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ABSTRACT Image inpainting technique recovers the missing regions of an image using information from
known regions and it has shown success in various application fields. As a popular kind of methods, Markov
Random Field (MRF)-based methods are able to produce better results than earlier diffusion-based and
sparse-based methods on inpainting images with big holes. However, for images with complex structures,
the results are still not quite pleasant and some inpainting trails exist. The direction feature is an important
factor for image understanding and human eye visual requirements, and exploiting multi-direction features
is of great potential to further improve inpainting performance. Following the idea, this paper proposes
a Structure Offsets Statistics based image inpainting algorithm by exploiting multiple direction features
under the framework of MRF-based methods. Specifically, when selecting proper labels, multi-direction
features are extracted and applied to construct a structure image and a non-structure image, and the candidate
labels are chosen from the offsets of structure and non-structure images. Meanwhile, the multi-direction
features are applied to construct a new smooth term for the energy equation which is then solved by graph-cut
optimization technology. Experimental results show that on inpainting tasks with various complexities,
the proposed method is superior to several state-of-the-art approaches in terms of the abilities of maintaining
structure coherence and neighborhood consistence and the computational efficiency.

INDEX TERMS Image inpainting, multi-direction feature, Markov random field, structure offsets statistics.

I. INTRODUCTION
Image inpainting, also known as image completion, image
restoration and image disocclusion, aims to recover the
missing or degraded regions of an image in a visually plau-
sibly way by using the known pixels of the image [1].
Nowadays, image inpainting is an active research topic in
computer vision and image processing and has been applied
in areas ranging from image editing, image transmission
to film postproduction and ancient painting protection [2].
Although image inpainting technique is very useful, it is far
from being solved perfectly and more effective approaches
are deserved to be investigated.

A mount of methods with unique features have
been devised by mathematicians or computer scientists,
which can be classified into diffusion-based, sparse-
based, exemplar-based and deep learning-based methods.

The associate editor coordinating the review of this manuscript and
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The diffusion-based methods, focusing on filling narrow or
small holes, diffuse known information into missing regions
based on partial differential equation theory, such as BSCB
model [1], Navier-stokes model [3], total variation model [4],
and curvature-driven diffusions [5]. This kind of methods
perform poorly on inpainting images with structure or texture
missing regions. The sparse-based methods reconstruct an
image based on sparse representation theory, and serval
techniques were applied such as super-wavelet transform
[6], [7], dictionary library construction [8], [9], and low-rank
matrix completion [10]–[12]. Although performing better
than diffusion-based methods, sparse-based methods fail to
recover structure and texture when dealing with large miss-
ing regions. To tackling the deficiency, the exemplar-based
methods were proposed, which propagate information from
source regions into missing regions at patch level. According
to implementation way, the methods can be grouped into
two categories, i.e., greedy-based and Markov Random Field
(MRF)-based methods. The greedy-based methods include
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two procedures, i.e., priority function design for filling order
determination and match criteria design, and serval works
were devoted on the procedures [13]–[18]. The defects of
greedy-based methods are inevitable error propagation phe-
nomenon and high computational overhead. The MRF-based
methods alleviate error accumulation phenomenon by for-
mulating image inpainting as a discrete MRF optimization
problem [19], [20], and have shown an advantage over other
kinds of methods. In addition, with the rise of deep learn-
ing technique, some researchers applied deep learning for
image inpainting task and got competitive inpainting results
[21]–[25]. However, deep learning requires huge computa-
tion power and a large number of sample images, which may
limits its wide applications.

Nowadays, MRF-based methods are the mainstream
algorithms for image inpainting tasks. In the methods,
a known pixel/patch and a missing pixel/patch are respec-
tively regarded as a label and a node, and the inpainting
problem becomes assigning a suitable label to a node under
certain criteria. Usually, the labels can be thought as abso-
lute locations or relative offsets. In [20], all relative offsets
are considered as labels to repair missing regions. However,
the method introduces inappropriate labels and produces
unpleasant inpainted results, and it is computationally inten-
sive. To effectively and efficiently generate labels, He and
Sun [26] proposed to select a few dominant offsets accord-
ing to the statistics of patch offsets. Xue and Zhang [27]
applied HOG features to calculate offsets statistics. Liu and
Caselles [28] adopted neighboring offsets as candidate labels
according to the local self-similarity. Ružić and Pižurica [29]
selected labels from the most contextually similar blocks.
Ge et al. [30] designed a sparse patch subspace learning
method to select candidate labels. In addition to labels selec-
tion, energy equation affects the final results heavily and
some researchers reformulate energy equation in order to
obtain better results. For example, Gupta et al. [31] incorpo-
rated long range pairwise potentials into energy equation in
order to capture the inherent repeating patterns for inpainting
heritage architectural images. Bugeau et al. [32] considered
three factors in energy equation, including self-similarity,
diffusion and coherence of images. Liu and Caselles [28]
adopted gradient information in the energy function to com-
pensate high frequency information loss. Ghorai et al. [33]
applied the dissimilarity between candidate patch and corre-
sponding refined patch to construct energy equation.

Commonly, human eye is sensitive to the loss of high
frequency information, such as edge, corner and structure,
and neighborhood consistence reflects the naturalness of
inpainted images. Therefore, structure coherence and neigh-
borhood consistence should be highly regarded. Regarding
to MRF-based methods, though many works [26]–[29], [33],
[34] addressed the issues to some extent from various per-
spectives, there are still much room for further improving
inpainting performance. Particularly, when degraded images
have only a few known structures, these methods could
not work effectively. Thus, how to achieve sufficient priori

information from limited known information to guide inpaint-
ing process is crucial for obtained pleasant results. Image
features, related to different properties of an image, provide
rich information on image content, and they are fundamental
in many image analysis tasks like recognition and matching.
Therefore, extracting more suitable image features to guide
the inpainting process is a feasibleway to enhance the inpaint-
ing performance especially for images with large missing
regions, and such a routing has been explored in literatures
and yielded some benefits. For example, Xue and Zhang [27]
applied HOG features for matching similar patches. Liu and
Caselles [28] utilized gradient feature to select a label for
a node. Jin and Bai [35] introduced first-order directional
derivative of facet model to find candidate patches. In our
work [16], we designed a weighted color-direction feature
to find the most similar patches for sparse representation.
In our previous work [36], we devised a direction structure
distribution analysis scheme to select candidate labels, and
it works well for images with linear structures. However, for
degraded images with complex structures, the method could
not yield pleasant results.

With the purposes of better maintaining structure coher-
ence and neighborhood consistence for completing degraded
images with large missing regions, this paper proposes
a Structure Offsets Statistics based inpainting algorithm
(Abbreviated as SOS) via in-depthly exploiting image direc-
tion features to guide inpainting process under the framework
of MRF-based methods. The main contributions of this paper
are as follows.

(1) To better maintain structure coherence, the image is
partitioned into structure and non-structure parts according
to multi-direction features obtained by Curvelet transform,
and the offsets are counted independently in these two parts.
Then, a few dominant ones are chosen as candidate labels.

(2) To better maintain neighborhood consistence, instead
of only using color information, multi-direction features
based on Curvelet transform are exploited to construct energy
equation.

(3) Experimental results demonstrate the superiority of our
method over serval state-of-the-art methods on five kinds
of inpainting tasks, and the effectiveness of proposed two
schemes are empirically validated.

The rest of this paper is organized as follows. Section II
presents the framework of MRF-based methods. Section III
details the proposed algorithm, including labels selection,
energy equation construction, and a brief analysis of the
method. Section IV presents the experimental results on a
variety of images as well as an empirically analysis. Finally,
conclusions are made in Section V.

II. FRAMEWORK OF MRF-BASED METHODS
Given a degraded image I with missing region �,
a pixel/patch p located at position x = (x, y) in missing
region is filled with a certain pixel/patch q located at posi-
tion x + o from known region, where o = (u, v) is an
offset. Therefore, the inpainting problem is how to assign
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FIGURE 1. Sketch of energy function.

a suitable offset o to each unknown pixel/patch at x. Given
the offsets, the inpainted image can be obtained by combining
a stack of shifted images corresponding to these offsets.
In MRF-based methods, the known pixels/patches and the
missing pixels/patches are regarded as labels and nodes, and
how to assign labels or offsets is implemented by minimizing
the energy equation

E(L) =
∑
x∈�

Ed (L(x))+
∑
x,x′∈�

Es(L(x),L(x′)) (1)

where the neighboring pixels/patches (x, x′) are 4-connected;
the argument L(·) is a labelingmapwhich assigns a label from
a pre-selected offsets set {oi} to the unknown pixel/patch at
position x, e.g., L(x) = i means the missing pixel/patch at
x is filled with the pixel/patch at x + oi. A sketch of energy
equation is illustrated in Figure 1. The data term Ed , which
aims to maintain structure coherence, is 0 if label oi is valid
for x, i.e., x + oi locating at the known region; otherwise Ed
is +∞. The smooth term Es aims to maintain neighborhood
consistence. In the original work [20], the smooth term Es is
defined as

Es(a, b) = ‖I(x+ oa)− I(x+ ob)‖2

+‖I(x′ + oa)− I(x′ + ob)‖2 (2)

where I(x) is the RGB color value of x; I(· + oi) is an image
shifted by oi. If oa 6= ob, the neighboring pixels/patches x and
x′ will be assigned different labels, resulting a seam between
x and x′. Hence, equation (2) penalizes neighboring labels if
two shifted images I(x + oa) and I(x + ob) are not similar
near this seam. Then energy equation (1) is optimized using
multi-label graph-cuts technique [37]. For more information
of MRF-based methods, refer to [26].

When solving energy equation (1), utilizing all known
offsets as candidate offsets may not produce pleasant results.
On the one hand, some unsuitable offsets may bring in
interference during optimization process, resulting in unsat-
isfactory inpainting performance like structure incoherence.
On the other hand, only the color information is considered
in smooth term, which may lead to neighborhood incon-
sistence. To tackling the two issues, selecting a few but
more reasonable offsets from all known offsets as candi-
dates is a robust way to enhance inpainting performance
and computational efficiency. Meanwhile, integrating more
information in energy equation is able to better satisfy

human eye visual requirements. Based on the considerations,
we proposed a new MRF-based method through in-depthly
exploitingmulti-direction features, which is expounded in the
next section.

III. THE PROPOSED ALGORITHM
To better maintain structure coherence and neighborhood
consistence of the inpainted results, this paper proposes a
structure offsets statistics based image inpainting algorithm
using multi-direction features. The two main procedures as
well as an analysis of the method are detailed in this section.

A. LABELS SELECTION
The procedure of our labels selection is sketched in
Figure 2. We first apply Curvelet forward transform on the
image to obtain coefficient matrixes with different directions
and scales, and the coefficient matrixes are partitioned into
different direction sets. For each set, only the large coeffi-
cients are utilized to perform Curvelet reverse transform to
reconstruct a direction image. Then the structure part of the
degraded image is constructed by stacking the plentiful edge
information of direction images, and the left part is treated
as non-structure part. Afterwards, the offsets are indepen-
dently counted for structure and non-structure parts, and a
few dominant offsets are chosen as candidate labels. In what
follows, we explain the procedure in detail. Let the input
image denoted as IY , which is the Y component of original
color image I in YUV space. Multi-direction and multi-scale
Curvelet decomposition is performed on IY , that is,

Q = T+(IY ) (3)

where T+ implies Curvelet forward transform and Q =
{Qs,d } is the coefficient matrix set with scale s and direc-
tion d . In this paper, the coefficient matrix scale s is set
to 5, and the numbers of direction matrix for five scales are
respectively set to 1, 16, 32, 32, and 64. An illustration of
Curvelet coefficients partition is presented in Figure 3. The
coefficient matrix Q1,1 represents low frequency information
of an image, and the others represent high frequency informa-
tion of different degrees over different directions. In order to
accurately capture high frequency information like structures
and edges, for two to five scales, only the coefficients larger
than a threshold are applied for further processing, formulated
as

Q′s,d (r, c)=

{
0, if Qs,d (r, c)<α ·max{|9(r, c)|}
Qs,d (r, c), otherwise.

(4)

where 9(r, c) is a patch centered at (r, c) with a size of 11×
11, and α is a coefficient regulating the threshold. The value
of α impacts final inpainting performance and how to set a
proper value will be discussed in Section IV-A.
Then Curvelet coefficient matrix set Q′ = {Q′s,d } from

the second to fifth scale layers (i.e., s = 2, · · · , 5) is parti-
tioned into N sets according to N directions. An illustration
of the partition with 8 directions is given in Figure 3(b).
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FIGURE 2. The frame diagram of label selection.

FIGURE 3. An illustration of curvelet coefficients partition.

The set Z1 does not only include the features exactly at 0◦ or
horizontal direction of an image, but regions ranging from 0◦

to 22.5◦ and from 180◦ to 202.5◦, and similar for other seven
sets. On this basis, the direction image An(n = 1, · · · ,N )
over the n-th direction can be inferred via

An = T−(Zn ∪ Q1,1) (5)

where the size of An equals to the size of IY and T− denotes
Curvelet inverse transform. To extract plentiful edge infor-
mation, canny operator and morphological operation are per-
formed on each An, resulting edge images denoted as Bn.
Then a whole edge image B is generated by stacking Bn,
i.e., B = ∪Nn=1Bn. Therefore, we can obtain plentiful struc-
ture information,which is beneficial for maintaining structure
coherence. According to B, the image I is partitioned into
structure part Is via Is = I · B and non-structure part Ins via
Ins = I\Is.

Afterwards, we respectively match similar patches in Is
and Ins to obtain the offsets. Specifically, for each patch P(x)
with a size of 8 × 8 in known region of Is, we compute its
offset Os(x) to its most similar patch measured by the sum of
squared distance between two patches, that is,

Os(x) = argmin
o
‖P(x+ o)− P(x)‖, s.t.‖o‖ > τ (6)

where o = (u, v) is a 2-d coordinates of an offset, x =
(x, y) is the center position of patch P(x), τ is a threshold to
preclude nearby patches and usually set to 8. To efficiently
compute offsets, traditional KD-trees method is applied to
find the nearest neighbor field additionally rejecting any

patch that disobeys the constraint during the search proce-
dure. In addition, based on local similarity, the search region
is adaptively decided according to the size of missing region,
that is, the matching procedure is performed in a square
that is 3 times larger than the max of width and height of
bounding box of the hole. Then, for the structure offsets Os,
we calculate their statistics by a 2-d histogram hs(u, v) as

hs(u, v) =
∑
x

δ(O(x) = (u, v)) (7)

where δ(·) is 1 when the argument is true and 0 otherwise.
The top k1 peaks from the histogram are chosen as the k1
dominant desired structure offsets. For non-structure part Ins,
k2 dominant desired non-structure offsets are selected in the
same way as for Is. Therefore, there are k = k1 + k2
candidate offsets are selected. In our final implementation,
N = 8, k1 = 40, k2 = 20 is the default configuration,
and we also investigate their influence on the final inpainting
performance in Section IV-A.

B. ENERGY EQUATION CONSTRUCTION
Instead of only using color information, multi-direction fea-
tures based on Curvelet transform are exploited to construct
energy equation in order to better maintain neighborhood
consistence. The overall procedure of our energy equation
construction is sketched in Figure 4. The data term Ed
remains unchanged, that is, Ed is 0 if the label oi is valid for
x, otherwise Ed is+∞. The smooth term Es aims to penalize
incoherent seams. For example, let oa and ob are two labels
respectively assigned to x and x′. If oa 6= ob, then a seam will
be appeared between x and x′. In order to avoid incoherent
seam as much as possible, the multi-direction features are
introduced into Es. Denoting a = L(x) and b = L(x′), our
smooth term is defined as

Es(a, b) = (‖I(x+ oa)− I(x+ ob)‖2

+‖I(x′ + oa)− I(x′ + ob)‖2)

+ λ(‖F(x+ oa)− F(x+ ob)‖2

+‖F(x′ + oa)− F(x′ + ob)‖2) (8)

In the equation, I(x) and F(x) are respectively the RGB
color values and N direction feature intensities of x, and λ is
a coefficient balancing the color and multi-direction feature.
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FIGURE 4. The frame diagram of energy equation construction.

Here, the multi-direction feature term F(x) is referred by
Curvelet transform, that is, after performing Curvelet for-
ward transform and partitioning coefficient matrix set Q, the
multi-direction matrix F = {Fn, n = 1, · · · ,N } is obtained
by

Fn = T−(Zn) (9)

where T− denotes Curvelet inverse transform. Equation (9)
is slightly different from (5) in that only high frequency
coefficients are applied to infer different direction features.
To better maintain neighborhood consistence, all N direction
features are applied to construct smooth term. Then combin-
ing the data term, the energy equation is constructed, which
is later solved by multi-label graph-cuts algorithm [37].

C. ALGORITHM ANALYSIS
By integrating our labels selection and energy equation
construction into the framework of MRF-based algorithms,
the proposed SOS algorithm is developed. The pesu-docode
of SOS is given in Algorithm 1. In the experiment, we imple-
ment two SOS versions with direction number N = 4 and
N = 8. This work inherits our previous work [36]. Although
both work utilize direction features as extra information to
guide inpainting procedure, the degrees of exploitation of
direction features are significantly different. For the labels
selection scheme, on the one hand, the coefficient matrix Q
undertakes a preprocess as (4), which is beneficial to more
accurately extract direction features for further processing.
On the other hand, the variance of local direction gradi-
ent magnitude was calculated to determine which direction
feature image is used for matching similar patches in [36].
While in this work we combine all N direction features
together for matching similar patches to obtain robust guiding
information, which is much of benefit especially when the
information around the damaged area is quite mess. There-
fore, structure coherence can be better maintained. For the
energy equation construction scheme, only color information
was considered in [20], [26], [36], while in this work multi-
direction features are further exploited to construct a smooth
term that is able to better maintain neighborhood consistence
for the inpainted images. In addition, we consider different
numbers of direction in the current work, i.e., N = 4 and
N = 8, while only four directions was considered in the
previous work.

Algorithm 1 Pseudocode of SOS
Require: the degraded image I , the parameters α, k1, k2, λ
Ensure: the inpainted image
1: Transform I into YUV space and obtain the Y component

as IY
2: Obtain coefficient matrix {Qs,d } on IY according to (3)
3: Perform preprocess on {Qs,d } according to (4)
4: Partition {Q′s,d } into N sets, resulting Z1, · · · ,ZN
5: Generate direction images An according to (5), n =

1, · · · ,N
6: Generate edge images Bn by performing canny operator

and morphological operation on An, n = 1, · · · ,N
7: Stack edge images B1,B2, · · · ,BN into a whole edge

image B
8: Partition I into structure part Is and non-structure part Ins

via Is = I · B and Ins = I\Is
9: Obtain offsets for Is and Ins according to (6)
10: Calculate 2-d histograms hs(u, v) and hns(u, v) according

to (7)
11: Choose top k1 and k2 peaks from hs(u, v) and hns(u, v) as

candidate labels
12: Generate multi-direction matrix F according to (9)
13: Construct smooth term Es according to (8)
14: Construct energy equation E according to (1) using the

above Es
15: Obtain labels by solving E using multi-label graph-cuts

algorithm
16: Fill missing pixels/patchs using the labels

The computational complexity of the proposed SOS
method is reasonable. Compared to most MRF-based algo-
rithms, the main complexity difference is determined by the
number of offsets for solving energy function. The computa-
tional cost is huge when all possible labels are applied, like
the Shift-map approach in [20]. To the contrary, we elab-
oratively select only a few candidate offsets from structure
and non-structure parts, which sharply reduces computation
time. Compared with our previous work [36], only an extra
Curvelet inverse transform operation is added for construct-
ing smooth term, however, it hardly increases computational
overhead because a fewer iterations may required to find the
minimum value. In the next section, we will experimentally
validate the effectiveness and efficiency of our method by
inpainting different types of images.

IV. EXPERIMENTAL RESULTS
In this section, a mount of experiments are conducted to
validate the superiority of our proposed approach. Firstly,
the parameter setting is empirically discussed in order to give
a default configuration. Then, the performance of our method
is evaluated on inpainting various kinds of images and com-
pared with several state-of-the-art methods. Finally, the effec-
tiveness of proposed labels selection and energy function
construction schemes are validated. All the experiments are
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FIGURE 5. Original images.

FIGURE 6. Degraded images.

carried out on the platform of a PC with 4.0 GHz CPU, 16GB
RAM and Matlab.

A. PARAMETER DISCUSSION
There are a few relatively important parameters need to be
set in the proposed method, including threshold α in (4),
weight λ in (8), and the numbers k1 and k2 of candidate
offsets for structure and non-structure parts. To evaluate their
influence and provide a proper setting, we test our algo-
rithm with different settings in six images, as presented in
Figures 5 and 6. To ensure a brief and efficient discussion,
N is set to 8, the total number k = k1 + k2 of candidate
labels is set to 60, and a setting with α = 0.8, λ = 0.5,
k1 = 40 (therefore k2 = 20) is applied as a default setting
according to a pre-experiment. In this experiment, we only
vary one parameter and keep others unchanged. The PSNR
(in dB) is adopted to quantify inpainting performance.

We vary the threshold α in the range of [0, 1] with an
interval 0.1, the weight λ in the range of [0, 2] with an
interval 0.25, and the parameter k1 in the range of [0, 60]
with an interval 5. The PSNR values of each algorithm
setting on inpainting six images in Figure 6 are plotted in
Figures (7)-(9). Figure 7(a) shows that the inpainted images
achieve relatively large PSNR values when α is set to 0.8,
and it is also verified by Figure 7(b). Similarly, Figure 8
shows that a value of 0.5 for λ produces the best results
among all the settings. Figure (9) reflects that the number
of structure candidate labels indeed influent the inpainting
performance. Specifically, the PSNR value increases to a
peak when k1 increases to 40, and then decreases as the
value of k1 keeps increasing. The reason is that structure
candidate labels can provide plentiful structure priori for
guiding inpainting process, however, a too large k1 value will
cover up the non-structure prior which may also required
for inpainting tasks. According to the discussion, the default
setting is applied to conduct further experiments.

B. PERFORMANCE COMPARISONS
In this section, we evaluate our algorithm performance
on five kinds of inpainting tasks, including scratch and
text removal, inpainting texture images, inpainting images
with single direction structures, multi-direction structures
and curve structures. Also, we compare the performance
against four state-of-the-art exemplar-based algorithms,

including a greedy-basedmethod (Wang et al. [17]), and three
MRF-based methods (Le Meur et al. [38], He and Sun [26],
and our recently work Cheng and Li [36]). Wang’s method
[17] is a greedy-based method that modified Criminisi’s [39]
priority function and used fast flourier transform to find
more suitable candidate patch. In Le Meur et al. [38], sev-
eral inpainting procedures with different parameter settings
are first executed on a low-resolution image and then the
results are fused together to produce a unique low-resolution
image. Afterwards, a single image super-resolution algorithm
is applied to obtain final result. He and Sun [26] computed
offsets statistics in known region and chose some dominant
offsets to be labels. Our previous work and Li [36] applied
a direction structure distribution analysis scheme to choose a
few dominant offsets, while keeping the energy equation the
same as He and Sun [26]. In the experiments, all four com-
pared algorithms utilize the settings as in their original papers.
It needs to be pointed out that, because our recent work [36]
has shown its superiority over eight other methods (including
three greedy-based and five MRF-based methods) and this
work is a further investigation, we only apply four algorithms
(including our previous method [36]) as the compared ones in
this experiment.

1) COMPARISON ON SCRATCH AND TEXT REMOVAL
Five images with moderate composite structures but dif-
ferent backgrounds are used for scratch and text removal
performance comparison, given in Figure 10. The inpainted
results ofWang’s, LeMeur’s, He’s, Cheng’s and the proposed
method are given in the third to seventh columns, respectively.
The red rectangular block in some images highlights the part
of an image suffering structure inconsistence or noticeable
artifacts. ForWang’s approach, structure incoherence appears
in all results except Figure 10(d), especially some unwanted
structures exist as illustrated in Figures 10(c) and 10(e).
Le Meur’s method could not achieve pleasant results in all
tests due to the structure incoherence as shown in the fourth
column of Figure 10. Moreover, relatively obvious inpainting
marks and unwanted structures exist in Figures 10(b) and
10(d). The results of He’s method have similar flaws on all
images except the fourth one. Cheng’s results seem to be
better than these three algorithms, but structure incoherence
still exists, as shown in Figures 10(c) and 10(e). The last
column reflects that our proposedmethod obtains more pleas-
ant inpainted results than the others, and the structure coher-
ence and neighborhood consistence are maintained very well,
though there are quit a few invisible mark in Figure 10(e).
Tables 1 and 2 list PSNR and SSIM [40] values of the
inpainted results obtained by five methods. According to the
tables, the proposed method achieves the largest PSNR and
SSIM values among all algorithms on each image, which val-
idates the superior of our method on scratch and text removal.
In addition, according to the computation time in Table 3, our
method is more efficient thanWang’s and LeMeur’s methods
in a large degree, and has almost the same efficient as He’s
and Cheng’s methods.
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FIGURE 7. PSNR curves varied with different α values. Figure 7(a) is the PSNR curves for inpainting each image
in Figure 6, and Figure 7(b) gives the mean PSNR curve.

FIGURE 8. PSNR curves varied with different λ values. Figure 8(a) is the PSNR curves for inpainting each image
in Figure 6, and Figure 8(b) gives the mean PSNR curve.

FIGURE 9. PSNR curves varied with different k1 values. Figure 9(a) is the PSNR curves for inpainting each image
in Figure 6, and Figure 9(b) gives the mean PSNR curve.

2) COMPARISON ON INPAINTING TEXTURE IMAGES
Figure 11 gives the results of five algorithms on inpainting
texture images without obvious structures. We can find that
error accumulation phenomenon appears in Wang’s results,

illustrated in Figures 11(a) and 11(c). The MRF-based meth-
ods can produce better results than Wang’s greedy-based
method, however, some artificial effects exist in Le Meur’s
results, as shown in Figures 11(a) and 11(c). As for He’s,
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FIGURE 10. Performance comparisons on scratch and test removal. For each row, the columns from left to right are the original image,
degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

TABLE 1. PSNR (in dB) comparisons on scratch and text removal.

TABLE 2. SSIM comparisons on scratch and text removal.

Cheng’s and ours results, they all look natural and coherent.
According to the computation time listed in Table 4, we can
say that the computation complexity of our method is far less

TABLE 3. Computation time (in seconds) comparisons on scratch and text
removal.

TABLE 4. Computation time (in seconds) comparisons on inpainting
textural images.

than Wang’s and Le Meur’s methods and almost the same
as He’s and Cheng’s methods. In summary, our proposed
method can achieve pleasant inpainted results with a high
efficient.
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FIGURE 11. Performance comparisons on inpainting texture images. For each row, the columns from left to right are the original image,
degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

FIGURE 12. Performance comparisons on inpainting with single direction structures. For each row, the columns from left to right are the
original image, degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

3) COMPARISON ON INPAINTING IMAGES WITH
SINGLE DIRECTION STRUCTURE
The main purpose of our method is to maintain structure
coherence and neighborhood consistence of inpainted results,
therefore we test our algorithm performance on inpainting

images with various kinds of structures. In this experiment,
four images with single direction structures and different
backgrounds are inpainted, and the results of five algorithms
are illustrated in Figure 12. According to the Figures, we can
see that Wang’s results are not satisfied since not only the
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FIGURE 13. Performance comparisons on inpainting with multi-direction structures. For each row, the columns from left to right are the
original image, degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

structures are incoherent but also seam effects and error accu-
mulation phenomenon exist. The cause is as a greedy-based
method it utilizes a greedy filling procedure and the error
accumulation phenomenon is inevitable. For MRF-based
methods, the structure coherence is not always well main-
tained by Le Meur’s method, as shown in Figures 12(b) and
12(c), and some inpainted trails appear in all results. He’s
approach fails to repair images with relative less structures,
as shown in Figures 12(b) and 12(c). Cheng’s method obtains
relatively better inpainted results. However, it fails to repair
images with complex structures like Figures 12(c) and 12(d).
To the contrary, our method is able to well maintain structure
coherence and neighborhood consistence in all images and
the inpainted images look natural.

4) COMPARISON ON INPAINTING IMAGES WITH
MULTI-DIRECTION STRUCTURE
To verify the performance on images with multi-direction
structures, five images are inpainted and the results are
presented in Figure 13. From the results, we can see that

structure incoherence appears in Wang’s results, particu-
larly error accumulation phenomenon is serious. Viewing Le
Meur’s results, structure incoherence also appears, and some
unwanted context exists as shown in Figure 13(d). Though
He’e method applies offsets statistics to guide filling proce-
dure, it still cannot maintain structure coherence well accord-
ing to Figures 13(a), 13(b) and 13(d). The reason is when the
original structure information is diverse and not sufficient,
the desired structure labels would be swept under other labels
during candidate labels selection procedure. As the desired
direction features are selected, Cheng’s results are better than
He’s, however, it still fails to recover images with relatively
less and complex structures like Figures 13(a) and 13(b).
Because our method extracts plentiful multi-direction edge
information to distinguish structure and non-structure labels
and applies multi-direction features to construct smooth term,
more pleasant results are obtained as shown in Figures 13.
Although the structure coherence is not quite well maintained
in Figure 13(e), the repaired result still looks natural and
coherent, and satisfies human eye visual requirements.
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FIGURE 14. Performance comparisons on inpainting with curve direction structures. For each row, the columns from left to right are the
original image, degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

5) COMPARISON ON INPAINTING IMAGES WITH CURVE
STRUCTURE
To show the superiority of our method on maintaining
structure coherence, six images with more complex struc-
tures, i.e., curve structures, are inpainted, and the results
are given in Figure 14. According to Figures 14(a) and
14(b), we can see that He’s, Cheng’s and our methods can
repair images with repetitive curve structure very well, while
the other two works badly. On inpainting image with com-
plex curve structure and simple background, our method are
much better than other four ones, as shown in Figure 14(c).
For image with curve structure and complex texture
background in Figure 14(d), our method can maintain struc-
ture coherence and neighborhood consistence at the same
time. As for Figure 14(e), there is complex missing curve
structure while no exactly the same curve structure exists

in known region, our method still obtains relatively better
repaired result. For Figure 14(f), since the known region
contains only a few curve structure similar to the missing
content, our method could not obtain a inpainted result satis-
fied with human eye visual requirements very well. However,
Our method extends the structure along the direction of the
structures in known region and the inpainted result is more
naturally than other four results. The reason of such good per-
formance comes from the reasonable labels and the smooth
term in energy equation where multi-direction features are
elaborately exploited with the aim of maintaining structure
coherence and neighborhood consistence.

C. VALIDATION OF THE COMPONENTS
The previous experiments verify the superiorities of our
proposed method over several compared algorithms on
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TABLE 5. PSNR (in dB) comparisons of six SOS variants and Cheng’s
method [36] on inpainting images in Figure 6.

inpainting five kinds of images. In order to further validate
the effectiveness of proposed labels selection and energy
equation schemes by exploiting image multi-direction fea-
tures, we test six variants of our proposed SOS method on
inpainting the images in Figure 6. We denote six variants in
a form of SOSN -X . N is the number of direction partitions
and N ∈ {4, 8} is tested. X ∈ {L,E,LE} denotes the
components used in the variants, where L means the proposed
label selection scheme is applied and the energy equation is
the same as in our previous work [36], E means the proposed
energy equation is applied while label selection scheme is
the same as in [36], and LE denotes two proposed schemes
are applied (Hence, SOS8-LE is the algorithm verified in
the previous experiments). Since the current work is a fur-
ther continuation and deepening of our previous work [36],
it is applied a baseline to verify the superiority of current
work. The PSNR comparisons of six SOS variants as well as
Cheng’smethod are listed in Table 5. According to the results,
three conclusions can be made. First, the proposed labels
selection and energy equation schemes indeed enhance the
inpainting performance. Second, the two schemes can coop-
eratively improve the performance in a large degree. Third,
the number of direction partition truly influent the algorithm
performance. But taking effectiveness and efficiency into
account, we recommend using N = 8 as a default setting.

V. CONCLUSION
In this paper, we introduced a novel MRF-based inpainting
method that exploits image multi-direction features to guide
inpainting procedures with the purpose of maintaining struc-
ture coherence and neighborhood consistence of inpainted
images. To effectively and efficiently select proper labels for
MRF nodes, the image is partitioned into structure and non-
structure images, where the structure part is stacked with sev-
eral edge images on different direction features. The offsets
are matched independently in two parts and a few dominant
ones are selected as labels. When constructing energy equa-
tion, multi-direction features are used to devise a smooth
term. We have demonstrated the superiority of our method
over some state-of-the-art approaches on inpainting various
kinds of degraded images. In addition, the effectiveness of
two new ingredients as well as the experiment settings are
empirically investigated. Our method is based on an in-depth
exploitation of image direction features. We believe it would

be an effect way to solve more difficult inpainting tasks like
the images with complex curved structures via exploiting
some other curve features, and we will further investigate this
in our future work.
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