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ABSTRACT At high latitudes, offshore wind turbines often face unfavorable loads by severe ice-induced
vibrations during winter season, which may endanger facilities available on the platforms and degrade
operating performance of wind turbine. Hence, it is vital to analyze the influences caused by ice loads. In this
paper, based on a real-time simulation model, quantifiable analyses of performance losses due to ice creep
loads are firstly studied deeply. Under ice creep loads, reliable pitch control is necessary to ensure safety and
high-level power-tracking capability of modern offshore wind turbine. However, uncertain influences of ice
creep loads are coupled with wind turbine operation and make it a challenge for wind turbine pitch control
using traditional Proportional-Integral (PI) controller from the view of industry. As a result, improved pitch
control using optimal gain-scheduling strategy is proposed to alleviate impacts of ice loads where the support
vector regression algorithm is adopted to represent the strong nonlinear relationship among PI parameters
under different operation conditions. For each operation point, PI parameters are optimally tuned by the
particle swarm optimization algorithm. Finally, the presented nonlinear optimal gain-scheduling PI (OGS-
PI) controller is applied on regulating generation power and reducing tower top displacement caused by ice
creep loads based on software of Fatigue, Aerodynamics, Structures, and Turbulence, a high-fidelity wind
turbine simulator. Simulation results show that unfavorable influence of ice creep loads to wind turbine
operation can be significantly alleviated by the OGS-PI controller, which performs much better than the
traditional PI controller.

INDEX TERMS Offshore wind turbine, ice loads, gain-scheduling control, optimal control, real-time.

I. INTRODUCTION
The 21st century witnesses a new era of rapid development
of renewable energy technology. As one of the renewable
clean energy, wind energy can bring huge social, economic
and environmental benefits. It is estimated that more than
20% of the world’s electricity demands will be met by wind
energy by 2050 [1], [2]. In recent years, as offshore wind
power technology has made great progress, all countries
regard offshore wind power as an important development
direction of renewable energy [3]–[6]. At the end of 2017,
the oceanic waters of eleven European countries had approx-
imately 84% (15,780 MW) of all offshore wind farms, and
most of the remaining 16% farms were located in China,
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Vietnam, Japan, South Korea, and the USA [7], [8]. Chinese
government proposed an ambitious plan that the capacity of
offshore wind power reaches 30GW by 2020 [9]. At present,
the technologies of Chinese offshore wind power are in their
infancy, which lacks accurately modeling, exhaustive control
systems and multi-scenario optimization. Thus, the studies
in this paper are forward-looking and will be valuable for
development of wind power in Bohai Sea.

When it comes to the development of offshore wind farm,
the challenges cannot be neglected. Previous studies have
indicated that offshore wind farms may face more economic,
operational, and environmental challenges than onshore
wind farms [10]–[15]. Among the challenges, the threats
posted by ice are our concern in the present study because
offshore structures deployed in cold regions have to undergo
ice action [16], which could cause performance degradation

181706 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-1193-5832
https://orcid.org/0000-0002-4301-8791
https://orcid.org/0000-0001-9079-6978
https://orcid.org/0000-0001-8753-7908
https://orcid.org/0000-0002-6233-5776
https://orcid.org/0000-0002-4835-2828


Z. Song et al.: Real-Time Performance Analyses and Optimal Gain-Scheduling Control of Offshore WT

and even damage to wind turbine (WT). The Bohai Sea
undergoes ice period for about three months every year due
to the invasion of strong cold wave. Ice loads can be found
in the form of creep failure, crushing failure and buckling
failure [17]. The creep failure is selected as the research
object of this paper due to the long period of time acting on
WT. In the cold regions, ice-induced vibrations are normally
occurred when an ice sheet against an ocean structure and
severe ice-induced vibrations threaten the structural produc-
tion facility, which may lead to pipeline fracture and flange
loosening [18]. Two different case studies were dynamically
assessed in the Bohai Sea, involving jacket platforms col-
lapsed due to ice-induced vibrations in 1969 and 1979 [19].

Several cases and theoretical researches demonstrate that
it is significant to study how to reduce the ice-induced
vibrations against offshore platform. Yue et al. [20] and
Wang et al. [21] proposed that the way of adding a tuned
mass damper and installing the cones in compliant connec-
tion in the shaft to reduce the vibrations. Wang et al. [22]
discussed the way of adding ice-breaking cones at the water
level, which will decrease the amplitude of ice loads and
change the ice breaking frequency to reduce the vibrations.
Liu et al. [23] adopted the finite element method analysis
to show that the ice-induced vibration can be significantly
reduced for JZ20-2MUQ jacket platform with the isolation
cone system. In order to achieve an economical and rational
design with the consideration of structural and non-structural
performances, Karr et al. [24] used an acceleration-oriented
design optimization of ice-resistant jacket platforms in the
Bohai Gulf.

While most previous studies focused on the physical meth-
ods, which were fragile and difficult to maintain under the
harsh condition, this paper aims to design and optimize
controller to ensure the safety and economy of WT. Com-
pared with the WT without ice loads, it is more significant
to study the response of WT to the ice loads. The tower
base moment and the tower top displacements (TTD) are
usually selected by scholars to represent the tower response
to wind and ice force [25]. The TTD is chosen as one of
the evaluation indexes in this work because when it exceeds
a certain value, the normal operation of the rotor may be
affected. In addition to the ice loads, varying pitch angle can
also change TTD [26]. Therefore, it is feasible to reduce the
displacement by designing an appropriate pitch controller.
However, it is well known that pitch controller is used to
obtain a steady output power in variable-speed WT when the
wind speed is above the rated value. Hence, this study focuses
on finding a balance point between steady output power and
the displacement reduction.

This paper designs an optimal gain-scheduling
Proportional-Integral (OGS-PI) controller forWT pitch angle
control. In order to ensure the output power tracking rated
power, PI control is adopted for the pitch controller, which
has been proved to be a powerful control tool in industrial
processes owing to its robust performance and the simplic-
ity for implementation [27]. Nevertheless, the traditional

fixed-gain PI control doesn’t work well because the partial
derivative of output power to pitch angle also varies with the
change of operating condition. Thus, the PI control with gain
scheduling of pitch angle is applied in this paper to solve the
problem of power fluctuation when the wind speed changes
sharply. Additionally, adjusting PI control parameters is the
key to stabilize processes. However, traditional methods are
difficult to deal with multi-objective optimization. Hence,
Particle Swarm Optimization (PSO), which can enhance
the adaptability of the controller and was made up for the
limitations of traditional parameter tuning is adopted in this
paper. Under a certain operating condition, the PI param-
eter is optimized with the cost function of output power
and TTD by applying PSO. Even though proposed optimal
control strategy has rapid convergence of finding the best
PI parameter under a certain operating condition, it is also a
challenge under variable operating conditions. To cope with
the problem, nonlinear regression of the optimized parameter
of different operating conditions based on support vector
regression (SVR) is adopted for real-time gain compensation,
which can be regarded as another gain scheduling based on
wind speed.

Considering the impact of ice loads, the same control strat-
egy is applied to the corresponding controller. More impor-
tantly, combined with detection mechanism of wind speed
and ice, the WT can operate safely and economically even
if the environment changes rapidly. Additionally, a plenty of
simulations are based on the Fatigue, Aerodynamics, Struc-
tures, and Turbulence (FAST) which uses high-fidelity mod-
els and is developed by Nation Renewable Energy Laboratory
(NREL) [28], [29]. The bendingmoments of tower and blades
from the simulation models will not have big error because
the most of dynamic of the tower have been considered in
FAST. The improving performance of WT due to the pro-
posed controller is demonstrated by the simulation results.

The remainder of the article is organized as follows.
Section 2 introduces the theoretical model of WT, environ-
mental loads and structural vibration. Section 3 analyzes the
specific impacts on WT performance caused by ice loads
quantitatively. Section 4 demonstrates the design of gain
scheduling pitch controller, including off-line optimization of
PI parameters based on PSO, nonlinear fitting of PI param-
eters based on SVR and the effectiveness of the proposed
controller. Conclusions and future work are discussed in
Section 5.

II. MODELING
With the purpose of explaining the effect of ice loads on
offshore WT theoretically and further optimal controlling,
WT and environmental loads are modelled in this section.
As the security of WT is our primary concern, the mecha-
nism of tower top vibration under multiple loads is mainly
illustrated.

A. WIND TURBINE MODELING
The aerodynamic system of WT is the key for WT to cap-
ture wind energy, which generates torque to realize rotation.
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FIGURE 1. Schematic diagram of wind turbine drive system.

According to Betz theory [30], the aerodynamic power of
rotor and mechanical torque captured by WT are as follows:

Pr = 0.5ρaπR2v3wCP(λ, β)

Tr = 0.5ρaπR3v2wCP(λ, β)/λ (1)

where ρa is the air density; R is the radius of the wind rotor;
vw is the wind speed passing through the rotor; CP(λ, β) is
the rotor power coefficient; β is the pitch angle; ωrot is the
rotation speed of rotor; λ is the tip speed ratio, which can be
calculated as ωrotR/vw.
Variable pitch system is a nonlinear servo system, which

is adopted to rotate turbine blades around the axis. In order
to simplify the system, the pitch actuator is modelled as a
first-order inertial link with finite amplitude and speed limit.
The dynamic equation is as follows:

β̇ = (βref − β)/τb (2)

where βref is the reference value of pitch angle; τb is the time
constant of the pitch actuator.

In the drivetrain system, this paper completely ignores the
flexibility characteristics of high-speed shaft and low-speed
shaft. Besides, it does not consider the internal friction and
other factors, which equates the transmission system to a
single mass model, as shown in Fig. 1.

The dynamic equation for the model is as follows:{
J ω̇rot = Trot − NgearTgen − Bdampωrot

J = Jrot + N 2
gear · Jgen

(3)

where Jrot and Jgen are rotational inertia of turbine rotor
and generator rotor; Trot and Tgen are mechanical torque and
generator electromagnetic torque; ωgen is rotation speeds of
rotor and generator; Bdamp is damping coefficient of low
speed shaft; Ngear is gear ratio of gearbox.

Generator is the core mechanism to realize conversion
from mechanical energy to electric energy. Due to the igno-
ration of the converter model which is not the focus of this
paper, the generator is regarded as a torque source, which can
be modeled as a first-order inertial link:

Ṫgen = (Tref − Tgen)/τgen (4)

where τgen is the time constant of the generator system.
Additionally, considering the power losses due to the high-

speed shaft driving generator during the conversion process,
output power of the generator can be given as follows:

Pgen = ηTgenωgen (5)

where η is the generator efficiency.

TABLE 1. NREL 5 MW wind turbine parameters [29].

Besides, as the modeling of WT in this section has strong
consistency with the model of NREL WT, the NREL 5MW
offshore WT is adopted as the research object, which is
supported by the US Department of Energy and has been
applied as a referenceWT for a large number of experimental
projects. The main parameters of theWT are given in Table 1.

B. ENVIRONMENTAL LOADS MODELING
Offshore WT faces more not only chances but also extreme
challenges than onshore WT because of the environmental
loads. Hence, the theoretical modeling of loads may explain
the dynamic performance of offshore WT under multiple
loads. Loads of wind, wave and ice on the structure of off-
shore WT are the main loads considered in this study.

1) WIND LOADS
In order to calculate the wind loads on offshoreWT structure,
the blade element momentum theory is adopted to model
the loads. Assuming that the blade is composed of blade
element, whose shape is obtained from a series of airfoil
profiles and has its own aerodynamic characteristics, The
loads on blade element are generated by air lift FL and drag
FD and the mechanical analysis of it is shown in Fig. 2,
where ca is the airfoil chord length; α is the angle of attack;
ϕ is the inflow angle; Vrel is the relative velocity of blade
profile.

The lift and drag of blade element can be calculated as
follows:

FL = 0.5CL(α)ρaV 2
relca1rb

FD = 0.5CD(α)ρaV 2
relca1rb (6)

where CL(α) and CD(α) are the air lift and drag coefficient,
which are the nonlinear function of the attack angle; rb is the
radial length of blade.

According to Fig. 2, the resultant force of each blade
element in the x direction is as follows:

Fx = FL cosϕ + FD sinϕ (7)
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FIGURE 2. Mechanical analysis of blade element.

Hence, the total axial wind loads can be obtained by sum-
ming the loads of each blade element in x direction:

Fwind = Nb

r=tip∑
r=root

Fx,r (8)

where Nb is the number of blades.

2) WAVE LOADS
For an offshore WT, wave forces are the dominant loads
which is normally due to wind-generated random waves.
The height of the sea at a certain point is a random time
series which can be converted to a wave spectrum by Fourier
transform. In this paper, Pierson-Moskowitz spectrum, which
was mapped under long-term stable sea conditions in the
Atlantic Ocean is adopted to describe the irregular waves. The
energy spectrum density of Pierson-Moskowitz spectrum can
be represented as follows:

SPM(f ) =
H2
s

4πT 4
z f 5

exp[−1
/
π (f · Tz)−4] (9)

where Hs is the significant wave height and Tz is the average
period of zero crossing.

The spectrum can be transformed into the superposition of
sine wave with different frequency and phase angle by IFFT.
For each harmonic, the wave kinematics are modeled using
Airy wave theory, which can solve the velocity and accelera-
tion of water particle. The velocity of the water particle in the
horizontal direction is given by [31].

vp = Am2π fp
cosh[kw(z+ hw)]

sin(kwhw)
cos(kwx − 2π fpt) (10)

where Am and fp are the amplitude and frequency of wave.
z and hw are the depth and height of the sea. kw is the
wavenumber.

The wave loads on a submerged vertical cylinder can be
calculated adopting Morison’s equation. The wave-induced
horizontal force per unit length on the structure is the sum of a
nonlinear drag component fd and a linear inertial component fi

according toMorison’s equation [32], which can be expressed
as:

dFwave = dfd + dfi = kdvp
∣∣vp∣∣ dz+ kiv̇pdz

kd = 0.5CdρwDc, ki = 0.25CmρwπD2
c (11)

where Cd and Cm are empirical drag and inertia coefficients;
Dc is the cylinder diameter and ρw is the water density.
Hence, the wave loads on offshore WT can be obtained

by integrating the infinitesimal element in (11) in the vertical
direction.

3) ICE LOADS
When ice sheet hits the offshore WT, ice loads can be found
in the form of creep failure, crushing failure and buckling
failure. The influence of creep failure on WT is studied in
this paper, because large creep deformations can develop over
long periods of time due to the assumption that WT structure
is stiff enough, which has low indentation velocities and low
aspect ratios.

During the ice creep, the ice is in full contact with the
WT and has a uniform pressure at the ice-structure interface.
We consider ice as a viscous material flowing around WT
structure with pressure pice, which is shown in the front view
and top view of Fig. 3.

In the creep model, the force of ice sheet on the WT
structure has the Korzhavin’s empirical expression [33]:

Fmax = IkcmsDchiσ (12)

where I is the indentation factor, which has the range of 1
to 3. kc is the contact coefficient, with the range of 0.3 (for
non-simultaneous failure) to 1 (for simultaneous failure, such
as creep) for small scale structures. Sanderson [34] considers
that the contact coefficient kc must be very low (0.02-0.13)
for full-scale structures. ms is the shape factor, and it is
0.9 for cylindrical structures and 1 for flat indenters. hi is the
thickness of the ice sheet and σ is the uniaxial compressive
strength of ice.

The uniaxial compressive strength of ice depends on the
strain rate. Michel and Toussaint [35] proposed the method,
which adopted U/4Dc as indentation strain rate ε̇. For fresh-
water granular ice, we use the following equation:

σ =
[
exp(Qg/RuT )ε̇/Ag

]1/3 (13)

where Ru = 8.314J·mol−1K−1 is the universal gas constant;
T is the temperature in kelvin;Qg is the activation energy; Ag
is a constant which depends only on crystal type.

Before the ice stress reaches the ‘‘yield stress’’, we assume
ice is under elastic strain. The elastic strain when ice begins
to ‘‘yield’’ can be calculated as:

εe = Ikcmsσ/Ey (14)

where Ey is the Young’s Modulus of ice.
Then the ice loads increase gradually over time towards

a peak value with the assumption of constant strain rate and
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FIGURE 3. Ice flowing around wind turbine: (a) front view (b) top view.

then stays at a steady-state value. The time from the beginning
to the stabilization of ice loads is as follows:

trise = εe/ε̇ (15)

Hence, the ice loads on offshore WT can be represented as
follows:

Fice =

{
Fmax(t − t0) 0 ≤ t ≤ t0 + trise
Fmax t > t0 + trise

(16)

where t0 is the start time of ice creep loads.
Additionally, a module of FAST named IceDyn [36] has

integrated several models of ice load, which can simulate
proposed ice model combining offshore WT conveniently.
The module of quasi-static ice loading on vertical structure
whose sub-model is creep model is selected and the main
parameters of the model are given in Table 2.

C. STRUCTURAL VIBRATION MODELING
The structure vibration of offshore WT usually reflects the
magnitude of mechanical loads. However, the complexity of
structure and the environmental uncertainty make it difficulty

TABLE 2. Ice model parameters [36].

FIGURE 4. Idealization model of vibration.

building a general model. Hence, simplification of the WT
structure should be the first task. Fig. 4 shows the idealization
of vibration problem, which can also be found in [37]. The
foundation can be modelled as four springs connected by a
rigid base with a lumped mass mb because of the four-legged
jacket on shallow foundation. Furthermore, the structure and
WT tower can be modelled as a beam with a lumped mass mt
at the tip. It is illustrated from Fig. 4 that degrees of freedom
in the system are the movement of the rigid base, the bending
of the tower and the rotation of the rigid base where x1, x2
are the translations of the springs related to the small angle
of rotation θ ; x3 is the translation due to bending of the tower
with the stiffness coefficient kt; xg represents the translation
of the centre of mass, which can be calculated as 0.5(x1+x2).
For solving the dynamics problem of non-free particle

system, the application of Lagrange’s equation, which is
represented as follows ismore convenient than general kinetic
equations.

d
dt
(
∂L
∂ q̇k

)−
∂L
∂qk
= Qk. (k = 1, 2, 3) (17)

where qk is the generalized degree of freedom; L is kinetic
energy of the particle system; Qk is the generalized force
corresponding to qk .

The simplified offshore WT structure system is embodied
into these parameters as follows:

qk = xk (18)

L = 0.5(mb + mt)ẋ2g + 0.5Jgθ̇2 + 0.5mtẋ2t (19)
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Qk = −
∂U
∂qk
+ Fk

wind + F
k
wave + F

k
ice (20)

where Jg is the moment of inertia of the rigid base; U is
potential energy of the system; xt is the displacement of tip
of the tower.

U = 0.5k1x21 + 0.5(k2 + k3)x2g + 0.5k4x22 + 0.5ktx23 (21)

For small angle rotation

θ ≈ tan θ = (x2 − x1)/L1
xt = x3 − h(x2 − x1)/L1 (22)

After further simplification, (17) can be written in Matrix
format, which is shown in (23)

Mwẍ + Kwx = Fwind + Fwave + Fice (23)

where mass and stiffness matrixes are shown in Appendix A.
Hence, the vibration of tower top displacement is modeled

as a second order forced vibration system, whose vibration
frequency depends on the natural frequency and external
forces. If external loads are not considered, natural fre-
quencies of the system can be calculated easily. However,
the time-varying and nonlinear environmental loads make
the system more complex and aggravate the vibration of
tower top displacement. Additionally, there is a theoretical
basis for designing effective control strategies to alleviate the
unfavorable ice loads on tower top displacement by reducing
wind loads.

D. PERFORMANCE LOSSES OF WIND TURBINE DUE TO
ICE LOADS
In this section, we carry out quantifiable analyses and present
the performance losses of WT under different operating con-
ditions due to ice loads. In order to illustrate the performance
of generator power, we select Mean Absolute Error (MAE),
which can accurately reflect the error and avoid error cancel-
lation andMean-Square Error (MSE), which can describe the
degree of power variation as the quantitative indexes. Con-
sidering the significance of the vibration amplitude of TTD,
mean and Standard Deviation (SD) of the displacement are
selected to evaluate the performance of WT. Additionally, the
Maximum Absolute Deviation (MAD) can intuitively reflect
the boundary performance. Since the cut-in, cut-out and rated
wind speed of NREL 5MW offshore WT are 3 m/s, 25 m/s
and 11.4 m/s respectively, we selected the same intensity
of turbulence IEC wind with speed of 8 m/s, 20 m/s as the
representative of those operating conditions. However, wind
around rated speed is not considered because switching of
control strategy is not the point of this paper. Fig. 5 shows the
wind speed curves of above two operating conditions, which
were generated according to the standard of IEC and it can be
implemented conveniently by a tool named Turbsim [38].

The sampling interval of the simulation are 0.01 seconds
and the simulation time are 60 seconds where only the later
50 seconds are adopted to analyze because the former 10 sec-
onds contain the start-up procedure. When wind speed is

FIGURE 5. Wind speed Curve. Kaimal and IEC 61400-1 standard are the
turbulence model and IEC standard respectively. Mean wind speed at the
reference height are 8 m/s and 20 m/s.

FIGURE 6. Generator output power for the clean and iced cases. Mean
wind speed at the reference height corresponding to (a) and (b) are 8 m/s
and 20 m/s.

below the rated speed, the control strategy we adopted in
this section is optimal torque control [39], which is one of
the Maximum Power Point Tracking (MPPT) algorithm to
capture themaximumwind energy. Besides, PI controller was
applied to adjust generator speed so that output power could
track rated power if wind speed is above rated speed.

E. GENERATOR POWER
The generator power curves for the clean and iced case under
three operating condition are shown in Fig. 6. The MAE,
MSE andMAD of power are used to quantify the economy of
WT, as shown in Table 3, where 1 and 0 of Flagice represent
the iced and clean case respectively.

It can be seen from Fig. 6(a) that there is a significant
power loss and the MAE of power reduce 51 kW when the
wind speed is below rated speed because of the ice loads.
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TABLE 3. The indexes of power for clean and ice cases.

Since the pitch controller is running to ensure generator
power tracking rated power when the wind speed is above
rated speed, as shown in Fig. 6(b), the difference of generator
power between clean and iced case is too small to take into
account, where the difference of MAE is under 1kW.

Therefore, when the torque controller runs alone, the ice
loads will directly reduce the generator power. However,
when the pitch controller starts running, the performance
losses of WT due to ice loads will not reflect in the gener-
ator power because the power losses caused by ice loads is
equivalent to the effect of pitch controller. On the other hand,
we can still design pitch controller to ensure the performance
of generator power if the wind speed is above 11.4 m/s.

F. TOWER TOP DISPLACEMENT
The TTD are selected to represent the tower response to wind,
wave and ice loads. The TTD include fore-aft and side-to-side
displacement, but we just consider the fore-aft displacement
since the side-to-side displacement is too small to take into
account. The tower top fore-aft displacement (TTFD) curves
for clean and iced cases under three operating conditions are
shown in Fig. 7.

The mean, SD and MAD of TTFD are used to quantify
the safety of WT, as shown in Table 4. Comparing to the
clean WT, it is obvious that the ice loads results in greater
TTFD and phase-shafting of time under the three operating
conditions. Not only ice loads, but the variation of pitch
angle can affect the TTFD. Therefore, the operation condition
without pitch controller as seen in Fig. 7(a) can show the
direct effect of ice loads on TTFD and there is a notable
increase of the mean about 37.2% because of ice loads. It can
be seen from Fig. 7(b) and Table 4 that although the mean
of TTFD raises 41.2% with the wind speed of 20 m/s, pitch
controller can degrade the influence of ice loads, where the
SD under ice loads is not greater than the clean case, which
improves the safety of WT. However, in order to design an
excellent pitch controller, we must find a balance between
the generator power and the displacement.

III. DESIGN OF OGS-PI PITCH ANGLE CONTROLLER
In this chapter, a switchable optimal gain-scheduled
PI (OGS-PI) pitch angle controller is designed which can
realize the automatic identification and the switching of
the wind loads and wind-ice loads mode. Additionally, the
generator-torque controller which is represented as follows is
adopted to coordinate the pitch controller when wind speed

FIGURE 7. TTFD for the clean and iced cases. Mean wind speed
corresponding to (a), (b) and (c) is 8 m/s and 20 m/s.

TABLE 4. The indexes of displacement for clean and ice cases.

is above the rated speed but it does not the research emphasis
in this paper.

Tref = Pg,rated/ωgen (24)

The improvement of control strategy and these character-
istics are shown in Fig. 8, which consists of control block
diagram, optimization, strengths and weaknesses. The basic
control strategy is a simple gain scheduling PI control strat-
egy, which only adopts gain scheduling of pitch angle to
reduce the power fluctuation. Although the basic strategy
is easy implementation, the WT cannot obtain the best out-
put because of the unoptimized parameters. Additionally,
the mechanical loads caused by ice creep cannot be relieved
applying this controller directly. Hence, PSO algorithm is
applied for multi-objective optimization considering power
tracking and mechanical loads, which can give the WT better
performance and relieve the mechanical loads caused by ice
creep. However, the improved controller only works well
for the optimized scenario as the optimized parameters were
generated in a certain scenario. In addition, it takes too much
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FIGURE 8. Improvement of control strategy and these characteristics in this paper.

time for the optimization, which cannot guarantee real-time
performance. In order to address these problems, the second
improved controller OGS-PI is demonstrated in this section.

The block diagram of OGS-PI controller is shown in Fig. 9,
where flagice is the detection signal of ice loads which deter-
mines the selection of the gain functions. The PI functions
can be described as:

KP = (1− δice)KPclean(vw)+ δiceKPice(vw)

KI = (1− δice)KIclean(vw)+ δiceKIice(vw) (25)

where δice is the selection function based on the signal of
flagice, which can be expressed as:

δice =

{
1 flagice is ice signal
0 flagice is clean signal

(26)

The GK(β) is the gain scheduling 1, which overcomes the
problem of a negative damping in the speed response because
the generator torque drops with increasing speed error. The
mathematical justification of the gain compensation can be
found in [28]. The compensation function is written as:

GK (β) = 1/(1+ β/βk) (27a)
∂P
∂β

(β = βk) = 2
∂P
∂β

(β = 0) (27b)

The output of OGS-PI controller can be expressed as:

U (s) = GK (β) · [KP(vw)+ KI(vw)/s] · E(s) (28)

After the inverse Laplace transform and discretization:

u(j) = GK (β) · [KP(vw) · e(j)+ KI (vw)xI (j)] (29a)

FIGURE 9. Block diagram of OGS-PI controller in wind turbine system.

xI(j) = xI(j− 1)+ (tj − tj−1)e(j) (29b)

e(j) = ω∗g − ωgen (29c)

where j represents the j-th interval of simulation and tj repre-
sents the corresponding real simulation time.

As shown in Fig. 9, the basis of the controller is the
PI controller where Particle Swarm Optimization algorithm
is applied to optimize the icing and ice-free scenes of PI
parameters under different working conditions. The opti-
mized parameters can meet the requirements of the objectives
proposed in this paper under corresponding working condi-
tion. Then, Support Vector Regression (SVR) algorithm is
adopted to non-linearly fit optimized wind-ice loads, which
contribute to gain curves. After the offline optimization,
the controller can adjust the PI parameters online according
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to the gain value under current operating condition mapped
to the gain curve, which is recognized as gain scheduling 2.

A. OPTIMIZATION OF PI PARAMETER BASED ON PSO
Particle Swarm Optimization is a swarm intelligence opti-
mization algorithm [40], which has been successfully applied
in the fields of multivariate function optimization, neural
network training and PID parameter tuning [41]. As the
multi-objective optimization of the PI pitch angle controller
is a PID parameter tuning problem, the algorithm is selected
in this work.

In PSO, the solution of the problem corresponds to the
position of a particle in the search space. Each particle has
its own position, velocity and fitness value determined by
the optimization objective function. In the search space of
a D-dimensional target, the position of the i-th particle can
be expressed as Xi = (Xi1,Xi2, . . . ,XiD)T, and the flight
speed can be expressed as Vi = (Vi1,Vi2, . . . ,ViD)T. The
position with the largest fitness value in the process of each
particle optimization is called the individual optimal solution,
denoted pi = (pi1, pi2, . . . , piD)T, and the position with
the largest fitness value experienced by the whole particle
population is called the global optimal solution, denoted
pg = (pg1, pg2, . . . , pgD)T. The initial population of particles
is usually randomly generated within the allowed range, and
then each particle evolves according to certain rules. The state
update equation of evolution can be described as:{

vk+1id = wvkid + c1r
k
1 (p

k
id − x

k
id )+ c2r

k
2 (p

k
gd − x

k
id )

xk+1id = xkid + v
k+1
id

(30)

where i represents the i-th particle; d represents the d-th
dimension of the particle; k represents the k-th generation; c1
and c2 are acceleration factors, which are used to adjust the
step size of particles flying towards their own and the global
optimal solution direction, respectively. r1 and r2 are random
numbers in [0, 1]; w is the inertia weight.

The flow chart of the PSO employed in this work is pre-
sented in Fig. 10 and PSO is utilized to minimize output
power fluctuations and reduce TTFD. The objective function
and constraints for the PSO are defined as follows:

min : J (x) =
t∑
i=0

[
w1

(
1Pi
1Pmax

)2

+ w2

(
1Xi
1Xmax

)2
]
(31)

s.t . 1P = f (vw, β,Tgen) (32)

1X = g(vw, β) (33)

0 ≤ β ≤ βmax (34)

|∂β/∂t| ≤ 1βmax (35)

where w1 and w2 are the weights of power deviation and
the weights of TTFD deviation; 1Pi and 1Xi are deviation
of the two parameters. 1Pmax and 1Xmax are the maxi-
mum operating values of the two parameter deviations. Equa-
tion (32) and (33) are implicit expressions of the output power

FIGURE 10. Flow chart of the PSO algorithm.

TABLE 5. Basic parameters value of optimization.

deviation and fore-aft displacement of tower top. Equa-
tion (34) and (35) describe the range and variety rate of pitch
angle.

Nine IEC turbulent wind with an average wind speed
of 12m/s to 20m/s are adopted as operating conditions. Then,
PSO algorithm is applied to optimize PI parameters in ice
and ice-free scenes respectively. In order to illustrate the
optimization effect, the optimization results under the ice
scene with an average wind speed of 20m/s is selected to
show. The basic parameters are set in Table 5.
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FIGURE 11. Optimization process of PSO.

The selection of population size depends on the number
of CPU cores where our servers enable parallel computing,
which can run 24 simulations simultaneously. As numerical
computation of fluid and structural dynamics equations takes
much time, the parameters are optimized off-line, which costs
about 7800 seconds per operating condition. The optimiza-
tion process of PSO is shown in Fig. 10.

The black particles are initial population; green indicates
the second generation; blue indicates the third generation;
pink indicates the fourth generation and red indicates the fifth
generation. The optimal value is the best of red population
where P is 0.1335 and I is 0.008.

As indicated in Fig. 11, the particle swarm optimized
the parameter step by step and finally found the best
point, which demonstrated the swarm intelligence of PSO
algorithm. In order to illustrate the impact of optimiza-
tion on WT performance, Fig. 12 depicted the response
of WT with PSO-PI controller compared with PI con-
troller, which referred to the baseline-gain scheduled con-
troller in [28]. The generator power of WT is exhibited
by Fig. 12(a), which shows either the PSO-PI or PI con-
troller can track the rated power with little deviations that
can be ignored. Obviously, the figure in Fig. 12(b) shows
that the TTFD of WT with PSO-PI controller has signif-
icantly fewer deviations compared with PI controller. The
PI and PSO-PI parameters and the corresponding objective
values are documented by Table 6, which shows the PSO
optimal PI-based WT models have smaller TTFD devia-
tion and fitness values than the PI-based systems. As the
data shown, the performance of WT improves approximate
22.4% for using PSO. More specifically, although the MAE
of power increases a little bit about 0.3514 kW, the SD of
TTFD reduces by 0.078 m and the MAD of TTFD decreases
by 0.2332 m.

Furthermore, dynamic response under random wind speed
changing from 12m/s to 20m/s, including clean and ice sce-
narios are optimized by PSO algorithm, which costs about
140,400 seconds. The results are shown in Appendix B,
which can be found that WT with ice loads has different

FIGURE 12. Performance comparison in metrics of: (a) Generator power
(b) TTFD under 20m/s wind speed and ice loads.

TABLE 6. Parameters and indexes of PI and PSO-PI controller.

optimization results compared with clean scenario and the
minimum improvement is more than 10%.

B. NONLINEAR REGRESSION OF PI PARAMETERS BASED
ON SVR
In order to achieve the improvement of WT performance
under variable scenarios, the nonlinear regression of opti-
mized parameters based on SVR algorithm is proposed in this
section.

As shown in Fig 9, the inputs of SVR are the ice signal and
the nine data pair of wind speed, optimized parameters P and
I. Additionally, analytic expression of the parameter P and I
with respect to the wind speed and ice signal is the output
of SVR. As the parameters under the clean and ice scenario
have the same regression process, the regression of parameter
P under certain scenario of ice is given as an example in
this section. The flow chart of the adopted SVR algorithm
is shown in Fig. 13.

The basic idea of support vector regression is to map the
sample data to the high-dimensional feature space for linear

VOLUME 7, 2019 181715



Z. Song et al.: Real-Time Performance Analyses and Optimal Gain-Scheduling Control of Offshore WT

FIGURE 13. Flow chart of the SVR algorithm.

fitting through a nonlinear mapping 8(v). Given a training
sample:

X = {(vi,Pi)|vi ∈ R,Pi ∈ R, i = 1, 2, · · · , 9}

the fitting function is expressed as fp(v) = w ·8(v)+b, which
minimizes the expected risk:

R[f ] =
∫
l(P− fP(v))dP(v,P) (36)

where l(·) is the loss function. The nonlinear function fitting
of support vector regression introduces an ε-insensitive loss
function to modify distance, which means it can tolerate
fP(vi) and Pi have a maximum deviation of ε. And ε is used
to control the number of support vectors and increase the
robustness of regression so that the solution of the nonlinear
function is expressed as the following constrained optimiza-
tion problem [42]:

min : J (w, b, ξi, ξ̂i) =
1
2
‖w‖2 + C

9∑
i=1

(ξi + ξ̂i)

s.t . fP(vi)− Pi ≤ ε + ξi
Pi − fP(vi) ≤ ε + ξ̂i
ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, . . . ,m (37)

where C is the regularization constant to control the fitting
accuracy. And the relaxation variable ξ is introduced in con-
sideration of the fitting error exceeding the precision.

Then the Lagrange multiplier method is used to solve
this optimization problem, and the Lagrange multiplier is
introduced as:

µi ≥ 0, µ̂i ≥ 0, αi ≥ 0, α̂i ≥ 0

to construct the following Lagrange function.

L(w, b, ξi, ξ̂i)

=
1
2
‖w‖2 + C

9∑
i=1

(ξi + ξ̂i)−
9∑
i=1

µiξi −

9∑
i=1

µ̂iξ̂i

+

9∑
i=1

αi(fP(vi)− Pi − ε − ξi)

+

9∑
i=1

α̂i(Pi − fP(vi)− ε − ξ̂i) (38)

In order to obtain the minimum value of the above for-
mula, we make the partial derivative of L to the independent
variables zero respectively and obtain the solution. Then the
original optimization problem can be transformed into the
corresponding dual problem:

max : [−
1
2

9∑
i=1

9∑
j=1

(
αi − α̂i

) (
αj − α̂j

)
K (vi, vj)

− ε

9∑
i=1

(
αi + α̂i

)
+

9∑
i=1

yi
(
αi − α̂i

)
]

s.t.
9∑
i=1

(
αi − α̂i

)
= 0

0 ≤ αi, α̂i ≤ C (39)

Through substituting the solution into (38), we consider the
feature mapping form 8(v) to get:

w =
9∑
i=1

(αi − α̂i)8(v) (40)

Finally, we obtain the fitting function expression by assuming
α is the optimal solution:

fP(v) = w ·8(v)+ b =
9∑
i=1

(αi − α̂i)K (v, vi)+ b (41)

where K (v, vi) = 8(v) · 8(vi) is a kernel function that
satisfies the Mercer condition, and the function can realize
the nonlinearization of the algorithm without knowing the
specific form of the nonlinear transformation.

The types of kernel functions are Linear Kernel Functions,
Polynomial Kernel Functions, and Radial Basis Functions
(RBF) [43]. The RBF used in this paper has the advantages of
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TABLE 7. Optimal gains and improvement.

FIGURE 14. Regression results based on SVM: (a) Parameter P;
(b) Parameter I.

simple form and good smoothness (the existence of any order
derivative). It defines as:

K (v, vi) = exp(−‖v− vi‖2 /2σ 2) (42)

Considering that the selection of parameters C and ε will
affect the fitting precision (the larger C is, the overfitting will
occur; The smallerC is, the underfitting will occur), we adopt
the grid search method in this paper to improve the precision
of regression and find the optimal parameter value to obtain
the best fitting effect.

FIGURE 15. The application of regression results in OGS-PI controller.

Having applying SVR four times under the different sce-
narios and parameters, the regression results of PI parameters
are shown in Fig. 14. More importantly, the application of the
regression results in OGS-PI controller is shown in Fig. 15.
When the ice signal or wind speed changes, the OGS-PI
controller can adjust the parameter real-time by calculate the
regression function, which realizes performance compensa-
tion and improve the dynamic characteristics of theWT under
ice creep scenario. Additionally, in order to verify the sta-
bility of the discrete gain-scheduling system, for all specific
conditions, the optimal parameters of adjacent conditions
are substituted into the operation for testing. All conditions
have the simulation results with stability, which proves the
robustness and stability of the system.

C. SIMULATION RESULTS
As variable pitch control is the main control method in this
paper, the wind speed is selected in range from 11.4 m/s to
25 m/s. The simulation time is set to 70 seconds where the
latter 60 seconds are adopted to analyze. In this simulation,
PI, PSO-PI and OGS-PI are applied as the control strat-
egy respectively and the results are compared together. The
dynamic response under random wind speed with ice loads

VOLUME 7, 2019 181717



Z. Song et al.: Real-Time Performance Analyses and Optimal Gain-Scheduling Control of Offshore WT

FIGURE 16. Simulation verification result with ice loads: (a) Wind speed
(b) Generator power (c) TTFD (d) Pitch angle.

TABLE 8. Indexes of PI, PSO-PI, and OGS-PI controller.

are presented in Fig.16 and the detail data of the objective
value are given in Table 8.

The comparison performs in the Table 8 shows that the
OGS-PI has the cost function value 27.5% less than the PI
and 6.6% less than the PSO-PI. And in the part of generator
power, the OGS-PI has approximately zero deviation with
rated power as shown in Fig. 16(b). The advantage of OGS-PI
is particularly reflected between the 35 and 45 seconds.

During that time, Fig. 16(d) exhibits the output pitch angle
of the three controllers where the pitch angle of OGS-PI is
adjusted faster under the constraint of rate with less adjust-
ment magnitude than the other two controllers as the wind
speed changes rapidly. In other words, the OGS-PI can ensure
the generator power exactly tracking rated power. More
importantly, in the part of TTFD, the OGS-PI reduces SD of
TTFD about 45.5% compared with PSO-PI and 77.1% less
than the PI as shown in Fig. 16(c). Additionally, the real max-
imumTTFD deviation of OGS-PI decreases 42.4% compared
with PI and 14.9% less than PSO-PI.

As a result, together with OGS-PI controller, it can weaken
the performance degradation of WT due to ice loads. The
performance improvements of power and TTFD are mainly
attributed to the adaptability of OGS-PI controller to oper-
ating conditions and environmental scenarios while the PI
and PSO controller can only work effectively for one specific
condition.

IV. CONCLUSION AND FUTRUE WORK
In present study, based on the proposed WT model, environ-
mental loads model and structural vibration model, the per-
formance losses of WT due to creep ice loads are analyzed
and demonstrated adequately under variable operating con-
ditions. It should be noted that the vibration intensification of
TTFD is the main influence of ice loads, which also affects
the generator power due to the reduced windward area and the
change of attack angle. More importantly, an Optimal Gain
Scheduled PI (OGS-PI) pitch angle controller, including the
application of PSO and SVR has been designed to regulate
the WT to capture the rated wind power and reduce TTFD
under ice loads when the wind speed exceeds the rated value.
The PSO algorithm is applied repeatedly to optimize the
parameter P and I of different operating conditions off-line,
which can improve the performance ofWT at least 10% under
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Mw =

mb/3+ mt/4+ mth2/L21 mb/6+ mt/4− mth2/L21 mth/L1
mb/6+ mt/4− mth2/L21 mb/3+ mt/4+ mth2/L21 −mth/L1

mth/L1 −mth/L1 m2


Kw =

 0.25(k1 + k2 + k3) 0.25(k2 + k3) 0
0.25(k2 + k3) 0.25(k2 + k3) 0

0 0 kt



random wind with a certain mean speed. The SVR algorithm
is used to fit optimized parameters so that the regression
results can be adopted to schedule the gain of controller
online. The simulation results from the high-fidelity simula-
tor FAST prove that the OGS-PI based pitch angle controller
performs better in constant generator power regulation and
TTFD minimization, with stable actuator usage comparing
with the PI and PSO-PI controller.

However, it should be noted that wind in real life is
more volatile and random than wind in simulation. Thus,
this causes practical challenges for any controller that relies
on wind speed measurement. First, the average wind speed
is difficult to measure accurately where estimator or lidar
often applied to improve the accuracy. Then, the robustness,
optimality and stability cannot be guaranteed when applied
in an actual scenario, which can be further improved through
adopting the controller with predictive function such as the
model predictive control (MPC). Additionally, ice loads have
three types, including buckling failure, creep of which we
focus on the type in this study, and crushing failure. Future
work on rest type of the ice loads will be carried out with
more accurate models.

APPENDIXES
APPENDIX A
MASS AND STIFFNESS MATRIXES
Mw and Kw as shown at the top of this page.

APPENDIX B
See Table 7.
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