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ABSTRACT For a quasi-synchronous frequency/time hopping (FH/TH) code-division multiple-access
(CDMA) system which involves many users, the low-hit-zone (LHZ) FH/TH sequence set with large family
size is necessary. In this paper, an upper bound on the family size of LHZFH/TH sequence sets is derived. The
new bound includes the Singleton bound on FH sequence sets as a special case. Further, three constructions
of LHZ FH/TH sequence sets are presented, which have optimal/near optimal family size and also optimal
maximum Hamming correlation (MHC) with respect to the new bound. They have very large family size
compared with the known LHZ FH/TH sequence sets in the literature.

INDEX TERMS Frequency hopping sequences, time hopping sequences, low hit zone, Hamming correla-
tion, theoretical bound.

I. INTRODUCTION
In quasi-synchronous frequency/time hopping (FH/TH)
code-division multiple-access (CDMA) systems, the time
delay can be limited in low hit zone (LHZ). In LHZ, FH/TH
sequences can be designed with low Hamming correlation
value [18], [30]. If the time delay is controlled within
LHZ, then interferences can be reduced effectively. For a
quasi-synchronous FH/TH CDMA system which involves
many users, the design of LHZ FH/TH sequence sets with
large family size is necessary. Although there are many
FH/TH sequence sets studied in the literature [1]–[3], [5], [6],
[8], [11], [12], [14], [19], [23], [25], [27], [31], [32], most of
them have small family size. In [7], [9], [10], [16], [17], [26],
FH/TH sequence sets with large family size are obtained,
but they are not LHZ FH/TH sequence sets. These FH/TH
sequence sets are not suitable for quasi-synchronous FH/TH
CDMA systems.

In recent years, some LHZ FH sequence sets are reported
in the literature. In 2006, Peng et al. [24] established lower
bounds on the maximum Hamming correlation (MHC) of
LHZ FH sequence sets (Peng-Fan-Lee bounds). In 2011,
Ma and Sun [20] obtained some LHZ FH sequence sets
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which have almost optimal or optimal MHC with respect to
the Peng-Fan-Lee bounds. The next year Niu et al. [21] con-
structed LHZ FH sequence sets with optimal MHC by inter-
leaving techniques. Chung and Yang [4] utilized Cartesian
products to construct LHZ FH sequence sets with optimal
MHC in 2013. In the same year, Niu et al. [22] also used inter-
leaving techniques to construct new LHZ FH sequence sets
with optimalMHC. In 2017, Han et al. [13] obtained LHZFH
sequence sets with optimal MHC based upon m sequences.
In November of the same year, Zhou et al. [29] also utilized
m sequences to get two classes of LHZ FH sequence sets
with optimal MHC. The same month, Zhou et al. [28] pre-
sented several classes of LHZ FH sequence sets with optimal
MHC also by Cartesian products. Note that all the LHZ
FH sequence sets in the literature have optimal or almost
optimal MHC according to the Peng-Fan-Lee bounds. How-
ever, they have small family size which are not suitable for
quasi-synchronous FH/TH CDMA systems involving many
users.

In this paper, we pay our attention to LHZ FH/TH sequence
sets with large family size. We first derive an upper bound
on the family size of LHZ FH/TH sequence sets and then
construct three classes of LHZ FH/TH sequence sets which
have large family size. The LHZ FH/TH sequence sets have
optimal/near optimal family size and also optimal MHC with
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respect to the new bound. They are suitable for many users
to share limited bandwidth in quasi-synchronous FH/TH
CDMA systems.

The rest of this paper is organized as follows. In Section II,
we give some definitions and notations. In Section III,
we establish an upper bound the family size of LHZ FH/TH
sequence sets. In Section IV, we construct two classes of LHZ
FH/TH sequence sets by utilizing cyclic codes, which have
optimal family size and also optimal MHCwith respect to the
new bound. In Section V, we construct a class of LHZ FH/TH
sequence sets, which have near optimal family size and also
optimal MHC with respect to the new bound. In Section VI,
we summarize the work of this paper.

II. PRELIMINARIES
Let H = {H0,H1, · · · ,HF−1

} be an FH/TH sequence set
consisting of F sequences of length L over a frequency/time
slot set ν = {ν0, ν1, · · · , νλ−1}. Let c(u, v) = 1 for u = v
and c(u, v) = 0 otherwise. The least nonnegative residue of
amodulo b is denoted by 〈a〉b. For H i

= (hi0, h
i
1, · · · , h

i
L−1),

H j
= (hj0, h

j
1, · · · , h

j
L−1), 0 ≤ i, j ≤ F − 1, the Hamming

correlation function between them is defined by

Cij(τ ) =
L−1∑
k=0

c(hik , h
j
〈k+τ 〉L

), (1)

where τ is the time delay.
Let H defined above be an LHZ FH/TH sequence set

which has LHZW . ThemaximumHamming auto-correlation
Cauto, the maximum Hamming cross-correlation Ccross, and
the MHC Cmax of H are defined as follows, respectively:

Cauto = max{Cii(τ ) : 0 ≤ i ≤ F − 1, τ = 1, 2, · · · ,W },

Ccross = max{Cij(τ ) : 0 ≤ i, j ≤ F − 1, i 6= j, τ = 0, 1,

· · · ,W },

Cmax = max{Cauto,Ccross}.

In the remainder of this paper, denote an LHZ FH/TH
sequence set consisting of F sequences of length L over
a frequency/time slot set of size λ, which has LHZ W ,
by [L,F, λ,W ].

In 2006, Peng et al. [24] derived the lower bounds on the
MHC of LHZ FH sequence sets.
Lemma 1 (Peng-Fan-Lee Bounds): For an [L,F, λ,W ]

LHZ FH sequence set with MHC Cmax , we have

Cmax ≥
(FW + F − λ)L
(FW + F − 1)λ

(2)

and

Cmax ≥
(W + 1)(2ILF + LF − Iλ− I2λ)− FL2

(FW + F − 1)LF
(3)

where I is the integer part of LF
λ
.

Definition 1: Let H be an [L,F, λ,W ] LHZ FH/TH
sequence set withMHCCmax . IfCmax is the minimum integer
solution of (2) or (3), then the LHZ FH/TH sequence set H is

said to have optimal MHC with respect to the Peng-Fan-Lee
bounds.

Several constructions of LHZ FH sequence sets with opti-
mal MHC with respect to the Peng-Fan-Lee bounds can be
found in the literature [4], [13], [20]–[22], [28], [29].

III. AN UPPER BOUND ON THE FAMILY SIZE
OF LHZ FH/TH SEQUENCE SETS
In this section, we establish an upper bound on the family size
of LHZ FH/TH sequence sets.
Theorem 1: For an [L,F, λ,W ] LHZ FH/TH sequence set

with MHC Cmax , Cmax 6= L, we have

F ≤
λCmax+1

W + 1
. (4)

Proof: Let H = {H0,H1, · · · ,HF−1
} be an

[L,F, λ,W ] LHZ FH/TH sequence set with MHC Cmax over
a frequency/time slot set ν = {ν0, ν1, · · · , νλ−1} where
H i
= (hi0, h

i
1, · · · , h

i
L−1), i = 0, 1, · · · ,F − 1. Since the

MHC is Cmax , we have
L−1∑
k=0

c(hik , h
j
〈k+τ 〉L

) ≤ Cmax (5)

for i, j = 0, 1, · · · ,F − 1, τ = 0, 1, · · · ,W , and (i − j)2 +
τ 2 6= 0.

For two vectors (hik1 , h
i
〈k1+1〉L

, · · · , hi
〈k1+Cmax 〉L

) and

(hjk2 , h
j
〈k2+1〉L

, · · · , hj
〈k2+Cmax 〉L

) where 0 ≤ k1, k2 ≤ W ,
0 ≤ i, j ≤ F − 1, (k1 − k2)2 + (i− j)2 6= 0, we have

Cmax∑
t=0

c(hi
〈k1+t〉L , h

j
〈k2+t〉L

) ≤
L−1∑
t=0

c(hi
〈k1+t〉L , h

j
〈k2+t〉L

)

=

L−1∑
t=0

c(hit , h
j
〈t+k2−k1〉L

). (6)

By (5) and (6), we can obtain that
Cmax∑
t=0

c(hi
〈k1+t〉L , h

j
〈k2+t〉L

) ≤ Cmax . (7)

This indicates that (hik1 , h
i
〈k1+1〉L

, · · · , hi
〈k1+Cmax 〉L

) 6=

(hjk2 , h
j
〈k2+1〉L

, · · · , hj
〈k2+Cmax 〉L

). Then in the vector set

{(hik , h
i
〈k+1〉L , · · · , h

i
〈k+Cmax 〉L ) : k = 0, 1, · · · ,W ,

i = 0, 1, · · · ,F − 1}

the elements are distinct. It is known that there are λCmax+1

different vectors in Cmax + 1 dimensional vector space over
an alphabet of size λ. Hence (W + 1)F ≤ λCmax+1 which
leads to

F ≤
λCmax+1

W + 1
.

�
Let W = L − 1 in (4). Then a bound for conventional

FH/TH sequence sets can be obtained, which is just the
Singleton bound on FH sequence sets [7], [26].
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Corollary 1 (Singleton Bound on FH Sequence Sets): For a
conventional FH/TH sequence set consisting of F sequences
of length L over a frequency/time slot set of size λ, whose
MHC is Cmax , we have

F ≤
λCmax+1

L
. (8)

Definition 2: Let H be an [L,F, λ,W ] LHZ FH/TH
sequence set with MHC Cmax . If F is the maximum integer
solution of (4), then the LHZ FH/TH sequence set H is said
to have optimal family size. If F + 1 is the maximum integer
solution of (4), then the LHZ FH/TH sequence set H is said
to have near optimal family size.
Example 1: Let ν = {0, 1, 2, 3, 4, 5, 6, 7} be a fre-

quency/time slot set. A [9, 21, 8, 2] LHZ FH/TH sequence
set H is given as follows:

H = {(0, 1, 6, 7, 4, 4, 7, 6, 1), (7, 0, 7, 1, 2, 5, 5, 2, 1),

(7, 2, 0, 2, 7, 3, 6, 6, 3), (4, 2, 3, 0, 3, 2, 4, 1, 1),

(7, 5, 3, 4, 0, 4, 3, 5, 7), (2, 2, 6, 4, 5, 0, 5, 4, 6),

(1, 3, 3, 1, 5, 6, 0, 6, 5), (7, 6, 1, 0, 1, 6, 7, 4, 4),

(5, 2, 1, 7, 0, 7, 1, 2, 5), (6, 6, 3, 7, 2, 0, 2, 7, 3),

(4, 1, 1, 4, 2, 3, 0, 3, 2), (3, 5, 7, 7, 5, 3, 4, 0, 4),

(5, 4, 6, 2, 2, 6, 4, 5, 0), (0, 6, 5, 1, 3, 3, 1, 5, 6),

(7, 4, 4, 7, 6, 1, 0, 1, 6), (1, 2, 5, 5, 2, 1, 7, 0, 7),

(2, 7, 3, 6, 6, 3, 7, 2, 0), (0, 3, 2, 4, 1, 1, 4, 2, 3),

(4, 0, 4, 3, 5, 7, 7, 5, 3), (4, 5, 0, 5, 4, 6, 2, 2, 6),

(1, 5, 6, 0, 6, 5, 1, 3, 3)}.

We can easily check that the MHC of LHZ FH/TH sequence
set H is 1. By the new bound (4), we have

F ≤
⌊
64
3

⌋
= 21

which indicates that the LHZ FH/TH sequence set H has
optimal family size.

IV. TWO CLASSES OF LHZ FH/TH SEQUENCE SETS
WITH OPTIMAL FAMILY SIZE
In this section, we construct two classes of LHZ FH/TH
sequence sets by utilizing cyclic codes, which have optimal
family size with respect to the new bound. First, we give the
following notations which will be used in this section:
• q—– a prime power;
• GF(qn) —– Galois field with qn elements;
• GF(qn)∗ —– multiplicative group of GF(qn);
• 3(x) —– 3(x) = min{i : i|x, i > 1};
• µ(x) —– Möbius function defined as

µ(x) =

 1, x = 1
(−1)s, x is a product of s different primes
0, otherwise.

A. THE FIRST CLASS
Let l be an integer such that l|q − 1. Let α be a generator of
GF(q)∗ and β a primitive lth root of GF(q). For an integer r ,
1 ≤ r ≤ l, we define

R =

{
r∑
i=1

fix i : fi ∈ GF(q), i = 1, 2, · · · , r

}
and

H = {(f (αj), f (αjβ), · · · , f (αjβ l−1)) : f (x) ∈ R,

j = 0, 1, · · · ,
q− 1
l
− 1}.

Definition 3: For a sequence h = (h0, h1, · · · , hL−1),
define a cyclic shift operator 0 as 0i(h) = (hi, h〈i+1〉L ,· · ·,
h〈i+L−1〉L), 0 ≤ i ≤ L − 1.
Definition 4: For any a, b ∈ H, a 6= b, if there exists an

integer τ , 1 ≤ τ ≤ l − 1, such that a = 0τ (b), then a and b
are said to be cyclic equivalent.

The cyclic equivalence divides H into disjoint subsets
(cyclic equivalence classes [17]). In each cyclic equivalence
class, any two elements are cyclic equivalent. The number
of elements in the cyclic equivalence class is said to be its
cycle length. By picking up one element from each equiv-
alence class with cycle length l, it forms a subset of H,
denoted by H∗.
Letw be an integer such thatw|l,w 6= 1. Construct an LHZ

FH/TH sequence set H as follows:

H = {0tw(h) : h ∈ H∗, t = 0, 1, · · · ,
l
w
− 1}. (9)

For the LHZ FH/TH sequence setH , we have the following
theorem.
Theorem 2: The family size of the LHZ FH/TH sequence

set H is

|H | =
1
w

∑
k|l

µ(k)qb
r
k c. (10)

Proof: By Lemma 19 in [26], the family size of H∗ is

|H∗| =
1
l

∑
k|l

µ(k)qb
r
k c. (11)

Together with (9), we have

|H |=
l
w
×|H∗|=

l
w
×
1
l

∑
k|l

µ(k)qb
r
k c=

1
w

∑
k|l

µ(k)qb
r
k c.

�
Theorem 3: H is an [l, |H |, q,w−1] LHZ FH/TH sequence

set with MHC r − 1, where |H | is given by (10).
Proof:Note that the Hamming distance between any two

elements inH is greater than or equal to l−r+1. For hi, hj ∈
H∗, 0 ≤ τ ≤ l − 1, and (i− j)2 + τ 2 6= 0, we then have

Cij(τ ) ≤ l − (l − r + 1) = r − 1. (12)

For 0 ≤ t1, t2 ≤ l
w − 1, the Hamming correlation between

0t1w(hi) and 0t2w(hj) at time delay τ , is given by

C0t1w(hi)0t2w(hj)(τ ) = Cij(τ + t2w− t1w). (13)
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Case 1) i 6= j. In this case, Cij(τ + t2w − t1w) ≤ r − 1.
Thus, C0t1w(hi)0t2w(hj)(τ ) ≤ r − 1.
Case 2) i = j, t1 6= t2, 0 ≤ τ ≤ w − 1. Since 〈τ + t2w −

t1w〉l 6= 0, we have Cij(τ + t2w− t1w) ≤ r − 1. This leads to
C0t1w(hi)0t2w(hj)(τ ) ≤ r − 1.
Case 3) i = j, t1 = t2, 1 ≤ τ ≤ l − 1. Since τ + t2w − t1

w = τ , we have C0t1w(hi)0t2w(hj)(τ ) = Cij(τ ) ≤ r − 1.
That is to say, the MHC of H is r − 1 in LHZ w − 1.

Therefore, H is an [l, |H |, q,w − 1] LHZ FH/TH sequence
set with MHC r − 1. �
Theorem 4: H has optimal family size by the new bound (4)

if r < 3(l).
Proof: Since r < 3(l), (10) becomes

|H | =
1
w

µ(1)qr + ∑
k|l,k 6=1

µ(k)qb
r
k c


=

1
w

qr + ∑
k|l,k 6=1

µ(k)


=

1
w

qr +∑
k|l

µ(k)− 1

 . (14)

Note that
∑

k|l µ(k) = 0. Then

|H | =
qr − 1
w

. (15)

For the [l,F, q,w− 1] LHZ FH/TH sequence set with MHC
r − 1, by bound (4) we have

F ≤
⌊
qr

w

⌋
=

⌊
qr−1
w
+

1
w

⌋
=
qr−1
w
+

⌊
1
w

⌋
=
qr−1
w

.

(16)

Thus, H has optimal family size.
�

Example 2: Let q = 512, l = 511, r = 3, w = 73.
A [511, 1838599, 512, 72] LHZ FH/TH sequence set with
MHC 2 can be obtained. By bound (4), we have

F ≤
⌊
5123

73

⌋
= 1838599.

Hence, it has optimal family size.

B. THE SECOND CLASS
Let l ′ be an odd integer such that l ′|q+1. Let γ be a primitive
l ′th root of unity in GF(q2). Let B0,Bi be cyclotomic cosets
defined as

B0 = {0}, Bi = {i, l ′ − i}, i = 1, 2, · · · ,
l ′ − 1
2

, (17)

respectively.
Let r ′ be an integer such that 1 ≤ r ′ < 3(l′)+1

2 . Construct
a polynomial

R(x) = R l′−1
2 −r

′+1(x)R l′−1
2 −r

′+2(x) · · ·R l′−1
2
(x) (18)

where

Rj(x) =
∏
k∈Bj

(x − γ k ), j =
l ′−1
2
−r ′+1,

l ′−1
2
−r ′+2,

· · · ,
l ′−1
2
.

Let R(x) be the parity-check polynomial of a cyclic code E
of length l ′. Then the generator polynomial of E is given by
T (x) = xl

′
−1

R(x) . The cyclic equivalence divides E into cyclic
equivalence classes. By picking up one element from each
equivalence class with cycle length l ′, it forms a subset of E,
denoted by E∗.
Let w′ be an integer such that w′|l ′, w′ 6= 1. We construct

an LHZ FH/TH sequence set H ′ as follows:

H ′ = {0tw
′

(h) : h ∈ E∗, t = 0, 1, · · · ,
l ′

w′
− 1}. (19)

First, we give the BCH bound by the following lemma.
Lemma 2 (BCH Bound [15]): Let E be a cyclic code of

length l ′ over GF(q). T (x) is the generator polynomial of E .
If γ i, γ i+1, · · · , γ i+z−2 are roots of T (x), where γ is a primi-
tive l ′th root of unity in GF(qn), then the minimum Hamming
distance of E is greater than or equal to z. Moreover, the mini-
mum Hamming distance of E is z if γ i, γ i+1, · · · , γ i+z−2 are
all the roots of T (x).
The following lemma is derived by Liu and Zeng [16]

in 2019.
Lemma 3: Let E be a cyclic code of length l ′ whose

parity-check polynomial is defined in (18). The number of
codewords with cycle length l ′ is q2r

′

− 1.
Then we give the size of the LHZ FH/TH sequence set H ′.
Theorem 5: The size of H ′ is

|H ′| =
q2r
′

− 1
w′

. (20)

Proof: Since each equivalence class with cycle length l ′

consists of l ′ codewords, by Lemma 3 we have |E∗| = q2r
′
−1
l′ .

Hence, the size of H ′ is

|H ′| =
l ′

w′
× |E∗| =

q2r
′

− 1
w′

.

�
Theorem 6: H ′ is an [l ′, |H ′|, q,w′ − 1] LHZ FH/TH

sequence set with MHC 2r ′ − 1, where |H ′| is given by (20).
Proof: Note that

T (x) =
x l
′

− 1
R(x)

= T0(x)T1(x) · · · T l′−1
2 −r

′ (x) (21)

is the generator polynomial of E, where

Tj(x) =
∏
k∈Bj

(x − γ k ), j = 0, 1, · · · ,
l ′ − 1
2
− r ′.

γ
l′+1
2 +r

′

, γ
l′+1
2 +r

′
+1, · · · , γ 0, · · · , γ

l′−1
2 −r

′
−1, γ

l′−1
2 −r

′

are
all the roots of T (x). By the BCH bound in Lemma 2, the min-
imum Hamming distance of E is l ′ − 2r ′ + 1.
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For 0 ≤ t1, t2 ≤ l′
w′ − 1 and hi, hj ∈ E∗, the Hamming

correlation between 0t1w
′

(hi) and 0t2w
′

(hj) at time delay τ ,
is given by

C
0t1w

′
(hi)0t2w

′
(hj)(τ ) = Cij(τ + t2w′ − t1w′). (22)

Case 1) i 6= j. Since i 6= j, we have Cij(τ + t2w′ − t1w′) ≤
l ′− (l ′−2r ′+1) = 2r ′−1. Therefore, C

0t1w
′
(hi)0t2w

′
(hj)(τ ) ≤

2r ′ − 1.
Case 2) i = j, t1 6= t2, 0 ≤ τ ≤ w′ − 1. In this case, 〈τ +

t2w′−t1w′〉l′ 6= 0. This implies thatCij(τ+t2w′−t1w′) ≤ l ′−
(l ′− 2r ′+ 1) = 2r ′− 1. Then we have C

0t1w
′
(hi)0t2w

′
(hj)(τ ) ≤

2r ′ − 1.
Case 3) i = j, t1 = t2, 1 ≤ τ ≤ l ′ − 1. In this case,

τ + t2w′ − t1w′ = τ . Then C
0t1w

′
(hi)0t2w

′
(hj)(τ ) = Cij(τ ) ≤

l ′ − (l ′ − 2r ′ + 1) = 2r ′ − 1.
Hence, the MHC of H ′ is 2r ′ − 1 in LHZ w′ − 1. Then H ′

is an [l ′, |H ′|, q,w′−1] LHZ FH/TH sequence set with MHC
2r ′ − 1. �
Theorem 7: H ′ has optimal family size by the new

bound (4).
Proof: For the [l ′,F, q,w′ − 1] LHZ FH/TH sequence

set with MHC 2r ′ − 1, by bound (4) we have

F ≤

⌊
q2r
′

w′

⌋
=

⌊
q2r
′

− 1
w′

+
1
w′

⌋

=
q2r
′

− 1
w′

+

⌊
1
w′

⌋
=
q2r
′

− 1
w′

. (23)

Then H ′ has optimal family size. �
Example 1: Let q = 64, l ′ = 65, r ′ = 2, w′ = 13. We can

obtain a [65, 1290555, 64, 12] LHZFH/TH sequence set with
MHC 3. By bound (4), we have

F ≤
⌊
644

13

⌋
= 1290555.

Thus, it has optimal family size.

V. A CLASS OF LHZ FH/TH SEQUENCE SETS WITH
NEAR OPTIMAL FAMILY SIZE
In this section, we give a construction of LHZ FH/TH
sequence sets which have near optimal family size with
respect to the new bound.
Step 1: For a prime power q, we suppose that α is a

primitive element in GF(q2). Let β = αq−1 be a primitive
(q+1)th root in GF(q2). Define a trace function from GF(q2)
to GF(q) by Trq2/q(x). Construct A as follows:

A = {(Trq2/q(α
i),Trq2/q(α

iβ), · · · ,Trq2/q(α
iβq)) :

i = 0, 1, · · · , q− 2}.

Step 2: Let f (x) be a one-to-one function from
{0, 1, · · · , q − 1} to GF(q). Define A′ = {hk =

(hk0, h
k
1, · · · , h

k
q) : k = 0, 1, · · · , q(q− 1)− 1} where

ha(q−1)+bi = Trq2/q(α
bβ i)+ f (a)

for a = 0, 1, · · · , q−1, b = 0, 1, · · · , q−2, i = 0, 1, · · · , q.

Step 3: Construct an LHZ FH/TH sequence set H ′′ as
follows:

H ′′ = {0tw
′′

(hk ) : t = 0, 1, · · · ,
q+ 1
w′′
− 1,

k = 0, 1, · · · , q(q− 1)− 1} (24)

where w′′ is an integer such that w′′|q+ 1 and w′′ > q
2 .

Theorem 8: H ′′ is a [q+1, q(q
2
−1)

w′′ , q,w′′−1] LHZ FH/TH
sequence set with MHC 2.

Proof: By Theorem 7 in [17], the MHC of A′ is 2. For
hk1 , hk2 ∈ A′, 0 ≤ τ ≤ q, and (k1 − k2)2 + τ 2 6= 0, we have

Ck1k2 (τ ) ≤ 2. (25)

For 0 ≤ t1, t2 ≤
q+1
w′′ − 1, the Hamming correlation between

0t1w
′′

(hk1 ) and 0t2w
′′

(hk2 ) at time delay τ , is given by

C
0t1w

′′
(hk1 )0t2w

′′
(hk2 )(τ ) = Ck1k2 (τ + t2w

′′
− t1w′′). (26)

Case 1) k1 6= k2. In this case, Ck1k2 (τ + t2w
′′
− t1w′′) ≤ 2.

Thus, C
0t1w

′′
(hk1 )0t2w

′′
(hk2 )(τ ) ≤ 2.

Case 2) k1 = k2, t1 6= t2, 0 ≤ τ ≤ w′′ − 1. Since 〈τ +
t2w′′ − t1w′′〉q+1 6= 0, we have Ck1k2 (τ + t2w

′′
− t1w′′) ≤ 2.

This leads to C
0t1w

′′
(hk1 )0t2w

′′
(hk2 )(τ ) ≤ 2.

Case 3) k1 = k2, t1 = t2, 1 ≤ τ ≤ q. Since τ + t2w′′ −
t1w′′ = τ , we have C0t1w′′ (hk1 )0t2w′′ (hk2 )(τ ) = Ck1k2 (τ ) ≤ 2.
Then the MHC of H ′′ is 2 in LHZ w′′ − 1. Hence, H ′′

is a [q + 1, q(q
2
−1)

w′′ , q,w′′ − 1] LHZ FH/TH sequence set
with MHC 2. �
Theorem 9: H ′′ has near optimal family size by the new

bound (4).
Proof: For the [q + 1,F, q,w′′ − 1] LHZ FH/TH

sequence set with MHC 2, by bound (4) we have

F≤
⌊
q3

w′′

⌋
=

⌊
q3−q
w′′
+

q
w′′

⌋
=
q3−q
w′′
+

⌊ q
w′′

⌋
=
q3−q
w′′
+1.

(27)

Therefore, H ′′ has near optimal family size.
�

Example 4: Let q = 11 and w′′ = 6. Then we can get
a [12, 220, 11, 5] LHZ FH/TH sequence set with MHC 2.
By bound (4), we have

F ≤
⌊
113

6

⌋
= 221.

Thus, it has near optimal family size.
Remark 1: For an [L,F, λ,W ] LHZ FH/TH sequence set

with MHC Cmax , if Cmax is the minimum integer solution
of (4), then the LHZ FH/TH sequence set is said to have
optimal MHC with respect to the new bound (4). It is easy to
verify that the LHZ FH/TH sequence sets in this paper also
have optimal MHC with respect to the new bound (4).

Table 1 lists the parameters of LHZ FH/TH sequence
sets in the literature and this paper. It can easily be seen
that the LHZ FH/TH sequence sets in this paper have very
large family size compared with the LHZ FH/TH sequence
sets in the literature. Moreover, the LHZ FH/TH sequence
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TABLE 1. The parameters of LHZ FH/TH sequence sets in the literature and this paper.

sets in this paper have optimal/near optimal family size and
also optimal MHC with respect to the new bound while
the LHZ FH/TH sequence sets in the literature do not. The
LHZ FH/TH sequence sets in this paper are suitable for
many users to share limited bandwidth in quasi-synchronous
FH/TH CDMA systems.

VI. CONCLUSION
In this paper, we first established an upper bound on the fam-
ily size of LHZ FH/TH sequence sets which includes the Sin-
gleton bound on FH sequence sets as a special case. Then we
presented three constructions of LHZ FH/TH sequence sets
with large family size. They have optimal/near optimal family
size and also optimal MHC according to the new bound while
the known LHZ FH/TH sequence sets in the literature do
not. Compared with the LHZ FH/TH sequence sets in the

literature, our new LHZ FH/TH sequence sets have very large
family size. They are suitable for many users to share limited
bandwidth in quasi-synchronous FH/TH CDMA systems.
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