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ABSTRACT The traditional edge detection-based shoreline extraction method is severely disturbed by
noise, and it is difficult to obtain a continuous coastline. In response to the above problems, we propose
a coastline extraction method based on convolutional neural networks. Firstly, we replace the standard
convolution with the Mini-Inception structure in the backbone network to extract multi-scale features of the
object, and all the multi-scale features are concatenated. Then, we use the leaky-ReL U activation function
instead of the ReLLU activation function to avoid the problem that “dead” neurons cannot learn the effective
features of remote sensing images. Finally, the network fully exploits multi-level information of objects
to perform the image-to-image prediction. We carried out experiments on the remote sensing images of
Jiaozhou Bay in Qingdao. The experimental results showed that our method could effectively extract the
coastline automatically, and the producer’s accuracy and the user’s accuracy were higher than the comparison
methods.

INDEX TERMS Coastline extraction, remote sensing images, convolutional neural networks, backbone

networks, activation function.

I. INTRODUCTION

The coastline is the boundary between land and sea. Under the
influence of natural environment and human development,
the coastline has been in a state of change. Accurately grasp
the location of the coastline, the process of change, and the
trend of future coastlines to guide coastal aquaculture, coastal
zone development, navigation and transportation are of great
significance.

The methods of coastline extraction using remote sens-
ing images can be divided into two categories: manual
visual interpretation [1] and automatic computer interpre-
tation [2]. The visual interpretation has the advantages of
high interpretation accuracy and continuous coastline extrac-
tion, but it is susceptible to subjective factors, the effi-
ciency is very low, and the manual time-consuming is long.
Automatic computer interpretation has become the main
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research direction of scholars at home and abroad because
of its high efficiency and reusability. At present, the meth-
ods of coastline automatic extraction mainly include thresh-
old segmentation-based method [3], index analysis-based
method [4], [5], active contour model-based method [6], [7],
region growing-based method [8]-[10], etc. These methods
usually rely on the feature knowledge of remote sensing
images. According to the actual situation of the research
area, we need to gradually adjust various parameters to
obtain the optimal result of the visual judgment. The pro-
cess is time-consuming and laborious, and it is difficult to
determine the parameters. However, the edge detection-based
method [11]-[14] can detect the positions of the step change
of gray value by the spatial relationship of coastline with
Roberts, Canny, Sobel, Prewitt, Log, and other operators. The
method is simple and effective and does not need to rely on
the feature knowledge of remote sensing images to deter-
mine the parameters, so the method based on edge detection
becomes the main method of coastline automatic extraction.

180281


https://orcid.org/0000-0002-3186-5176
https://orcid.org/0000-0003-1612-4764
https://orcid.org/0000-0002-4585-0901
https://orcid.org/0000-0001-8458-1137
https://orcid.org/0000-0002-4830-3364
https://orcid.org/0000-0003-2461-8377

IEEE Access

X.-Y. Liu et al.: Coastline Extraction Method Based on Convolutional Neural Networks—A Case Study of Jiaozhou Bay

However, it is sensitive to noise and easy to lose edge infor-
mation when processing remote sensing images with complex
edges and obvious noise. In recent years, the edge detec-
tion methods based on convolutional neural networks have
become a research hotspot. In 2015, Xie and Tu [15] proposed
a holistically-nested edge detection network (HED). For the
first time, it performed image-to-image edge detection by
using fully convolutional neural networks, and the detection
effect obtained was far better than that of Canny. However,
the network did not make full use of the features of the
middle convolution layer, so that many details were lost.
In 2017, Yu et al. [16] proposed a deep end-to-end network
for category-aware semantic edge detection (CASENet). The
network not only performed single edge detection, but also
judged the edge category, but its detection accuracy was
not high, and it could not meet the remote sensing images
coastline extraction task with high precision requirements.
In the same year, Liu et al. [17] proposed an accurate edge
detector using richer convolutional features (RCF). It had a
more detailed feature fusion, and the performance had been
greatly improved. However, because the edge information
and background noise of remote sensing images are more
complex, the effect is not ideal when it is used in the coastline
extraction task.

In order to overcome these limitations and improve the
accuracy of coastline extraction, based on RCF, we pro-
pose a coastline extraction method based on convolutional
neural networks. This paper mainly refers to the following
research contents: (1) Aiming at the complex background
noise and large edge density of remote sensing images, and
the network structure is designed from the perspective of
enhancing feature extraction ability. This paper introduces
the Mini-Inception structure [18] and uses this structure to
redesign the backbone network so that the multi-scale fea-
tures of the objects can be extracted, and the multi-scale
features can be effectively aggregated to make full use of all
convolution features. In addition, the leaky-ReL.U [19] activa-
tion function is used to replace the ReL.U [20], [27] activation
function, which avoids the problem that dead neurons cannot
learn useful features of remote sensing images, thus improv-
ing the accuracy of coastline extraction. (2) The accuracy
and effectiveness of the proposed method were verified by
experiments on remote sensing images of Jiaozhou Bay in
Qingdao and its adjacent waters.

Il. RELATED WORK

RCF is a convolutional neural network for edge detection
proposed by Liu et al. [17]. It encapsulates all convolutional
features into more discriminative representation, making full
use of rich feature hierarchies. Its network structure is shown
in Figure 1.

RCF uses the backbone network to extract feature infor-
mation and generate feature maps. The backbone net-
work used includes convolution layers of VGG16 [21] and
ResNet50/101 [22]. In Figure 1, the backbone network
takes VGG16 as an example. The network is divided into
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FIGURE 1. RCF network structure. The backbone network takes VGG16 as
an example.

five stages. Firstly, the feature fusion is carried out by
using the method of feature superposition and summation
in each stage. Then, the fusion features are up-sampled
and enlarged to the same size as the original image,
which is convenient for the later stage supervision learn-
ing and the final feature fusion. Finally, the up-sampling
features on five stages are concatenated, and the final
detection results are output with 1x1-1 convolution fusion
features.

The background noise and edge information of remote
sensing images are more complicated than that of common
images. When using convolution layers of VGGI16 as the
backbone network of RCF for the coastline extraction task,
it is found that there are discontinuous areas in the coastline
extracted. While RCF using ResNet50/101 as the backbone
network, although the accuracy of coastline extraction has
increased, the model contains more parameters, increases
the calculation cost, and increases the requirements of
hardware.
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FIGURE 2. Our network architecture. The input is an image wi
possibility map in the same size.

lIl. PROPOSED ALGORITHM

A. NETWORK ARCHITECTURE

To overcome the shortcomings of RCF in using remote
sensing images to extract coastline, we use Mini-Inception
structure to replace the standard convolution in the backbone
network, strengthen the feature extraction ability of back-
bone network for remote sensing images, and encapsulate all
convolution features into more discriminative representation,
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ith arbitrary sizes, and our network outputs an edge

making full use of multi-scale information and multi-level
information of the objects. The ReL.U activation function is
used in RCE. As the training progresses, “‘dead” neurons
will be generated. These neurons cannot continue to learn the
useful features of remote sensing images. In order to avoid
the appearance of “dead’ neurons, we use the leaky-ReLLU
activation function to enable all neurons to produce effec-
tive predictions, which in turn improves the accuracy
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of shoreline extraction. The network structure is shown
in Figure 2.

Our network is divided into five stages, and Mini-Inception
structures in each stage are used to extract convolution fea-
tures. Each Mini-Inception structure is connected to a con-
volution layer with kernel size 1x1 and channel depth 21.
Moreover, after convolution, all feature maps in each stage
are accumulated to obtain hybrid features. After that, the
convolution layer of 1x1-1 is followed. Then the deconvo-
lution is used for up-sampling to get the output of the same
size as the original image. Finally, in order to utilize all the
feature hierarchies, the up-sampled feature maps of the five
stages are concatenated, and the 1x1 convolution kernel is
used to fuse the features, and the final result is output. The
Mini-Inception structures and the pooling layers constitute
the backbone network for extracting features. The backbone
network will be described in detail below.

1) BACKBONE NETWORK

With the improvement of the spatial resolution of satellite
sensors, the texture of remote sensing images is clearer, and
the background is more complex, which makes the task of
coastline extraction more challenging. When using a shallow
network to process remote sensing images, the extraction
capability of the network is limited due to the limited range of
perception. Using the deeper network, because of the increase
of the receptive field, we can get better detection accuracy,
but the deeper network structure represents a vast amount of
parameters, which increases the consumption of computing
resources. Therefore, we introduce the Mini-Inception struc-
ture, which aims to increase the feature extraction capability
of the backbone network without significantly increasing the
amount of calculation. Its structure is shown in Figure 3.
Furthermore, based on the 13 convolutional layers of VGG16,
the backbone network is designed using the Mini-Inception
structure. The details of the backbone network are shown
in Figure 4.

Feature maps:xa

Conv layers:n<nxa

Feature maps: <(a+b
Feature maps t ps:*(at+b)

’
Feature maps: xb
Conv layers: b
Out of last layer B
}
Concatenate
Conv layers:

nxn,
dilation=r

FIGURE 3. Mini-Inception structure. n x n denotes the size of the
convolution kernel, a and b denote the number of convolution kernels,
r denotes the dilated rate.

As shown in Figure 3, the essence of the Mini-Inception
structure is that the input data enters two branches sepa-
rately for parallel computing. The one uses a standard n x n
convolution. The other uses a dilated convolution [24] with
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kernel size n x n and dilated = r, which is equivalent to the
convolution with the convolution kernel size of [n+(n — 1) x
(r—1D] x[n+ (n—1) x (r — 1)], but the actual parameter
amount is the same as the standard n x n convolution, that is,
it does not increase any calculation cost. Finally, the feature
maps of the two branches are concatenated as an output.
The Mini-Inception structure uses the dilated convolution to
increase the receptive field of different branch convolution
kernels. For the same input object, it can extract features of
different scales at the same time, so the structure is used
instead of the standard convolution to enhance the feature
extraction ability of the backbone network for remote sensing
images.

As shown in Figure 4, in the backbone network, 13 Mini-
Inception structures are used to replace thirteen 3 x 3 stan-
dard convolutional layers. The total number of convolution
kernels in each convolution layer is based on the setting
of 13 convolution layers in VGG16, that is, the total number
of convolution kernels used in Mini-Inception1-5 are 64, 128,
256,512, 512 respectively, and then they are equally allocated
to two branches. The input object enters into two branches
for parallel calculation. The one uses the standard 3 x 3
convolution to extract features. The other uses the dilated
convolution with kernel size 3 x 3 and dilation = 2 to extract
features, which is equivalent to 5 x 5 convolution kernel, and
then the feature maps of the two branches are concatenated
and used as input to the next convolutional layer.

2) ACTIVATION FUNCTION

The activation function is the key to the artificial neural net-
work to achieve nonlinear expression, which directly affects
the final training effect of the network. The ReLU acti-
vation function is used in RCF, and the output after each
convolution is:

Fy (Y) = Max (0, Wy % Fy—1 (Y) 4 Bn) ey

where Max (0, -) corresponds to the ReLU activation func-
tion, W, is the convolution kernel size, B, is the bias,
F,_1 (Y) is the feature map of the last layer output.

It can be seen from formula (1) that when its input is
negative, it will be forced to convert to 0, resulting in that
the corresponding weights of neurons cannot be updated
during the training process. These neurons are called “dead”
neurons. And these “dead” neurons cannot be activated by
any incoming data, which means they are unable to continue
to learn any features. However, remote sensing images have
large edge densities and complex features. If we continue
to use the ReLU activation function, we will lose much
useful information. The leaky-ReL.U activation function is
especially proposed to solve the problem of neuron death by
ReLU. When the input data is negative, it can also produce
an effective prediction. Therefore, we choose the leaky-ReLU

activation function, and the output after convolution is:
F,(Y)=Max(ax(WypsFu_1(Y)+Bp, WyxF,_1(Y)+B)

@
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FIGURE 4. Detail of backbone network. x 2 denotes two Mini-Inception structures, x 3 denotes three Mini-Inception structures. The backbone network

uses a total of 13 Mini-Inception structures.

where W, F,—1 (Y), B, is the same as formula (1), « is
the parameter in the leaky-ReLU activation function, and
the expression of the leaky-ReLU activation function is
Max (ax, x).

3) LOSS FUNCTION

The definition of the loss function is essential for the perfor-
mance of convolutional neural networks. The training process
of the generating model is the optimization process of the loss
function. Our network implements a two-class task that clas-
sifies each pixel as an edge pixel and a non-edge pixel. In a
remote sensing image, the percentage of edge pixels belong-
ing to the coastline is very small, and the number of positive
and negative samples is unbalanced. In order to avoid the
problem of low classification detection performance caused
by the imbalance of positive and negative samples, we choose
the cost-sensitive loss function [17] as the loss function. It is
defined as follows:

The loss of each pixel is calculated as follows:

a-log (1 - P(X;; W)), ifyi=0
[ (Xi; W) =10, fO<yi<n
B-logP (X;; W), otherwise
3
in which, the parameters « and § are calculated as follows:
|yt
=M @
B=hxr- L 5)
Y]+ Y|

the sum of all pixels loss in the image is taken as the final
loss, which is calculated as follows:

_ SN *), fuse )
L (W) ;(,;I<X’ ,W)+1(X, ,W) )
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in formula (4), [ (X;; W) denotes the loss of pixel i, y; is the
edge probability of the pixel i in the ground truth, P(-) is the
standard sigmoid function, X; is the activation value(CNN
feature vector), W denotes all the parameters that will be
learned in our architecture, the value of parameter 7 is preset.
In equations (4) and (5), Y™ denotes the set of pixels with
edge probability greater than 5, as a positive sample set,
Y~ denotes the set of pixels with edge probability less than 7,
as a negative sample set, and the hyper-parameter X is used
to balance positive and negative samples. In formula (6),
|I| denotes the number of pixels inimage I, L (W) denotes the

loss of image I, [ (Xi(k); W ) denotes loss of pixel i in stage k,

l (le me; W) is the loss of pixel i in the fuse layer.

B. COASTLINE EXTRACTION PROCESS

In order to achieve the coastline extraction of remote sensing
images, it is necessary to pre-train the convolutional neural
network model, and then input the remote sensing image
into the trained model for coastline extraction. The coastline
extraction process is shown in Figure 5, which is divided into
two parts: training and testing.

The training process is as follows:

Stepl: We mix augmentation data of the remote sensing
images with augmentation data of BSDS500 [25] as
the training data set I = {{I1x, I1y}., {l2x, Doy}, . - .,
{Inx, Iny}}, in which, I, denotes original image, and
Iy denotes ground truth, n denotes the number of
images in the training data set /.

The training data set / is input to the convolutional
neural network for training, the pre-trained Ima-
geNet [30] model is used to initialize the backbone
network, and the network parameters are trained
via backpropagation to obtain the model ‘Training
completed CNN_1".

Step2:
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FIGURE 5. Coastline extraction process.

Step3: We use augmentation data of the remote sensing

images as training data set P = {{P1,,P1y}, {P2x, Iz},

<+ os {Pnx, Ppy}}, in which, P,, denotes original
image, and Py, denotes ground truth.

The training data set P is input to the convolutional

neural network, and the whole network is initialized

by ‘Training completed CNN_1" obtained by Step2,
and fine-tuned by backpropagation to obtain the final
model ‘Training completed CNNs’.

The testing process is as follows:

Stepl: We use multiple remote sensing images as testing
data set S = {S1, 52, ...,S,}, and then the image
in S is subjected to bilateral filtering [23] to obtain
the testing data set S’ = { 1S5 s S,’n} .

Step4.:

Step2: The testing data set S’ is input into the trained model
"Training completed CNNs’ for testing to obtain an
initial coastline extraction set V={ V1, Vo, ..., V,u}.
Step3: Finally, the initial coastline extraction set
V={Vy,Vs,...,V,} is refined by the non-

maximum suppression method to obtain the final
coastline extraction result set G={ Gy, G, ..., Gy}.

IV. EXPERIMENTS

A. DATASET

Through the data distribution system, 40 different high-
resolution remote sensing images of Jiaozhou Bay and its
adjacent sea areas were obtained, with the spatial resolu-
tion of 16m and 50m. The remote sensing images were
cut according to different proportions, and 200 images of
different sizes were obtained. According to the data format
of BSDS500 [25], the coastline was annotated with ArcGIS
interpretation, and the JZBay_data set was made. 80 images
were randomly selected as the testing data set, and 48 images
with the spatial resolution of 16m were used as Test_1, and
32 images with the spatial resolution of 50m were used as
Test_2. After that, the remaining 120 images are expanded
to 8000 using data enhancement methods such as inversion,
scaling and rotation, and regard them as the training data set,
which is recorded as Train_1. Considering that the quality and
quantity of the training set will affect the quality of the model,
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Output V

FIGURE 6. Some images and their ground truth edge maps in the
JZBay_data set.

we take the augmentation training data set in BSDS500 and
the data in the Train_1 as the training data set, a total of 36800,
which is recorded as Train2. Some images in data set are
shown in Figure 6.

B. TRAINING SETUP

All experiments in this paper were performed on a computer
with an Intel(R) Core(TM) i7-8750H CPU @2.20 GHz CPU,
8GB RAM, and accelerated with an NVIDIA GeForce GTX
1060 graphics card. We implement our network using the
Pytorch framework.

The training of the model was performed in two stages.
In the first stage, we trained on Train_2. The weights of
Mini-Inception1-4 were initialized using the pre-trained Ima-
geNet model, and fine-tuning through backpropagation. The
weights of Mini-Inception5 structure and all 1x1 convolu-
tional layers were randomly initialized. The training was per-
formed by stochastic gradient descent (SGD) with mini-batch
size 10 and momentum 0.9. 30K subsequent iterations were
performed with a learning rate of le-5. In the second stage,
we fine-tuned the network on Train_1 only. Fine-tuning was
performed for 40K iterations with a learning rate of 1e-6.

C. EVALUATION METRICS

We use qualitative evaluation and quantitative evaluation
to evaluate all experimental results. Qualitative evaluation:
with the support of feature knowledge, image is evalu-
ated by visual observation, mainly including position and
shape. Quantitative evaluation: the image is evaluated by
statistical parameters, and producer’s accuracy (PA), user’s

VOLUME 7, 2019
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TABLE 1. Quantitative evaluation results (PA/UA/OE/CE) of Sobel, Canny, HED, RCF, and our method.

PA UA OE CE
Methods

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2
Sobel 0.665 0.456 0.647 0.433 0.335 0.544 0.353 0.567
Canny 0.824 0.783 0.850 0.752 0.176 0.217 0.150 0.248
HED 0.897 0.882 0.929 0.895 0.103 0.118 0.071 0.105
RCF 0.925 0.909 0.936 0.923 0.075 0.091 0.064 0.077
Our method 0.948 0.926 0.954 0.942 0.052 0.074 0.046 0.058

accuracy (UA), errors of omission (OE), errors of commis-
sion (CE) were calculated based on the extraction and refer-
ence results [28].

Producer’s accuracy refers to the ratio of the number of
pixels correctly classified as class A by the classifier to the
total number of class a real references; user’s accuracy refers
to the ratio of the total number of pixels correctly classified
into class A to the total number of pixels in which the clas-
sifier divides the pixels of the entire image into class A. The
calculation formulas of the producer’s accuracy and the user’s
accuracy are as follows:

onNo
n = p

onNo 0
m=-—

0

where 711 and n; respectively denote the producer’s accuracy
and user’s accuracy; o and o’ respectively denote the reference
data of the class A obtained by manual visual interpretation
and the extracted data of class A.

Errors of omission is the probability that class A pixels
are misclassified to other classes; errors of commission is the
probability that other classes of pixels are misclassified into
class A. The equations for errors of omission and errors of
commission are as follows:

{ m=1-m ®)
na=1-m
where n3 and 14 respectively denote the errors of omission
and errors of commission, 71 and 1, respectively denote the
producer’s accuracy and user’s accuracy.

D. EXPERIMENTAL RESULTS AND ANALYSIS

In order to prove the effectiveness of our method, there
is a comparison with Sobel [29], Canny [26], HED [15],
RCF [17], and our method on the same experimental environ-
ment. The code of HED and RCF is the source code publicly
released by the author. All network models are trained and
tested on the same data set and evaluated both qualitatively
and quantitatively.

Two remote sensing images are randomly selected from
Test_1 and Test_2, respectively. Sobel, Canny, HED, RCF,
and our method are used to extract the coastline, and
the coastline extraction results are qualitatively evaluated.
Figure 7 shows the coastline extraction results of two ran-
domly selected remote sensing images with the spatial
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resolution of 16m from Test_1, and Figure 8 shows the coast-
line extraction results of two randomly selected remote sens-
ing images with the spatial resolution of 50m from Test_2.

It can be seen from Figure 7 and Figure 8 that the coastlines
extracted by the Sobel and the Canny are poorly continuous,
and the land texture and the weak edges inside the water body
are also extracted. The coastline extracted by HED and RCF
also lose some edge points, but the effect on non-shoreline
area processing is much better than Sobel and Canny. In com-
parison, our method is minimally disturbed by noise, and
almost no land texture is extracted, and the obtained coastline
results are the most continuous and smooth.

In order to verify that the experimental results are not
accidental, the experiments are carried out on Test_1 and
Test_2 respectively, and the quantitative evaluation of five
algorithms is carried out by using four evaluation indexes
of producer’s accuracy (PA), user’s accuracy (UA), errors of
omission (OE), and errors of commission (CE). The results
are shown in Table 1, and the best results are shown in
bold. It should be noted that since the extraction results of
Sobel and Canny contain too much background noise, the
quantitative evaluation does not consider the land portion, and
only evaluates the coastline.

As shown in Table 1, on Test_1 and Test_2, the PA and UA
of the coastline extracted by Sobel are both lower than 0.7,
and CE and OE are both higher than 0.3, which means that
there are more missed and misaligned pixels. The PA and UA
of HED are higher than Canny, but the PA on Test_1 and
Test_2 is still less than 0.90, and the UA on Test_2 is also
less than 0.90, indicating that the obtained coastline infor-
mation accounts for a significant increase in the proportion
of reference coastline information, but still cannot meet the
requirements. The PA and UA of RCF and our method are
higher than 0.90, but on Test_1, the PA and UA of our
method are higher than RCF by 0.023 and 0.018, respectively.
On Test_2, the PA and UA of our method are 0.017 and 0.019
higher than RCF, respectively. Based on Table 1, it is proved
that the coastline extracted by our method has higher accuracy
and is closest to the actual coastline.

To prove that our network does not significantly increase
the calculation cost, it compares with parameters, model
size, and time of HED and RCF based on convolutional
neural networks. All the experiments are carried out on an
Intel(R) Core(TM) i7-8750H CPU@2.20GHz, 8GB RAM
computer and accelerated with an NVIDIA GeForce GTX
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(a)

Source Image

HED

RCF Our method

FIGURE 7. Coastline extraction results of Sobel, Canny, HED, RCF, and our method. (a) GF1_WFV1 remote sensing image with the spatial resolution
of 16m on December 26, 2017; (b) GF1_ WFV2 remote sensing image with the spatial resolution of 16m on March 27, 2018.

1060 graphics card. The time is the average test time
of 80 images in the testing data set. The results are shown
in Table 2.

As shown in Table 2, the parameters of our network are
the same as RCF and 0.1M less than HED. The model size
of our network is 0.01MB and 0.68MB larger than RCF and
HED, respectively. The average test time is 0.024s slower
than HED and 0.0191s slower than RCF. The backbone net-
work of HED, RCF, and our network are all designed based
on VGG16, but HED does not fuse the features extracted
from the intermediate convolution layer of each stage.
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TABLE 2. Comparison of Parameters(M), Model Size(MB), Time(s) with
HED, RCF, and our method.

Methods Parameters/M Model Size/MB Time/s
HED 14.7 112.29 0.3854
RCF 14.8 112.96 0.3903

Our method 14.8 112.97 0.4094

RCF and our network combine all the features of convo-
lutional layer extraction. So HED’s parameters and model
size are smaller than RCF and our network. Our network
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FIGURE 8. Coastline extraction results of Sobel, Canny, HED, RCF, and our method. (a) GF4_PMI remote sensing image with the spatial resolution of 50m
on September 1, 2017; (b) GF4_PMI remote sensing image with the spatial resolution of 50m on February 6, 2018.

replaces all the standard convolutions in the backbone net-
work with the Mini-Inception structure, which increases
the size of the convolution kernel using dilated convolu-
tion. Therefore, compared with RCF, our network does not
increase the computational complexity and time cost.

V. MODEL ANALYSIS
For the nature of remote sensing images, we have improved
the network, including the backbone network structure and
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the activation function. Therefore, we need to verify the
effectiveness of each part for the final performance.

A. ANALYSIS ON BACKBONE NETWORK STRUCTURE

The role of the Mini-Inception structure is to extract multi-
scale features of the same input object simultaneously. Using
this structure instead of the standard convolution in the back-
bone network can better extract the features of remote sensing
images. In order to verify the validity of the Mini-Inception
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FIGURE 9. The performance (PA/UA/OE/CE) of models A, B, C, D, E, F. PA and UA take the data between 0.92 and 0.96 as the ordinate, OE and CE take the

data between 0.04 and 0.07 as the ordinate.

TABLE 3. Comparison of model performance (PA/UA/OE/CE) using the ReLU activation function and the leaky-ReLU activation function.

PA UA OE CE
Methods
Test_1 Test 2 Test_1 Test 2 Test_1 Test_2 Test_1 Test 2
Method_relu 0.943 0.919 0.947 0.937 0.057 0.081 0.053 0.063
Our method 0.948 0.926 0.954 0.942 0.052 0.074 0.046 0.058

structure and the design of the backbone network structure is
optimal, a set of comparative experiments is done. On the one
hand, the backbone network does not use the Mini-Inception
structure, but only uses the standard 3 x 3 accumulation,
which is recorded as model A. On the other hand, starting
from stage$, the five stages add the Mini-Inception structure
stage by stage, which is recorded as model B, C, D, E, and
F respectively, and model F is our final network structure.
The evaluation results of the six models on Test_1 are shown
in Figure 9.

As shown in Figure 9, from model A to model F, PA and
UA have been increasing, and the deeper layer uses the Mini-
Inception structure, the more precision is improved. It is
proved that the use of the Mini-Inception structure is always
beneficial to the result. It is optimal to use the Mini-Inception
structure in all the convolutional layers in the backbone
network instead of the standard 3 x 3 convolution layer,
which is beneficial to the improvement of coastline extraction
accuracy.

B. ANALYSIS ON ACTIVATION FUNCTION
In order to verity that the leaky-ReLU activation function has
a positive impact on the final results of the model, a set of
comparative experiments was performed. On the one hand,
based on our network but using the ReLU activation function
training model, it is recorded as Method_relu. On the other
hand, we use the leaky-ReLLU activation function, which is
our final network model. The test results on Test_1 and
Test_2 are shown in Table 3.

As can be seen from Table 3, both PA and UA are
higher than the ReLU activation function when using the
leaky-ReLU activation function, and both OE and CE are
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lower than using the ReLU activation function. It can be
proved that the leaky-ReLU activation function has a positive
impact on the final results of the model, which can improve
network performance and improve the accuracy of coastline
extraction.

VI. CONCLUSION

In this paper, we propose a new convolutional neural network
structure for coastline extraction of remote sensing images.
Our network can better extract the features of remote sens-
ing images, and make full use of all convolution features
and multi-level information of objects to achieve image-to-
image prediction. We conduct a comparative experiment on
the remote sensing images of Jiaozhou Bay in Qingdao.
The experimental results show that the proposed method has
some advantages compared with other methods, which can
improve the accuracy of coastline extraction, and does not
significantly increase the computational cost and reasoning
time. Besides, our network has high portability, and it can
also be used for the pixel-level sea-land segmentation task of
remote sensing images.
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