ2, λ3 are the weighting factors and λ1 + λ2 +
λ3 = 1.

Backpropagation is performedwith L as the objective func-
tion of the D-shift Net model. The training process is stopped
when iterating to L convergence. The trained model is used
to extract the depth motion feature map between each pair of
adjacent frames to form 10 feature map as a set T ′.
The D-shift Net can extract the motion features contained

in the depth information, and meets the condition of interval
frames obtained by the ARSS, so that the motion features can
cover the entire sign language video. This procedure needs
small storage space and has high calculation speed with more
than 120 frames per second.

D. TWO-STREAM NEURAL NETWORK FUSION
The classic two-stream framework consist of two networks
which merge to get the final recognition result. The most
common way is to combine the scores of the two streams
classifier results in a certain proportion. This method is easy
to implement, and does not need to consider the dimension
alignment problem of the two streams. However, there are
not interaction between two-stream features, so the RGB and
D information, temporal and spatial information cannot be
complemented with each other by joint training.

In this paper, we use convolutional fusion to combine a
two-stream VGG16 network, which the locally focused RGB
frame set S’ and a depth motion feature set T’ are imported to.

Before the fifth set of convolutions, the structure is the
same as the classic VGG16 network. The convolutional layer
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uses 3×3 convolution kernels. The number of channels is 64,
64, 128, 128, 256, 256, 256, 512, 512, 512, and the pooling
mode is 2×2 MAX Pooling. We insert the fusion structure
before the fifth set of convolutions. The spatiotemporal two-
stream features at this time are respectively as xa and xb, and
the convolutional fusion model can be expressed as

yconv = f conv (xa, xb) (8)

In performing convolutional fusion, the two feature maps
xa, xb are first stacked together, and then the channel is
convoluted using a 1× 1× 2D convolution kernel f conv. Here,
the convolution kernel f is used to reduce the dimension twice,
and the weight combination of the two feature maps xa and
xb can be modeled at the same spatial position. f conv learns
to minimize entropy loss function of the correspondence
between two feature maps when used as a filter kernel in a
network.

The fifth set of convolutions is performed on the merged
feature y, the number of channels is 512, 512, 512, and
the pooling mode is 2×2 Max Pooling. Following the two
4096-dimensional fully connected layers, the neurons are
discarded at a dropout rate of 0.9, 0.8, respectively. The final
result is classified using Softmax as a classifier.

In training stage, firstly, the temporal network and the
spatial networks are trained separately, and then the trained
model is frozen to train the fusion structure. When the loss
no longer drops, we unfreeze two stream structure to retrain
until convergence.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the proposed method will be evaluated sys-
tematically on two public datasets: Chinese Sign Language
dataset (CSL) [40] and the ChaLearn LAP large-scale isolated
gesture dataset (IsoGD) [14]. First, the two datasets will
be described briefly. And then, the training processes will
be described in detail. Finally, the evaluation results will be
reported respectively.

A. DATASETS
1) CSL
To solve the Chinese sign language problem, experiments
were conducted using the CSL data set. The CSL data set
is proposed by University of Science and Technology of
China for large-scale Chinese sign language recognition. It is
recorded by Kinect2.0 and provides three kinds of data:
RGB video, depth video and joints information. A vocabu-
lary of 500 Chinese sign language words are included, with
50 people participating in the recording to form a total of
125,000 video instances.

2) ISOGD
At the same time, in order to test the versatility of our
method, this paper tests on IsoGD which is proposed by
‘‘2016 Looking at People CVPR Challenge’’ and com-
monly used for international research on behavior recogni-
tion algorithms. The focus of the challenges is ‘‘large-scale’’

learning and ‘‘user independent’’ gesture recognition from
RGB or RGB-D videos. The dataset contains a total of 47,933
instances, which consists of 249 categories of gestures
recorded by 21 people.

B. EXPERIMENTAL DETAILS
1) ENVIRONMENT CONFIGURATION
The experiments are tested on Ubuntu14.04 system. The
server is equipped with NVIDIA GTX 1080Ti and the CPU
is Intel Xeon E5-2620 v4. The deep learning framework is
Caffe.

2) PARAMETERS
INPUT In the multimodal input, the spatially aligned image
size is 512×396, and the unified zoom is 224×224 when
entering the network. According to ARSS method, the RGB
video and its corresponding depth video of the same behavior
are divided intoM= 10 segments, and one frame is randomly
sampled in each segment to form the frame sets S, T. For the
depth frame set T , the last frame of the depth video is added
to align RGB data. The batch_size of each stream input is 8.

a: LOCAL FOCUS
During the local focus stage, the length of the human forearm
H is calculated by the human elbow P9-ELBOW_RIGHT and
the wrist joints P10-WRIST_RIGHT coordinates. The length
threshold Hmin is set to be 24.

b: HYPER-PARAMETERS
The generalized Charbonnier parameter α is 0.4 in the Lpixel
objective function and 0.3 in the Lsmooth objective function.
The dropout rates after the two FC layers are respectively
0.9 and 0.8.

c: INITIALIZATION
We use different ways to initialize the two stream networks.
The spatial network VGG16 is initialized by Mrsa, and the
D-shift Net and temporal network VGG16 in this paper are
finetuned with the pre-training model trained on UCF101 to
enhance the convergence rate.

d: TRAINING
The two-stream models are first trained separately, then the
feature extraction layers are frozen in order to train the fusion
structure. We use Adam as the optimization algorithm. The
momentum is 0.9 and the weight_decay is 0.0005. A total
of 25,000 iterations are used averagely for training, and the
adaptive learning rate is adopted. Among them, the basic
learning rate of the D-shift Net is 10−5, and that of the
two-stream feature extraction network VGG16 and fusion
structure is 0.01. We set lr_policy for ‘‘multistep’’, where
gamma is 0.1. Stepvalues are 5000, 9500, 14000 and 20000.

e: TESTING
5-fold cross-validation is adopted to divide the original data
set and training and testing are carried out for each partition,
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TABLE 2. Comparison of recognition accuracy of different model on the
validation subset of CSL.

TABLE 3. Comparison of proposed method and other methods on the
validation subset of CSL.

and the final score is obtained by averaging the result
of 5 times. The ratio of training data set to testing data set
is 3:1 in each partition.

C. EVALUATION ON CSL
As a motion feature extraction network, D-shift can use not
only depth data as input, but also RGB data as input to extract
features. OnCSL dataset, the networkwith depth data as input
shows better performance because the sign language behavior
has many displacements in the depth direction. For RGB data,
these shifts are not obvious enough. Therefore, if there is
fine depth data, we can consider using depth data for motion
capture to obtain better motion features for classification.

We compared the RGB+D-shift+VGG16 model with the
optical flow algorithm RGB+FlowNet2.0+VGG16 model.
The input sampling method of the FlowNet2.0 model
is divided into 3 segments on average, and each seg-
ment takes 5 frames in succession. As shown in Table 2,
the proposed model on CSL is significantly better than the
FlowNet2.0+VGG16model. In the long sign language video,
the continuous sampling method required by the optical flow
is difficult to cover the entire video, and the temporal charac-
teristics of the sign language cannot be well learned. And the
randomness of the increased speed of our sampling method
helps to adapting to the speed difference of different sign
language operators.

TABLE 3 displays the comparison results with the pre-
viously published methods on the validation set of CSL.
STIPs [41] are commonly used spatiotemporal features, gen-
erated by detecting the 3D Harris angles in the video and
calculating the HOG and HOF features around the detection
points. iDTs [42] are also currently good manual annotation
features composed of trajectory, HOG, HOF and MBH. They

are based on optical flow tracking and low horizontal gradient
histogram.

After extracting the STIPs and iDTs features from the
video, these features are encoded into Fisher Vector using
the DFT fisher toolbox, and finally the SVM is used to clas-
sify the encoded features. GMM-HMM [43] is a traditional
method in time series pattern recognition, which can better
construct and classify time series features in sign language
video. The above-mentioned methods are traditional feature
extractors used on CSL, obviously, their accuracy lags far
behind the deep learning methods. C3D [44] is a common
neural network for activity recognition. It introduces the
attention mechanism named the Attention-pooling method
to classify the features. Huang et al. [45] used 3D con-
volutional neural networks and convolutional Long-Short-
Term-Memory (LSTM) networks. They believe that learning
spatiotemporal features simultaneously is more suitable than
learning spatial and temporal features consecutively or sep-
arately for gesture recognition. To learn spatiotemporal fea-
tures synchronously, we use convolutional layer to combine
RGB and depth, as well as temporal and spatial information.
As a result, the recognition accuracy is improved

D. EVALUATION ON ISOGD
There is no skeleton information on IsoGD dataset.
To achieve the part of local focus, we use OpenPose [49], [50]
to get wrist and elbow joints. OpenPose is a kind of skeleton
extraction technique which combines Part Confidence Maps
and Part Affinity Fields to get person’s skeleton by greedy
algorithm and bipartite matching. OpenPose method can out-
put: (1) 25 key points of body which include the same wrist
and elbow joints our Local Focus part used; (2) 2x21 hand key
points including all hand joint and endpoint. However, this
method does not extract the same HandLeft and HandRight
points like Kinect, so we use metacarpophalangeal joint of
middle finger as the center of hand ROI, as shown with the
yellow point in Fig.5. Furthermore, when the method cannot
locate the metacarpophalangeal joint, the point on extension
line of wrist and elbow joints, whose distance fromwrist joint
is H/2, is regarded as the center. The result of Local Focus on
IsoGD is shown in Fig. 5.

On IsoGD, as shown in Table 4, the FlowNet2.0 extraction
feature model is better than the D-shift model, which is
closely related to the quality of the depth video in IsoGD
dataset. The depth image of IsoGD is acquired by Kinect
1.0, which is noisy and insensitive to relatively small hand
movements. Therefore, for D-shift Net, low-noise and fine-
quality depth data is very important.

Compared to ResC3D [17], [48], our model has signif-
icant room for improvement. So far, we have only used a
simple VGG16 network in the dual stream network section.
Such networks tend to lose some temporal information when
extracting high-level features, especially in spatial networks.
In the spatial network structure, we used stacked RGB inputs.
This type of input retains only a small amount of temporal
information which is evenly distributed. Further work can

VOLUME 7, 2019 180277



S. Zhang et al.: Multimodal Spatiotemporal Networks for Sign Language Recognition

FIGURE 5. Skeleton extraction method named OpenPose is used on
IsoGD. Skeleton data can be extracted in most of gesture such as (a) (b)
(c). (d) shows the result that if hands are difficult to be recognized,
the point in extension cord of wrist and elbow joints works well.

TABLE 4. Comparison of proposed method and other methods on the
validation subset of IsoGD.

be combined with C3D networks to retain more temporal
information and use a deeper network framework.

E. DISCUSSION
We will compare the effects of the proposed depth motion
features and the classical RGB optical flow features in
this section. When the depth image quality is satisfactory,
the depth motion feature shows excellent performance, espe-
cially for the behavior series with apparent displacements in
distance to the camera. We show the example of qualitative
results on IsoGD in Fig. 6.

Fig. 6(a) shows that the depth motion feature obtains a
clearer and more complete motion trajectory than the RGB
optical flow, making the feature more vivid, when the motion
has obvious depth displacement and the horizontal displace-
ment is small.

Fig. 6(b) displays that when the moving parts are similar in
color, the optical flow features are obvious poor. At the same
time, the RGB optical stream cannot locate the pixels through
the color block, but the depth motion network can extract the

FIGURE 6. (a) demonstrates the validity and superiority of depth motion
features at the depth motion level. (b) shows the effect of color on depth
motion features and optical flow features. (c) displays the influence of
background noise on motion feature extraction quality from depth data.

FIGURE 7. (a) CSL original image (b) contour extracted image.

motion features through the change of the depth information.
In addition, depth information ignores the effects of light and
shadow changes, which greatly avoids the interference of the
environment and captures the gesture features more accurate.

Fig. 6(c) shows the fatal effect of depth image quality
on feature extraction. The depth data of IsoGD has some
depth missing area, which is represented by a depth value of
zero. The occlusion problem and the surface material of the
object will affect the acquisition of the Kinect depth image.
These noises affect the quality of the depth image seriously,
resulting in inaccurate depth motion feature extraction. If the
background noise is filtered in pre-process, the quality of
depth motion features will be significantly improved.

We segmented foreground character on CSL by the contour
extraction algorithm Morphological GAC [51], as illustrated
in Fig. 7. Contour extraction algorithm can effectively remove
the interference of background noise, but it performs poorly
on the IsoGD dataset with complex background. Choosing
the right pre-processing method to optimize the data set
usually yields better results on IsoGD.

V. CONCLUSION
In this paper, the framework is proposed for sign lan-
guage recognition, which combines both RGB-D input and
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two-stream spatiotemporal networks. For aligned multimodal
input, the ARSS approach covers key information and effec-
tively removes redundancy. Local focus of the hand opti-
mize the input of spatial network. And D-shift Net generates
depth motion features to explore depth information effec-
tively. A convolutional fusion is subsequently conducted to
fuse two-stream features and better recognition results. Our
future work could involve optimizing the image quality of
depth video for more effective motion features extraction and
uniting both depth motion features and RGB optical flow,
as well as improving the recognition speed without reducing
precision.

REFERENCES
[1] D. Bragg, O. Koller, M. Bellard, L. Berke, P. Boudrealt, A. Braffort,

N. Caselli, M. Huenerfauth, H. Kacorri, T. Verhoef, and C. Vogler, ‘‘Sign
language recognition, generation, and translation: An interdisciplinary per-
spective,’’ 2019, arXiv:1908.08597. [Online]. Available: https://arxiv.org/
abs/1908.08597

[2] G. O. Young, ‘‘Synthetic structure of industrial plastics,’’ in Plastics,
vol. 3, J. Peters, Ed., 2nd ed. New York, NY, USA: McGraw-Hill, 1964,
pp. 15–64.

[3] L.-C. Wang, R. Wang, D.-H. Kong, and B.-C. Yin, ‘‘Similarity assess-
ment model for Chinese sign language videos,’’ IEEE Trans. Multimedia,
vol. 16, no. 3, pp. 751–761, Apr. 2014.

[4] L. Pigou, A. van den Oord, S. Dieleman, M. Van Herreweghe, and
J. Dambre, ‘‘Beyond temporal pooling: Recurrence and temporal convolu-
tions for gesture recognition in video,’’ 2015, arXiv:1506.01911. [Online].
Available: https://arxiv.org/abs/1506.01911

[5] Y. X. Molchanov, S. Gupta, K. Kim, S. Tyree, and J. Kautz, ‘‘Online
detection and classification of dynamic hand gestures with recurrent 3D
convolutional neural network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 4207–4215.

[6] L. Pigou, S. Dieleman, P. J. Kindermans, and B. Schrauwen, ‘‘Sign lan-
guage recognition using convolutional neural networks,’’ in Proc. Work-
shop Eur. Conf. Comput. Vis., Zurich, Switzerland, 2014, pp. 572–578.

[7] T. Liu, W. Zhou, and H. Li, ‘‘Sign language recognition with long short-
term memory,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Phoenix,
AZ, USA, Sep. 2016, pp. 2871–2875.

[8] X. Li, C. Mao, S. Huang, and Z. Ye, ‘‘Chinese sign language recogni-
tion based on SHS descriptor and encoder-decoder LSTM model,’’ in
Proc. Chin. Conf. Biometric Recognit. Cham, Switzerland: Springer, 2017,
pp. 719–728.

[9] S. Huang, C. Mao, J. Tao, and Z. Ye, ‘‘A novel Chinese sign language
recognition method based on keyframe-centered clips,’’ IEEE Signal Pro-
cess. Lett., vol. 25, no. 3, pp. 442–446, Mar. 2018.

[10] S. Yang and Q. Zhu, ‘‘Continuous Chinese sign language recognition with
CNN-LSTM,’’ in Proc. 9th Int. Conf. Digit. Image, Int. Soc. Opt. Photon.,
vol. 10420, 2017, Art. no. 104200F.

[11] S. Yang and Q. Zhu, ‘‘Video-based Chinese sign language recognition
using convolutional neural network,’’ in Proc. IEEE 9th Int. Conf. Com-
mun. Softw. Netw. (ICCSN), Guangzhou, China, May 2017, pp. 929–934.

[12] N. Neverova, C. Wolf, T. W. Graham, and F. Nebout, ‘‘Multi-scale deep
learning for gesture detection and localization,’’ in Proc. Eur. Conf. Com-
put. Vis. (ECCV), 2014, pp. 474–490.

[13] S. Nasri, A. Behrad, and F. Razzazi, ‘‘A novel approach for dynamic hand
gesture recognition using contour-based similarity images,’’ Int. J. Comput.
Math., vol. 92, no. 4, pp. 662–685, 2015.

[14] S. Nasri, A. Behrad, and F. Razzazi, ‘‘Spatio-temporal 3D surfacematching
for hand gesture recognition using ICP algorithm,’’ Signal, Image Video
Process., vol. 9, no. 5, pp. 1205–1220, 2015.

[15] D. Wu, L. Pigou, P.-J. Kindermans, N. D.-H. Le, L. Shao, J. Dambre, and
J.-M. Odobez, ‘‘Deep dynamic neural networks for multimodal gesture
segmentation and recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 8, pp. 1583–1597, Aug. 2016.

[16] D. Konstantinidis, K. Dimitropoulos, and P. Daras, ‘‘A deep learning
approach for analyzing video and skeletal features in sign language recog-
nition,’’ in Proc. IEEE Int. Conf. Imag. Syst. Techn. (IST), Krakow, Poland,
Oct. 2018, pp. 1–6.

[17] Q. Miao, Y. Li, W. Ouyang, Z. Ma, X. Xu, W. Shi, X. Cao, Z. Liu,
X. Chai, and Z. Liu, ‘‘Multimodal gesture recognition based on the Resc3D
network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Oct. 2017, pp. 3047–3055.

[18] C. Lin, J. Wan, Y. Liang, and S. Z. Li, ‘‘Large-scale isolated gesture recog-
nition using a refined fused model based on masked Res-C3D network
and skeleton LSTM,’’ in Proc. 13th IEEE Int. Conf. Autom. Face Gesture
Recognit. (FG), Xi’an, China, May 2018, pp. 52–58.

[19] K. Simonyan and A. Zisserman, ‘‘Two-stream convolutional networks for
action recognition in videos,’’ in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), vol. 1, 2014, pp. 568–576.

[20] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, and D. Lin, ‘‘Temporal segment
networks: Towards good practices for deep action recognition,’’ 2016,
arXiv:1608.00859. [Online]. Available: https://arxiv.org/abs/1608.00859

[21] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
‘‘Temporal segment networks for action recognition in videos,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 11, pp. 2740–2755,
Nov. 2019.

[22] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao, ‘‘Towards good practices
for very deep two-stream ConvNets,’’ 2015, arXiv:1507.02159. [Online].
Available: https://arxiv.org/abs/1507.02159

[23] Y. Zhu, Z. Lan, S. Newsam, and A. Hauptmann, ‘‘Hidden two-stream
convolutional networks for action recognition,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Apr. 2017,
pp. 363–378.

[24] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
‘‘FlowNet 2.0: Evolution of optical flow estimation with deep networks,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI,
USA, Jul. 2017, pp. 1647–1655.

[25] S. Sun, Z. Kuang, L. Sheng, W. Ouyang, and W. Zhang, ‘‘Optical flow
guided feature: A fast and robust motion representation for video action
recognition,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Salt Lake City, UT, USA, Jun. 2018, pp. 1390–1399.

[26] L. Song, S. Zhang, G. Yu, and H. Sun, ‘‘TACNet: Transition-aware context
network for spatio-temporal action detection,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019,
pp. 11987–11995.

[27] Z. Shou, Z. Yan, K. Yannis, S. Laura, and S. F. Chang, ‘‘DMC-Net:
Generating discriminative motion cues for fast compressed video action
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Long Beach, CA, USA, Jun. 2019, pp. 1268–1277.

[28] C. Feichtenhofer, A. Pinz, and A. Zisserman, ‘‘Convolutional two-stream
network fusion for video action recognition,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 1933–1941.

[29] O. Köpüklü, N. Köse, and G. Rigoll, ‘‘Motion fused frames: Data level
fusion strategy for hand gesture recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Salt Lake City, UT,
USA, Jun. 2018, pp. 2103–2111.

[30] N. Crasto, P. Weinzaepfel, K. Alahari, and C. Schmid, ‘‘MARS: Motion-
augmented RGB stream for action recognition,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019,
pp. 7882–7891.

[31] M. Zolfaghari, K. Singh, and T. Brox, ‘‘ECO: Efficient convolutional
network for online video understanding,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 713–730.

[32] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, ‘‘Temporal relational
reasoning in videos,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 803–818.

[33] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[34] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ IEEE
Trans. Pattern Anal. Mach. Intell., to be published.

[35] S. Swathikiran, E. Sergio, and L. Oswald, ‘‘LSTA: Long short-term
attention for egocentric action recognition,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019,
pp. 9954–9963.

[36] H. Wang, P. Wang, Z. Song, and W. Li, ‘‘Large-scale multimodal gesture
recognition using heterogeneous networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Oct. 2017, pp. 3129–3137.

[37] J. S. Pérez, E. Meinhardt-Llopis, and G. Facciolo, ‘‘TV-L1 optical flow
estimation,’’ Image Process. On Line, vol. 3, pp. 137–150, Jul. 2013.

VOLUME 7, 2019 180279



S. Zhang et al.: Multimodal Spatiotemporal Networks for Sign Language Recognition

[38] R. Gao, B. Xiong, and K. Grauman, ‘‘Im2Flow: Motion hallucination from
static images for action recognition,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Salt Lake City, UT, USA, Jun. 2018,
pp. 5937–5947.

[39] D. Sun, X. Yang, M. Liu, and J. Kautz, ‘‘PWC-Net: CNNs for optical
flow using pyramid, warping, and cost volume,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City, UT, USA,
Jun. 2018, pp. 8934–8943.

[40] J. Huang, W. Zhou, Q. Zhang, H. Li, and W. Li, ‘‘Video-based sign
language recognition without temporal segmentation,’’ in Proc. 32nd AAAI
Conf. Artif. Intell., New Orleans, LA, USA, 2018, pp. 2257–2264.

[41] I. Laptev and T. Lindeberg, ‘‘Space-time interest points,’’ inProc. 9th IEEE
Int. Conf. Comput. Vis. (ICCV), Nice, France, Oct. 2003, pp. 432–439.

[42] H. Wang, A. Kläser, C. Schmid, and C. Liu, ‘‘Action recognition by dense
trajectories,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Providence, RI, USA, Jun. 2011, pp. 3169–3176.

[43] A. Tang, K. Lu, Y. Wang, J. Huang, and H. Li, ‘‘A real-time hand posture
recognition system using deep neural networks,’’ ACM Trans. Intell. Syst.
Technol., vol. 6, no. 2, p. 21, May 2015.

[44] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, ‘‘Learn-
ing spatiotemporal features with 3D convolutional networks,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, Dec. 2015,
pp. 4489–4497.

[45] J. Huang,W. Zhou, H. Li, andW. Li, ‘‘Attention-based 3D-CNNs for large-
vocabulary sign language recognition,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 29, no. 9, pp. 2822–2832, Sep. 2019.

[46] G. Zhu, ‘‘Multimodal gesture recognition using 3-D convolution and con-
volutional LSTM,’’ IEEE Access, vol. 5, pp. 4517–4524, 2017.

[47] L. Zhang, G. Zhu, P. Shen, J. Song, S. A. Shah, and M. Bennamoun,
‘‘Learning spatiotemporal features using 3DCNN and convolutional
LSTM for gesture recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Honolulu, HI, USA, Oct. 2017, pp. 3120–3128.

[48] C. Lin, X. Lin, Y. Xie, and Y. Liang, ‘‘Abnormal gesture recognition
based on multi-model fusion strategy,’’ Mach. Vis. Appl., vol. 30, no. 5,
pp. 889–900, 2019.

[49] Z. Cao, T. Simon, S. Wei, and Y. Sheikh, ‘‘Realtime multi-person 2D pose
estimation using part affinity fields,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 7291–7299.

[50] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, ‘‘Hand keypoint detection
in single images using multiview bootstrapping,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 4645–4653.

[51] P. Marquez-Neila, L. Baumela, and L. Alvarez, ‘‘A morphological
approach to curvature-based evolution of curves and surfaces,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 36, no. 1, pp. 2–17, Jan. 2014.

SHUJUN ZHANG is currently an Associate Pro-
fessor with the College of Information Science
and Technology, Qingdao University of Science
and Technology, China. Her research directions
include computer vision and virtual reality.

WEIJIA MENG is currently pursuing the master’s
degree with the College of Information Science
and Technology, Qingdao University of Science
and Technology, China. She is majoring in com-
puter vision.

HUI LI is currently anAssociate Professor with the
College of Information Science and Technology,
Qingdao University of Science and Technology,
China. His research direction includes computer
vision.

XUEHONG CUI is currently a Lecturer with the
College of Information Science and Technology,
Qingdao University of Science and Technology,
China. Her research direction includes computer
vision.

180280 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	RGB-D
	SPATIOTEMPORAL TWO-STREAM
	CONVERGENCE

	MULTIMODAL SPATIOTEMPORAL NETWORKS
	ARSS
	LOCAL FOCUS
	D-SHIFT NET
	PIXELS ERROR
	STRUCTURAL SIMILARITY ERROR
	APERTURE ERROR
	TOTAL ERROR L

	TWO-STREAM NEURAL NETWORK FUSION

	EXPERIMENTAL RESULTS AND ANALYSIS
	DATASETS
	CSL
	ISOGD

	EXPERIMENTAL DETAILS
	ENVIRONMENT CONFIGURATION
	PARAMETERS

	EVALUATION ON CSL
	EVALUATION ON ISOGD
	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	SHUJUN ZHANG
	WEIJIA MENG
	HUI LI
	XUEHONG CUI


