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ABSTRACT This paper presents a method to localize line locations with subpixel accuracy and a method to
link the locations based on a linking distance. This paper first proposes a subpixel line localization method
based on normalized sums of gradients (NSG) calculated by dividing pixel sum of gradients by the sum of
gradient lengths within the pixel neighborhood. The proposed NSG method is compared with current state-
of-the art based on a Taylor series approximation of intensity surface and the normal vector derived from
the Hessian matrix. Comparative experiments for subpixel line localization methods were performed with
simulated and natural images and confirmed the proposed subpixel localization method provided superior
accuracy and faster localization under most combinations of varying line width and noise strengths than
the state-of-the art localization method. The proposed linking method was also designed to have more
straightness and omni-directionality than a current state-of-the art method. Experimental comparison of
linking methods confirmed the proposed linking method provided superior linking quality than current state-

of-the art.

INDEX TERMS Location linking, normalized sum, subpixel line localization.

I. INTRODUCTION

In image processing, a line is a geometrically elongated
feature that has brighter or darker intensity than neighboring
pixels. Some literature also refers to a line as a ridge or valley
when the line intensity is greater or less than neighboring
pixels, respectively [1]-[3]. Line features are one of the most
important, frequently observed features for indoor, building
facade, satellite, medical, road, etc. imagery, and extensively
used by perceptual systems to analyze and interpret scenes in
an image. Therefore, line extraction is important for image
processing and computer vision fields.

The demand for efficient line feature extraction from
images has grown rapidly due to advancements in vari-
ous applications, including lane extraction for autonomous
driving [4]-[7], blood vessel extraction for medical
images [8], [9], road extraction from satellite images [10].
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To extract high quality localized linear features, one
must first find subpixel locations of linear features. How-
ever, this topic has received scant research attention, aside
from Steger [11], who proposed a subpixel line localiza-
tion method based on Taylor series approximation (TA)
of surface intensity and the normal vector derived from
the Hessian matrix. However, this paper shows that the
proposed method suffers from unstable linear feature local-
ization for weak line signals and high noise level. There-
fore, this paper proposes a subpixel line localization method
based on normalized sums of gradients (NSG) within
each neighborhood of a detected line pixel to resolve this
issue.

To obtain line features in vector form, one must link
localized feature locations by grouping the locations into a
sequence. Although the process is critical to extract linear
features in a semantic form, previous studies have largely
considered linking locations at the pixel level [12], [13],
with few at the subpixel level [11]. Therefore, this paper
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also tackles this issue by proposing a subpixel level linking
method.

This remainder of this paper is organized as follows.
Section II describes related studies for subpixel line local-
ization and linking. Section III proposes subpixel line
localization and linking methods. Sections IV and V present
line localization experiments for simulation images and natu-
ral images, respectively. Section VI presents experiments for
line linking. Section VII concludes the paper.

Il. RELATED WORK

A. SUBPIXEL LINE LOCALIZATION

Although many studies have considered subpixel edge local-
ization [14]-[18], few approaches have considered subpixel
line localization. Steger [11] proposed a normal vector based
method that localized line points to subpixel accuracy by
finding the location where the first derivative of a TA of a
line profile was zero in the direction corresponding to the
maximum absolute eigenvalue of the Hessian matrix. How-
ever, this paper shows that the proposed approach is highly
sensitive to weak line signal and high noise level. Therefore,
this paper proposes an alternate approach based on normal-
ized sums of gradients (NSG), which has less sensitivity to
weak line signal and high noise level than the TA method.

B. LINKING

Line linking creates a sequence of coordinates from a set
of isolated pixels or positions by joining them sequentially,
and is similar to edge linking since both methods can be per-
formed on either detected pixels or localized positions. There-
fore both edge and line linking approaches were reviewed.

Basak et al. [12] proposed a method to link edge or
line pixels based on updating the network model. However,
the approach employed a multi-step procedure to find the
pixel links, with consequentially high computational cost.
Farag and Delp [19] proposed a graph search-based linking
method, where pixel links were established based on optimal
paths between ending pixels, determined by estimated maxi-
mum likelihood. Lu and Chen [20] proposed a method to link
edge pixels with similar intensity pixels with high contrast
to eight neighboring pixels based on ant-colony optimiza-
tion. However, this method required carefully tuning several
parameters, which could be arduous.

Steger [11] proposed a method to link line pixels based
on a combination of distance and angle differences between
subpixel localized locations. However, a critical limitation
of the approach was that it only considered three candidate
pixels closely located about the current line direction, and
hence may not link the line pixels successfully, particularly
for highly curved line features. Wang and Zhang [21] pro-
posed an edge linking method based on geodesic distance,
calculated using Euclidean distance between pixels, pixel
intensity differences, and directional differences between past
movement and the line joining the current edge pixel to
candidate edge pixels.
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Lin et al. [22] proposed an edge linking method for lane
extraction that connected edge pixels by checking three pixels
nearest to past movement direction within a 3 x 3 neigh-
borhood for each pixel. Flores et al. [23] proposed a link-
ing method that searched for a connecting direction among
five directions within 90° from past movement direction.
Akinlar and Topal [24] proposed selecting pixels as anchor
points when their gradient magnitude exceeded gradient
magnitudes of neighboring pixels by a given threshold, and
checked three pixels in the immediate neighborhood of the
current linking direction. Akinlar and Chome [13], [25]
smoothed a traditional Canny edge detector’s binary edge
map (BEM), and then traced edge pixels in the smoothed
BEM. Akinlar [26] proposed an edge linking method that first
calculated edge directions based on the maximum number in
the soft contour map containing the number of accumulated
detections at each pixel for a series of images generated by
varying the degree of smoothness; detected anchor pixels
based on directional coherence in prespecified directions in
the 3 x 3 neighborhood for each pixel; and then connected
the anchor pixels by linking edge pixels close to the direction
determined from past movement directions.

Gap closing connects edge or line segment
endpoints [27]-[30]. Zhu et al. [27] proposed an edge gap
closing method based on a directional potential function that
modeled linking potentials by classifying edge pixels within
a 3 x 3 neighborhood. Ghita [28] proposed a method to
link edge segments’ endpoints based on cost calculated as
the distance between an endpoint and candidate edge pixels,
and on the condition that the candidate edge pixel was an
endpoint. Shih and Cheng [29] proposed a similar edge gap
closing method based on adaptive mathematical morphology,
using adaptive elliptical structuring elements for dilation and
erosion, depending on local edge segment shapes. Sappa and
Vintimilla [30] proposed a gap closing method using graph
based linking method with Euclidean distance between edge
pixels in 3D space. Pixel coordinates comprised two location
and one intensity values. Although the current paper does
not consider gap closing due to space considerations, gap
closing should be performed after edge or line linking when
gaps affect feature extraction significantly to obtain complete
linear features.

A common problem for most previous, even state-of-the-
art, linking methods is low precision due to the linking
process being performed at the pixel level. This leads to
nonsmooth (jagged) line features since line point locations
are limited to pixel precision. Steger [11] proposed a method
to address this problem by using subpixel localized line loca-
tions to perform linking. However, the method only consid-
ered three neighboring pixels’ subpixel localized positions as
candidate positions, which may not connect well with line
positions when line features are highly curved. In contrast,
the linking process proposed in the current paper overcomes
this limitation by considering all localized positions as can-
didate line positions based on a proposed linking distance
measure.
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FIGURE 1. One-dimensional line profile model used in the current study.
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FIGURE 2. Gaussian blur for the one-dimensional line model.

lIl. PROPOSED SUBPIXEL LINE LOCALIZATION AND
LINKING METHODS

A. LINE MODEL

Image processing must always deal with some amount of
blur and noise due to limitations imposed by the camera lens
system. Many previous studies have adopted the approach
that any real image, I, can be modeled as a base signal, F
convolved with blur, b, and noise, n [31]-[39],

I=Fxb+n, 1

where * indicates convolution.

Seo [40] proposed a more comprehensive blur model with
blurring patterns in edge neighborhoods. However, this paper
employed the image formation model in (1) in the following
derivation because of its simplicity.

This study modeled line profile by width, w, and contrast,
k, as shown in Fig. 1. Although a more general line model has
been proposed previously [11], modelling a line with different
contrasts on either side, the derivation here uses the simpler
model in Fig. 1 because it is much simpler for subsequent
tests and most line features have similar contrasts on either
side.

From Fig. 1, the one-dimensional line signal is modeled as

h+k, iflx—L|< Y;
F(x) = 2 2)
h, otherwise,
where L is the coordinate of the line center.

A one-dimensional Gaussian blur is introduced to consider
blur effects in the image formation,

L 3)
W 2mop '
where o}, is the blurring factor.

Fig. 2 shows an exaggerated version of the blur function,

—x)? . .
(z20x2) ), centered at an arbitrary location, x. Thus,
b

b(t) =

k - exp(—
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intensity at x after blurring is
x+%5—L k - ,722
e ¥ drt,

b(r) = (F # b)(x) /X_H i

k x+5—L B x—¥-L
[erf(—(’b\/E ) erf(—%\/E )] @)

[\

B. SUBPIXEL LINE LOCALIZATION BASED ON TAYLOR'S
EXPANSION APPROXIMATION

This section describes the previously proposed TA approach
to subpixel line localization [11]. The TA approach sets up a
Hessian matrix for each line pixel using second derivatives,
8cc, 8re, and g at the center of the line pixel, (r, ¢),

_ | 8ee(r,0)  gre(r,c)
= [gm(r, O gelr, c)} :

The approach then found the eigenvector corresponding
to the maximum absolute eigenvalue of the Hessian matrix,
which indicated the direction in which the intensity surface
around the line pixel is maximally curved. The normalized
curvature direction vector of the eigenvector is denoted as
[ny, nc]. Then the translation, # along the normalized maximal
curvature direction vector from the center of the current line
pixel to the subpixel line location is modeled by a Taylor
approximation for a two-variable function, and calculated
using the first and second derivatives at the center of the line
pixel and the normalized maximal curvature direction vector,

&)

B ge(r, One + gre(r, Ony

Seelr, C)ng + 8re(r, Oneny + gee(r, C)n% ’
where g, and g, are first derivatives or gradients in the column
and row directions, respectively.

Translations from the center line pixel to subpixel line
location can be expressed as

t= (6)

ScTA = the
SrTA = ;. (7
Finally, subpixel line coordinates are

cTA = ¢+ dcta
FTA = F + 0r7A. 8)

C. PROPOSED SUBPIXEL LINE LOCALIZATION METHOD
This section proposes a subpixel line localization method
based on NSG. One of essential elements is to find the sum
of gradient magnitudes corresponding to a unit pixel length
for normalization.

The method first calculates the sums of gradients within a
local window with size (2K +1) x (2K +1) pixels for gradients
in both row and column directions,

K K
Se, (r, ) = Z Z gr(r+m,c—+n)

m=—K n=—K

K K
Se.(r,c) = Z Z g.(r +m,c+n, )

m=—K n=—K
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respectively, where K is a positive integer that controls the
size of a local window, and set to K = 1 in this paper. Units
for Sg,.(r, ¢) and Sg (7, ¢) in (9) are intensity per (2K + 1)?
pixels.

The method then calculates the sum of gradient magnitudes
within the local window,

K K
ngag(r’ C) = Z Z [grz(r +m,c+ n)

m=—K n=—K
1
+glr +mc+m]2, (10

where units for S, . g(r, c¢) in (10) is intensity per
(2K + 1)? pixels per pixel, because the gradient magnitude
sum is assumed to be measured for unit pixel length.

Subsequently, the sums of gradients in (9) are normal-
ized using the sum of gradient magnitude in (10). However,
a metric is calculated for normalization, which can be used to
determine the state of a line pixel, i.e., ridge or valley. Two
kernels are defined to achieve this end,

-1 0 1
Ne=|[-1 0 1 (11)
-1 0 1
and
-1 -1 -1
Ne=| O 0 o1, (12)
1 1 1

and the following metric is calculated to determine the line
pixel state at (r, ¢),

P(r, ) = —[(gr * Nr) + (gc * No)| (7, ©). 13)

A line pixel is classified as ridge when P(r, c) > 0, and
otherwise as a valley. Although this classification into ridge
or valley is performed as part of line pixel detection, it was
included in this section to assist understanding the following
derivations.

The normalization term in (10) is signed based on the line
pixel state in (13),

if P(r,c) > 0;
otherwise.

Semag (75 €)s

14
_ngag (r’ C)’

D(r,c) = {

Translations relative to the line pixel center are calculated
by normalizing the sums of gradients from (9),

Sg.(r, c)
dCNSG = —g(r 9
Sg,(r, )
8 =& 15
INSG ) (15)

where units of cnsg and drnsg in (15) are pixels (from the
units of Sg (7, ¢), Sg, (7, ), and D(r, c)).
Finally, subpixel line coordinates are

CNSG = € + 8¢NSG
INSG = T + dINSG- (16)
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FIGURE 3. Line point linking distance by (a) Steger’s and (b) proposed
method. Colors represent calculated linking distance and half-transparent
regions represent linking distances < 3.0.

D. PROPOSED LINE LINKING METHOD
Linking generates a set of connected line points by joining
line locations, which requires measuring distances from the
current line to a set of candidate locations, called linking dis-
tances. Steger [11] proposed a simple addition of geometric
and angular distances to calculate linking distance, whereas
this paper proposes linking distance calculated as the product
of geometric and angular distances.

The geometric distance between location, (7, ¢.), and each
forward candidate location, (77, cr), to be linked can be
expressed as

1
di = [(¢r — ¢ + Gy =12, (17
and the corresponding directional angle as
6 = tan~' (L%, (18)
Cf — C¢

Hence the difference between the current line direction, 6.,
and the candidate line direction, 6 is

dop =6 — O, (19)
and angular distance is
d, = A1 — cosdp), (20)

where A is a factor to control angular distance influence on
linking distance; A = 3 in this study.
Finally, linking distance is

d = di(1 +d,). Q1)

Given a set of candidate locations, the location with mini-
mum linking distance is selected and connected to the current
location, the current proceeding direction is updated to the
selected forward direction, and the current location is updated
to the selected location.

Figure 3 shows linking distances used by Steger’s [11]
and the proposed method for geometric and angle distances
(d; and dp, respectively). When d; is relatively large, e.g.
d; > 0.8 pixels, the proposed linking method considers
straightness more significant than geometric distance com-
pared with Steger’s method. Although Steger’s method does
not consider locations with dg > 7, the proposed method
considers those locations as candidates when dj is relatively
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FIGURE 4. Simulated 101 x 101 pixel images, generated with constant contrast (k = 1), blurring factor (o5, = 1), line width (w = 6), and noise
strength (on = 8/255), for (a) 6 = 0°, (b) 6 = 23°, (c) 6 = 47°, and (d) 6 = 82°.

small, e.g. d; < 0.8 pixels. In principle, this could allow loca-
tions almost opposite to the current direction to be linked to
the current location. However, this rarely occurs in practical
cases, because the distance between detected and subpixel
localized line features tends to be greater than 0.4 pixels in
most cases (experimental data not shown due to space limita-
tions). However, a culling process is also applied prior to the
linking process to remove locations with weak line signals
located within a tolerance, e.g. 0.2 pixels, from locations
with stronger line signals to completely remove the concern
regarding linking opposite direction locations.

IV. SUBPIXEL LINE LOCALIZATION EXPERIMENTS WITH
SIMULATED IMAGES

A. GENERATION OF SIMULATIVE IMAGES

To test subpixel localization performance for the TA and
proposed NSG method, a series of images were generated
containing line features with fixed blurring factor, o, = 1,
varying line width, w, line normal angle, 6, and noise, o,,. For
the given image center coordinates, (rg, cg), and line normal
direction, 6, normal distance from the origin to the center of
the line, p was calculated as

p = cocosf + rysinb, (22)
and two distances were calculated for each pixel location,
(r,o),

ccosf +rsinf —p+ 5

Ub«/z
w

ccos® +rsinf —p — 3

op/2

For the given contrast, k, described in (2), intensity at each
pixel was then calculated as

Di(r,c) =

Dy(r,c) = (23)

k
Fp(r,c) = 5[erf(D1(r, ¢)) — erf(Dy(r, ¢))]. (24)
and an image was generated by adding a noise image, n,
I=Fp,+n, (25)

where each value in n(r, ¢) was assumed to follow a normal
distribution, N (0, o.2).
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Figure 4 shows four typical example 101 x 101 pixel
simulation line images with varying 6 and constant k = 1,
op =1,w =6, and o, = §/255.

Denoising is commonly applied before features are
extracted from noise contaminated images, to obtain good
quality features. Therefore, this paper applied a smoothing
convolution,

I =Ixs, (26)

where s is a two-dimensional gaussian function with standard
deviation oy.

In this paper, the gradient images, g, and g, were derived
by the convolution of a smoothed image with the Sobel
operators. In addition, the elements of the Hessian matrix, gcc,
grc, and g were derived by the convolution of the gradient
images with the Sobel operators.

B. SPECIAL SIMULATION TESTS

First, line pixels in the simulation images were detected by
a procedure based on the sum of gradient angle differences,
and the TA and proposed NSG model was subsequently
applied for subpixel line localization. Fig. 5 shows typical
localization results for o, = 30/255 with varying w and 6.
The proposed NSG model produced better localizations than
TAforw=1,0=0%w=2,0 =15 w = 3,0 = 30°%
w=26,0 =60°w=8,and & = 75°. However, NSG and
TA localizations were comparable for w = 4, 6 = 45°. NSG
localizations were found significantly more accurate than TA
when w = 8 (Fig. 5(f)), i.e., relatively weak line signals at
line feature centers.

Figure 6 compares TA and NSG performance using root
mean square error (RMSE) of localized positions for varying
0, w, and o,. All the graphs have the same scale except
Figs. 6(h), (k), and (I). NSG produced better localizations
than TA when o, = 10/255 and w = 2,8, i.e., relatively
weak line signals at line feature centers. Thus, the proposed
NSG based approach provides more accurate localization
than TA under severe conditions.

Localization RMSE for TA and NSG are comparable when
o, = 10/255 and w = 4 (Figure 6(b)), indicating that TA
and NSG performances are comparable for relatively strong
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FIGURE 5. Localization results for TA and NSG methods on simulated images with noise strength o, = 30/255 with (a) line width w = 1 and line
normal angle  =0°, (b)w =2and 6 =15°, (c)w =3 and ¢ =30°, (d) w =4 and ¢ = 45°, (e) w =6 and 9 = 60°, and (f) w = 8 and 6 = 75°.
TA and NSG results are shown in blue rectangles and red triangles, respectively.

line signals. NSG produced lower quality localizations than
TA only when o, = 10/255 and w = 6 (Fig. 6(c)). How-
ever, the performance difference is not significant and should
not be considered a limiting case, because NSG produced
superior localizations than TA for increased o, = 30/255
with constant w = 6 (Fig. 5(e)). This is discussed further in
Section IV-C.

Considering noise strength, NSG produced superior local-
izations across all tested line widths (Figs. 6(h), (k), and
(1)) and significantly outperformed TA for relatively weak or
highly noise contaminated line signals at line feature centers.
Thus, overall NSG provides better localization than TA aside
from very limited cases.

C. GENERAL SIMULATION TESTS

Tests were performed on simulated line images generated
withw = 1,2,---,8 and 0, = 0,5,---,60/255, with
6 = 0,1,---,90° for each case. Localizations were per-
formed using TA and NSG, and then RMSE was calculated
for each case. Finally, mean RMSE was calculated for each w
and o, combination. The effect of smoothing on localization
was also investigated, setting oy = 0.5,0.75,---,1.25;
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oy > 1.25 were not considered because larger o, tends
to mix signals within a neighborhood in real images,
and hence are inappropriate to extract fine features from
images.

Figure 7 shows the outcomes for the various w, o, 6, and
oy experiments on simulated images. Overall, NSG produced
more accurate localizations than TA under varying w and o,.
Both methods produce large localization errors when w < 2
or w > 5 pixels compared with other conditions, but NSG
remains superior to TA (Figs. 7(c), (f), and (i)). Localization
errors for both TA and NSG monotonically increased with
increasing oy, but NSG increases were significantly less than
TA. Thus, NSG localizations were more accurate and less
sensitive to noise and signal strength than TA.

Table 1 summarizes processing time for TA and NSG local-
ization of all detected line pixels in the simulated images. The
number of the detected line pixels varied with oy, line pixel
detection generated multiple line responses around some true
line locations for small o;. The proposed NSG method was
approximately 20% faster and 40% more accurate than TA
for o, = 0.5, and 25 % more accurate for o = 1.0, providing
significant justification to apply NSG rather than TA to real
images, since images are commonly filtered with oy = 1.0

VOLUME 7, 2019
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FIGURE 6. Simulation image localization against line normal angle (¢) for various noise strength (o5) and line width (w) with constant
smoothing factor, ¢s = 1.0, and (a)-(d) on = 10/255, (e)-(h) on = 30/255, and (i)-(I) on = 60/255. Line width (a), (e), and (i) w = 2; (b), (f),

and (j) w = 4, (c), (g), and (k) w = 6, and (d), (h), and (I) w = 8 pixels.

TABLE 1. Processing times and overall root mean square error (RMSE) for
Taylor's expansion approximation (TA) and proposed normalized sum of
gradients (NSG) approaches on simulated images.

Number of
localized Processing time (s) Mean RMSE
Os pixels TA NSG TA NSG
0.50 884,932 8.52 6.84 041 0.25
0.75 797,728 7.94 6.27 0.28 0.18
1.00 764,803 7.58 591 0.20  0.15
1.25 755,400 7.15 5.72 0.14  0.13

in many real world applications to better preserve fine image
features while reducing noise significantly.

V. SUBPIXEL LINE LOCALIZATION EXPERIMENTS WITH
NATURAL IMAGES

Figure 8 shows the twelve natural images collected for exper-
imental tests of localization and linking methods. As shown
in Fig. 8, the first nine images were color images having
three bands and the rest of the images were greyscale images.
Intensity of the images was [0, 255].

Column 1 in Fig. 9 shows the results of a sum of gradient
angle differences-based line detection method with classifi-
cation of line pixels into ridge and valley pixels, and Table 2
summarizes the number of detected line pixels for each class.
Line features generated by this process are zigzagged because

VOLUME 7, 2019

TABLE 2. Identified ridge and valley pixels in the natural images from
Fig. 8.

Image Ridge pixels (count)  Valley pixels (count)
Baboon 39,156 39,340
Barbara 40,009 41,489
Boats 34,094 33,516
Cablecar 23,778 24,548
Goldhill 46,096 47,384
Lena 16,203 16,849
Flowers 19,065 12,579
Monarch 19,157 22,695
Yacht 26,551 26,489
Fingerprint 25,960 23,587
Houses 27,161 27,759
Kiel 20,563 20,866

this typical line detection method produces line locations at
pixel accuracy.

Columns 2 and 3 in Fig. 9 show TA and NSG localization
outcomes, respectively on the natural images smoothed with
oy = 1.0. The first derivatives or gradients were calculated by
image convolution with the Sobel operators and the second
derivatives by convolution of the first derivative images with
the Sobel operators. Subpixel localization methods employed
the first and second derivatives calculated for the previous
line detection process without recalculation. TA and NSG
localizations exhibit comparable accuracy for Lena subset
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FIGURE 7. Root mean square error (RMSE) distribution effects for simulated localization under varying line width (w), noise strength (on),
and smoothing factor (o5). (column 1) TA and (column 2) NSG localization approaches, (column 3) difference between TA and NSG. (row 1)

os = 0.5, (row 2) o5 = 0.75, (row 3) o5 = 1.0, and (row 4) o5 = 1.25.

images; whereas Barbara subset images exhibit that TA-based
localizations were poor but NSG-based localizations good.
As shown in Barbara subset images, TA-based localization
was found to produce nonsmooth transitions during local-
ization, especially when line is thin. The reason for the
nonsmooth transition of TA-based localization is considered
to be caused by unstability in calculation of the second
derivatives when line is thin. This suggests NSG suffers less
localization problems than TA when line width is relatively
small.
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To test TA and NSG performance under noisy conditions,
random gaussian noise with 0, = 10 was added to the
original images, and subsequently smoothed with oy = 1.0.
Columns 4 and 5 in Fig. 9 show the resultant TA and NSG
localization performance, respectively. Localization quality
of the Lena subset images was not significantly affected
for both TA and NSG approaches when line width is not
relatively small. However, localization quality of the Barbara
subset images show that TA localizations in particular were
significantly displaced from their true locations, whereas
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FIGURE 8. Natural 512 x 512 pixel images: (a) Baboon, (b) Barbara, (c) Boats, (d) Cablecar, (e) Goodhill, (f) Lena, (g) Flowers, (h) Monarch,

(i) Yacht, (j) Fingerprint, (k) Houses, and (I) Kiel.

NSG localizations correspondeded well to visually detectable
line feature locations when line signal strength at line feature
centers afer smoothing was relatively low.

Quantification of the performance of the line localization
methods was evaluated based on the localization results from
the original images as ground truth. The reason for this
strategy is due to the following reasons. Firstly, as listed
in Table 2, the numbers of line pixels detected in the natural
images are too large to check their correctness individually
with human vision. Secondly, as shown in Fig. 10, there
exist many line features in natural images that cannot be
detected well by human vision. Thirdly, human vision is
not good at localization of features at subpixel accuracy
because a feature localization process requires calculations
with all the intensities of pixels near the feature to be
localized [18]. These reasons indicate that the ground truth
made by human vision is not reliable to test the perfor-
mance of line localization methods. Thus, in this paper, these
problems were solved by using the localization result from
the original images as ground truth and by evaluating the

VOLUME 7, 2019

localization results from noisy images based on the ground
truth.

Noisy images were generated by adding random gaussian
noise with o, = 5, 10, 15, 20, 30. TA and NSG localization
results from the original images are denoted as L%A and
LI(\)ISG, and from images with additional noise as Ly, and
Ly respectively. Thus, L-?A and LI(\)ISG were used as ground
truth to evaluate the accuracy of Ly, and L{gg. repectively
by measuring the following mean distances. Mean distances
among the localizations were calculated as

dl = Mean Distance(L%A, LI(\)ISG),
d2 = Mean Distance(LY, L),

d3 = Mean Distance(L{gg, Lisg)- (27)

Table 3 summarizes the mean distances for the natural
images. Distances among ridge and valley pixels are prefixed
with R and V, respectively. Mean distance, d1~ 0.5 pixels
for all the test images except the Fingerprint image; and
0.40 pixels for the Fingerprint image for both ridge and valley
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FIGURE 9. Examples of the experimental results of the line localization methods. (column 1) Line pixels detected by a line detection method.
Ridge and valley pixels are denoted by upward-pointing black and downward-pointing white triangles, respectively. Background images are
original images. (columns 2 and 3) Line localization results for the original images with smoothing factor o5 = 1.0 by TA and NSG-based
localizations, respectively. Background images are original images. (columns 4 and 5) Line localization results for the images with
contamination of additional noise (o, = 10) and smoothing (smoothing factor, ss = 1) by TA and NSG-based localizations, respectively.

Background images are the noise contaminated images.

pixels. The amount of mean distances for d1 can be consid-
ered as significant for precise engineering applications. Gen-
erally, d3 was approximately 30 to 40 % less than d2 across
all additional noise levels and natural images. Thus, NSG
is experimentally proved to produce more noise-insensitive
and accurate localizations than TA across varying noise
levels.

VI. LINE LINKING EXPERIMENT

Linking method experiments were performed for all the
test images shown in Fig. 8. For implementing Steger’s
method [11], neighborhood size was set to 5 x 5 pixels,
increasing the originally proposed 3 x 3 pixels to produce
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more suitable linking results. Implementations with the
original size (not shown here) generated very unsatisfactory
results with many fragmented line segments due to many
subpixel localized positions that should have been linked
having distance exceeding 1 pixel. Neighborhood size for
the proposed linking method was also set to 5 x 5 pixels.
Both linking methods were performed with subpixel locations
produced by the proposed NSG method.

Figure 10 shows the line segments produced by the linking
methods (line segments containing less than 5 points are
not shown). The proposed linking method produced longer
line segments than Steger’s method across all image parts.
In addition, Steger’s method produced many missing line
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TABLE 3. Mean distance between localized positions for the original and noisy images.

Baboon Barbara
Distance on=5 op=10 op,=15 0, =20 o, =30 Distance on=5 onp=10 on=15 o0, =20 o, =30
Rdl 0.52 0.52 0.52 0.52 0.52 Rd1 0.51 0.51 0.51 0.51 0.51
Rd2 0.18 0.34 0.47 0.57 0.71 Rd2 0.27 0.46 0.58 0.68 0.83
Rd3 0.10 0.18 0.25 0.31 0.40 Rd3 0.14 0.25 0.33 0.39 0.48
Rd3/Rd2(%) 51.6 52.8 53.7 54.2 56.8 Rd3/Rd2(%) 52.8 54.5 56.5 57.5 579
Vdl 0.52 0.52 0.52 0.52 0.52 Vdl 0.51 0.51 0.51 0.51 0.51
Vd2 0.19 0.35 0.48 0.58 0.73 vd2 0.28 0.47 0.60 0.70 0.83
Vvd3 0.10 0.19 0.26 0.32 0.41 vd3 0.15 0.26 0.34 0.41 0.49
Vvd3/vd2(%) 51.5 52.7 54.2 554 56.6 Vd3/Vd2(%) 55.6 56.3 57.5 58.0 59.2
Boats Cablecar
Distance on=5 on=10 on=15 o0, =20 o, =30 Distance on=5 op=10 op=15 o0, =20 oy =30
Rdl 0.49 0.49 0.49 0.49 0.49 Rd1 0.51 0.51 0.51 0.51 0.51
Rd2 0.26 0.44 0.58 0.68 0.83 Rd2 0.25 0.42 0.55 0.65 0.79
Rd3 0.16 0.27 0.35 0.42 0.51 Rd3 0.14 0.24 0.32 0.38 0.47
Rd3/Rd2(%) 59.5 61.0 61.4 62.0 62.2 Rd3/Rd2(%) 55.2 56.9 57.4 58.3 59.2
Vdl 0.48 0.48 0.48 0.48 0.48 Vdl 0.50 0.50 0.50 0.50 0.50
Vd2 0.30 0.46 0.59 0.69 0.84 Va2 0.26 0.44 0.56 0.66 0.78
vd3 0.18 0.28 0.36 0.42 0.51 vd3 0.14 0.24 0.32 0.39 0.47
Vd3/Vd2(%) 60.1 61.8 61.1 61.7 60.9 Vd3/Vd2(%) 54.5 55.9 57.7 58.4 60.3
Goldhill Lena
Distance on=5 op=10 op=15 o0, =20 o, =30 Distance on=5 op=10 op,=15 o0, =20 o, =30
Rdl 0.52 0.52 0.52 0.52 0.52 Rd1 0.49 0.49 0.49 0.49 0.49
Rd2 0.31 0.52 0.68 0.79 0.92 Rd2 0.34 0.55 0.71 0.78 0.90
Rd3 0.16 0.28 0.37 0.45 0.54 Rd3 0.17 0.30 0.40 0.46 0.55
Rd3/Rd2(%) 52.1 54.9 55.1 56.6 58.6 Rd3/Rd2(%) 52.0 55.0 56.0 59.0 61.2
Vdl 0.52 0.52 0.52 0.52 0.52 Vdl 0.50 0.50 0.50 0.50 0.50
vd2 0.32 0.55 0.72 0.33 0.96 Vd2 0.30 0.50 0.65 0.76 0.89
vd3 0.17 0.30 0.40 0.47 0.56 vd3 0.16 0.29 0.38 0.45 0.54
Vd3/Vd2(%) 529 54.1 55.1 56.6 58.6 Vd3/Vd2(%) 55.0 58.1 58.9 59.8 60.5
Flowers Monarch
Distance on=5 op=10 op=15 o0, =20 o, =30 Distance on=5 op=10 op,=15 o0, =20 o, =30
Rdl 0.53 0.53 0.53 0.53 0.53 Rd1 0.56 0.56 0.56 0.56 0.56
Rd2 0.23 0.39 0.52 0.61 0.76 Rd2 0.31 0.49 0.62 0.71 0.83
Rd3 0.13 0.23 0.30 0.35 0.44 Rd3 0.16 0.27 0.36 0.42 0.51
Rd3/Rd2(%) 56.7 57.5 57.2 58.0 57.8 Rd3/Rd2(%) 52.8 55.0 57.1 58.7 60.8
vdl 0.53 0.53 0.53 0.53 0.53 vdl 0.52 0.52 0.52 0.52 0.52
vd2 0.25 0.43 0.54 0.62 0.77 vd2 0.28 0.46 0.58 0.67 0.80
vd3 0.15 0.25 0.32 0.38 0.48 vd3 0.16 0.27 0.35 0.41 0.50
Vd3/vVd2(%) 59.1 57.5 594 60.5 61.6 Vd3/Vd2(%) 58.5 59.3 60.4 61.7 63.1
Yacht Fingerprint
Distance on=5 opn=10 op=15 o0, =20 o, =30 Distance op =5 on = 10 op =15 o0, =20 o, =30
Rdl 0.45 0.45 0.45 0.45 0.45 Rdl 0.37 0.37 0.37 0.37 0.37
Rd2 0.25 0.43 0.55 0.64 0.78 Rd2 0.09 0.17 0.25 0.33 0.45
Rd3 0.16 0.27 0.35 0.41 0.50 Rd3 0.07 0.13 0.18 0.23 0.32
Rd3/Rd2(%) 63.7 62.6 63.2 63.5 63.7 Rd3/Rd2(%) 74.9 73.4 724 71.7 71.0
Vdl 0.45 0.45 0.45 0.45 0.45 vdl 0.44 0.44 0.44 0.44 0.44
vd2 0.25 0.42 0.53 0.63 0.75 Vd2 0.09 0.17 0.25 0.32 0.46
vd3 0.15 0.26 0.34 0.40 0.48 vd3 0.06 0.11 0.16 0.21 0.30
Vd3/Vd2(%) 60.3 62.1 63.3 63.3 65.0 Vd3/vd2(%) 66.3 67.9 67.0 66.4 65.3
Houses Kiel
Distance on=5 op=10 op,=15 0, =20 o, =30 Distance on=5 op=10 on=15 o0, =20 o, =30
Rdl 0.46 0.46 0.46 0.46 0.46 Rd1 0.47 0.47 0.47 0.47 0.47
Rd2 0.21 0.35 0.45 0.53 0.65 Rd2 0.24 0.40 0.53 0.62 0.76
Rd3 0.13 0.22 0.29 0.34 0.42 Rd3 0.15 0.26 0.33 0.39 0.47
Rd3/Rd2(%) 62.2 63.1 64.1 64.1 65.0 Rd3/Rd2(%) 63.5 63.3 62.6 62.5 61.6
vdl 0.45 0.45 0.45 0.45 0.45 Vdl 0.48 0.48 0.48 0.48 0.48
Vd2 0.19 0.33 0.44 0.53 0.65 vd2 0.23 0.38 0.50 0.60 0.74
vd3 0.13 0.22 0.29 0.34 0.42 vd3 0.14 0.23 0.31 0.37 0.46
Vvd3/va2(%) 66.1 67.0 66.6 64.8 64.3 Vd3/Vd2(%) 60.0 61.5 61.7 61.5 61.9
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FIGURE 10. Line segments generated by the tested linking methods. (columns 1, 3, 5, 7) Results produced by Steger's method. (columns 2, 4, 6,
8) Results produced by the proposed linking methods. Ridge and valley lines are shown in red and yellow lines, respectively. Background images are

subsets of the original images.

segments parts compared to the proposed method. The reason
the proposed linking method produced longer line segments
was due to better straightness and omni-directionality in
the linking process, discussed in Section III-D. As shown
in Fig. 10, many phantom lines were observed near real line
and edge features. This effect is considered to be caused by
nonhomogeneous blurs for the bright and dark sides of image
features during imaging [40].

180166

VIl. CONCLUSION

This paper proposed a subpixel line localization method
based on normalized sums of gradients. Subpixel line local-
ization experiments with simulated and natural images
showed that the proposed subpixel line localization method
was faster and more accurate than a current state-of-the art
method under varying combinations of line width and noise
strength.
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A linking method based on a linking distance measure
derived from multiplicative combination of geometric and
angular distances was also proposed, and shown to produce
better quality line features than a current state-of-the art
method.

Thus, combining the proposed subpixel line localization
and linking methods is expected to be used to extract high
quality line features from real images with various signal
and noise levels. In this paper, the proposed line localization
and linking methods were only tested for natural images.
However, it is expected that the proposed methods can be
readily extended to the extraction of line features from binary
document images and binary contour images.
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