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ABSTRACT A large number of connected sensors and devices in Internet of Things (IoT) can generate large
amounts of computing data and increase massive energy consumption. Real-time states monitoring and data
processing of IoT nodes are of great significance, but the processing power of IoT devices is limited. Using
the emerging mobile edge computing (MEC), IoT devices can offload computing tasks to an MEC server
associated with small or macro base stations. Moreover, the use of renewable energy harvesting capabilities
in base stations or IoT nodes may reduce energy consumption. As wireless channel conditions vary with
time and the arrival rates of renewable energy, computing tasks are stochastic, and data offloading and
renewable energy aware for IoT devices under a dynamic and unknown environment are major challenges.
In this work, we design a data offloading and renewable energy aware model considering an MEC server
performing multiple stochastic computing tasks and involving time-varied wireless channels. To optimize
data transmission delay, energy consumption, and bandwidth allocation jointly, and to avoid the curse of
dimensionality caused by the complexity of the action space, we propose a joint optimization method for data
offloading, renewable energy aware, and bandwidth allocation for IoT devices based on deep reinforcement
learning (JODRBRL), which can handle the continuous action space. JODRBRL can minimize the total
system cost(including data buffer delay cost, energy consumption cost, and bandwidth cost) and obtain
an efficient solution by adaptively learning from the dynamic IoT environment. The numerical results
demonstrate that JODRBRL can effectively learn the optimal policy, which outperforms Dueling DQN,
Double DQN (DDQN), and greedy policy in stochastic environments.

INDEX TERMS Data offloading, energy aware, mobile edge computing, deep reinforcement learning.

I. INTRODUCTION
IoT devices are widely used in various fields, such as
industrial control, network equipment systems, public safety
equipment, and environmental monitoring [1]. IoT devices
connect to the cellular network and have diverse capabilities,
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such as storage, computing, and communication and most
IoT nodes in current applications such as narrowband IoT are
suitable for delay-insensitive tasks, such as smart electricity
measuring and fleet management [2]. Some IoT devices need
only periodically transmit data to the central processor. How-
ever, this does not apply to more sophisticated IoT devices,
such as telemedicine and autonomous driving, which are
delay-sensitive and require high-reliability communications
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with low delay [3], [4]. Therefore, data integrity, low latency,
and energy saving are currently required for IoT devices.
However, the increase in the amount of task data will
inevitably lead to enormous energy consumption. The gradual
development of heterogeneous IoT has brought challenges
that should be resolved [5].

MEC has been proposed as a solution that enables wire-
less IoT devices (e.g., mobile phones and smart watches) to
offload computing tasks toMEC servers according to the base
station which can significantly improve computing efficiency
and reduce processing delays and energy consumption [6].
MEC can improve the quality of experience (QoE), save
bandwidth resources, and sink computing tasks to mobile
edge nodes [7]. MEC can resolve the contradiction between
the limited resources on mobile devices and the growing
computing needs of IoT nodes [8]. However, the offloading
of IoT computing tasks to the MEC server requires fast
and efficient wireless data transmission [9]. For instance,
wireless communication resources for computing offloading
should be properly allocated which can meet the computing
and transmission delay requirements. Furthermore, MEC is
usually deployed in 5G ultra-dense cellular networks with
small base stations and macro base stations which may cause
massive energy consumption. The Technology about network
slicing is a key enabler for RAN sharing, which can improve
the QoS of MEC. However, few works have been discussed
about network slicing because of the complex structure
of MEC.

The use of renewable energy to power small base stations is
a feasible solution for reducing energy consumption. Energy
harvesting (EH) is another promising technique that increases
the quality of service (QoS) for small base stations and IoT
devices [10], [11]. Energy storage equipment with the EH
module enables the base station to harvest green energy,
such as solar radiation and wind power, so that the energy
consumption problem may be alleviated.

IoT devices can offload intensive tasks to a MEC server
and use the trade-off between communication and comput-
ing to realize energy savings and performance enhance-
ments [12], [13]. Currently, most works are concerned with
computing tasks by the binary offloading method, whereby
each IoT device selects whether to execute the task locally
or offload it to the MEC server [14], [15]. In the hetero-
geneous network environment of massive IoT nodes, it is
more reasonable to use partial local execution and partial
offloading to the MEC server. Moreover, some studies focus
on the EH of wireless terminals, but the wireless commu-
nication environment will cause energy loss, and when the
number of IoT nodes increases, energy management becomes
difficult.

Under time-varying channel state and renewable energy
supply, we propose a joint optimization scheme for transmis-
sion delay, renewable energy consumption, and bandwidth
allocation based on deep reinforcement learning (JODR-
BRL). The main contributions of this study are summarized
as follows:

• We first design an MEC framework in a heterogeneous
cellular network that includes multiple IoT nodes, mul-
tiple energy storage and processing units, and an MEC
server. IoT devices can communicate with a small base
station with a high-performance processor and a macro
base station with a MEC server. The aim of the proposed
MEC framework is to minimize the total system cost
of energy consumption, data transmission delay, and
bandwidth allocation under time-varying channel state.

• We use renewable energy to power the small base sta-
tions by energy access point(AP) with energy storage
equipment in the proposed MEC model and IoT device
equipped with an EH module can harvest energy from
the energy AP. According to the energy supply of the
small base station, the computing task can be partially
performed by a local processor or partially offloaded to
the MEC server.

• We propose a joint optimization scheme for data trans-
mission delay, energy consumption, and bandwidth
allocation based on deep deterministic policy gradi-
ent (DDPG), which is a model-free deep-reinforcement
learning (DRL) method and can efficiently handle con-
tinuous action space. For more effective stochastic
exploration, we add the OU noise vector to the action
space. In terms of computing tasks, JODRBRL can
adaptively perform local execution and offload tasks to
the small base station or the MEC server. Under the
conditions of time-varying wireless channel state and
bandwidth, JODRBRL can learn the optimal policy in
the joint optimization scheme.

• We perform extensive numerical simulations under
time-varying channel state and available bandwidth in
the proposed MEC system to verify the effectiveness
of JODRBRL. The results demonstrate that the perfor-
mance of JODRBRL surpasses that of three benchmark
algorithms.

The reminder of the paper is organized as follows.
Section II reviews related works. Section III presents the
MEC model and describes in detail the communication,
energy, bandwidth allocation, and computation models. The
problem statement and the description of DRL for JODRBRL
are presented in Section IV. The results of the numerical
simulations are discussed in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK
In terms of related works on the renewable energy supply
and EH, Liu et al. defined an energy consumption model
which consisted of a solar energy collection and a battery
for energy storage. The energy data was used by the National
Solar Radiation Database at DENVER/CENTENNIAL and
a security disjoint routing-based verified message(SDRVM)
method was proposed which significantly reduced the energy
consumption of the wireless nodes [16]. Bi et al. presented
a wireless powered communication(WPC) model and a radio
frequency(RF) energy receiver model. The proposed model
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described the communicating processing between the wire-
less devices(WDs) with EH and the energy transmitting
devices [17]. Zhou et al. applied a power minimization
scheme to the constraints on the number of computation bits
and energy harvesting causality [18]. Min et al. presented a
learning-based computing offloading scheme for IoT devices
with EH to maximize the system utility, including energy
consumption and computation latency [19].

A number of works had been concerned with optimiza-
tion for data transmission delay and energy consumption
in wireless networks. Liu et al. proposed an adjusting for-
warder nodes and duty cycle using packet aggregation rout-
ing (AFNDCAR) scheme to decrease a large number of
redundant data and transmission delay in the body sensor
networks(BSNs). The proposed algorithm flexibly used duty
cycle to control the residual energy of nodes which improved
the efficiency of delay and energy consumption [20]. Bi et al.
formulated a joint optimization method for local computing
or offloading to an MEC server and transmission time allo-
cation. The scheme was based on the alternating direction
method of multipliers (ADMM) to maximize the computa-
tion rate [21]. Considering task offloading among vehicles
in heterogeneous vehicular networks, Sun et al. designed
an adaptive learning-driven task offloading algorithm based
on the multi-armed bandit algorithm to reduce the average
offloading delay [22]. Lyu et al. proposed an asymptotically
optimal method for the tradeoff between offloading and local
execution. The method ensured the time complexity of task
delays and the maximum energy saving at a [O(ε),O(1/ε)]-
tradeoff [23].

For computing task offloading and resource allocation in
heterogeneous wireless networks. Zhang et al. studied an
optimization problem to minimize the energy consumption
of an MEC offloading system in 5G heterogeneous networks
and jointly optimized the computation offloading decisions
and the radio resource allocation strategies by a three-stage
energy-efficient method [24]. Zhou et al. used queuing the-
ory to derive stochastic traffic models and proposed an
ADMM-based energy-efficient resource allocation algorithm
in vehicular networks. The proposed method transformed an
NP-hard problem to a convex global consensus problem [25].
Lyu et al. proposed submodular set function optimization for
the joint optimization of the offloading decision and the com-
munication and computation resource allocation to maximize
the system utility [26].

In recent years, some works had been based on deep learn-
ing (DL) and DRL to jointly optimize computing offloading
and resource allocation or transmission delay and energy
consumption. Xu et al. introduced a joint offloading and edge
server provisioning problem based on RL to minimize the
long-term system cost and used a post-decision state(PDS)
learning algorithm to implement the special structure of state
transitions in MEC system [27]. Wei et al. introduced a joint
optimization solution for caching, computing, and commu-
nication, and used the actor-critic RL method, which can
learn the optimal policy for minimizing the data transmitting

latency [28]. Quan et al. developed a two-layered RL algo-
rithm to implement task offloading to an MEC server under
limited resources for the mobile devices, thus obtaining a
tradeoff between the utilization rate of the physical machine
and delay [29]. Li et al. proposed an online RL scheme
for load balancing in vehicular networks. The scheme took
advantage of historical association data to maximize vehicle
service rates [30]. Hu et al. designed a DRL-based offloading
model and used a three-layer neural network to learn the
optimal offloading policy with different data transmission
rates [31]. Ning et al. modelled the architecture of com-
munication and edge computing and proposed a DRL-based
joint optimization scheme for computing task scheduling and
wireless resource allocation in vehicular networks [32].

In summary, existing works considered binary offloading
for computing tasks and either introduced the joint optimiza-
tion scheme for caching and computing or minimized data
delay and energy consumption under the channel constraints.
For RL optimization, most works used the scheme with
discrete action space, such as DQN and DDQN. Discretiza-
tion of the action space could affect the expected cumula-
tive rewards of DRL and further influence the optimization
results. Considering the time-varying channel state as well
as stochastic computing tasks and renewable energy supply,
we proposed a joint optimization scheme for data delay,
energy consumption, and bandwidth allocation based on deep
reinforcement learning with continuous action space which
could minimize the total cost including buffer delay cost,
energy consumption cost and bandwidth cost.

FIGURE 1. MEC system model with renewable energy supply.

III. SYSTEM MODEL
We design an MEC system with renewable energy supply.
It includes multiple IoT nodes, multiple energy storage and
processing units, and anMEC server. As shown in Fig. 1, The
system consists of three parts: IoT nodes layer, the service
equipment layer and the MEC layer. IoT nodes are com-
posed of smart phone, visual terminal and so on. The service
equipment layer include a small base station, an energy AP
with storage and harvest function and a high-performance
processor. The MEC layer consists of an MEC server for
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computing and a macro base station. In terms of energy flow,
The IoT devices are covered by a small base station. The
AP in service equipment layer can continuously harvest and
store renewable energy until the store space is full. The AP
can power small base station and the IoT devices with EH.
When the renewable energy is insufficient, small base station,
the IoT devices andMEC server are powered by conventional
power grid. For data flow, the high-performance processor
connected to small base station can process the computing
tasks offloaded by IoT devices, which are less powerful than
the MEC server. However, the data generated by IoT devices
can be partially executed locally or partially offloaded to the
small base station with the high-performance processor or
the MEC server by macro base station. Computing offload-
ing to the MEC server can be performed centrally by the
small base stations. Let N = {1, 2, · · · ,N } denote the set
of IoT devices. In the service equipment layer, each set of
equipment includes an energy AP and a small base station
with a high-performance processor. Let K = {1, 2, · · · ,K }
be the equipment set. Then, there are K energy APs and K
small base stations in the MEC model. We assume that the
IoT node n has computing task to be processed within the
coverage of the small base station k , where n ∈ N and
k ∈ K. The IoT device n can harvest the energy from the
energy AP k in the covered region as long as the energy queue
is not empty. In the MEC layer, there are an MEC server
and a macro base station. The macro base station covers all
IoT devices and small base stations in the system. However,
as the wireless communication region of a small base station
is limited, the IoT devices in the k-th covered region can
communicate only with the small base station k and select
whether to offload the tasks or not. For convenience, by data
offloading to the small base station or MEC server, we mean
data offloading to the high-performance processor by a small
base station or to the MEC server by a macro base station,
respectively. Table 1 lists the main notations (and their defi-
nitions) used in this work.

A. COMMUNICATION MODEL
We assume that the channel state between each small base
station and the macro base station in the MECmodel is varies
with time, that is, the channel state is different in each time
slot. In our proposed MEC system, the computing tasks to
be processed are computation-intensive. So the IoT devices
process the computing tasks while harvest energy to ensure
that the tasks can be completed. We divide the sequential
process time into discrete time slots (or epochs) and each
time slot t is a constant. We denote the index set of time
slots as T = {1, 2, · · · ,T }. In our work, the time slot t
is set to 2 ms and because the computing speed of MEC
and high-performance processor is so fast that we ignore
processing time and backhaul time for computing offloading.

In the designed MEC system, the macro base station
includes Ñ antennas. Thus, there are K small base stations
in the MEC system, where Ñ > K . The macro base station
does not communicate directly with the IoT nodes but rather

TABLE 1. List of main notations.

with the small base stations. We assume that the uplink
communication mode of the MEC system is MIMO. Then,
the channel state vector in the time slot t is

Hm,k (t) =
[
h(1)m,k , h

(2)
m,k , ·, h

(̃n)
m,k

]
(1)

where the channel vector Hm,k (t) undergoes Rayleigh fad-
ing. ñ represents the number of busy antennas in the macro
base station. We use the time correlation autoregressive
model [33], [34] to represent the transformation of the chan-
nel state between time slots t − t ′ and t:

Hm,k (t) = ρcHm,k (t − t ′)+
√
1− ρ2c ec (t) (2)

where ρc is the normalized correlation coefficient between t−
t ′ and t . ρc is close to 1. ec (t) is the error vector and ec (t) ∼
CN (0, Ik), which is the complex Gaussian distribution and is
uncorrelated with Hm,k (t).

Let H be the M × K channel matrix and A be the
zero-forcing (ZF) linear detector matrix that is related to
H [33], [34]. According to the ZF linear detector, the received
vector of the channel can be written as

rzf (t) =
√
Pm,k (t)AH (t)H (t)x(t)+ AH (t)n(t) (3)

where A(t) = H (t)
(
HH (t)H (t)

)−1 for ZF, Pm,k (t) is the
transmitting power of equipment set k for offloading to the
MEC server, x (t) is the data symbol, and n (t) is a vector of
additive white Gaussian noise with zero mean.

We do not consider the interference among different IoT
devices in the same equipment sets in the service equipment
layer. However, the IoT nodes between different equipment
sets can cause interference. The signal-to-interference-plus-
noise ratio (SINR) of equipment set k in time slot t can be
written as

ζk (t)=
Pm,k (t) ·

∣∣aHk (t)hm,k (t)∣∣2∑
j 6=k,j∈K

[
Pm,j(t) ·

∣∣aHk (t)hm,j(t)∣∣2+‖ak (t)‖2] (4)
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where ak and hm,k are the k-th columns of the matrices A
and H , respectively.

B. ENERGY MODEL
In the designed MEC model, according to [16], [17], each
small base station is equipped with an energy AP with EH
components (e.g., solar panels and/or wind turbines) to store
renewable energy. The energy AP can allocate the harvested
energy to the IoT devices within the covered region. In addi-
tion to the renewable energy, the small base station can obtain
conventional energy from the power grid. The IoT devices
should use renewable energy as much as possible to reduce
the cost of energy consumption. In this section, we present the
energy consumption model when IoT devices perform local
execution or computing offload to the MEC server.

Even though renewable energy can reduce energy cost
in the system model and enhance the sustainability of IoT
devices, the utilization of renewable energy may be affected
by environmental factors. The arrival of renewable energy
is stochastic. We assume that the arrival rate of renewable
energy follows the Poisson distribution with λ(E)k at time
slot t; moreover, the arrival of renewable energy in each time
slot t is assumed to be independent and identically distributed
(i.i.d.), as a small base station can continue to work when
there is sufficient energy supply, that is, E

[
A(E)k (t)

]
= λ

(E)
k .

According to the EARTH project [35], the power con-
sumption of the small station k can be modeled by the static
baseline power and the allocated power:

Ek (t) =
[
Ps,k (t)+ ηPk (t)

]
∗ t (5)

where Ps,k (t) denotes the static power offset (including, e.g.,
the baseband processor and the cooling system), the coeffi-
cient η is the inverse of the power amplifier efficiency factor,
and Pk (t) is the total consumed wireless transmission power
of the small base station k . Then, in time slot t , the total
consumed power pk (t) of small base station k can be written
by

Pk (t) =
N∑
n=1

Pl,n(t)+ ξk
N∑
n=1

Pk,n(t)+ (1− ξk )Pm,k (t) (6)

where Pl,n(t) is the consumed power of IoT device covered
by small base station k for local execution. Pn,k (t) denotes the
transmit power between the IoT device n and the small base
station k . Pm,k is the transmit power between the small base
station k and the MEC server. ξk is the ratio of offloading to
small base station k and the MEC server.
The IoT devices can powered by the energy AP with the

dedicated wireless power transmitter which can convert the
received RF signal to a direct current (DC) signal, then store
the energy to the battery. The harvested energy by IoT device
is proportional to the received RF power from energyAP [17].
In each time slot, IoT devices can simultaneously perform
energy harvesting when processing tasks by locally executing
or offloading to the small base station and MEC server.

About the loss of the energy harvested by IoT device from
energy AP, we will discuss in Section V.A.

The arrival and consumption of renewable energy are time-
varying; thus, we design the renewable energy arrival model
by energy queuing, and the capacity of the obtained energy
can be defined as the length of the queue. At the beginning
of the time slot t , the length of the energy queue is denoted
by Bk (t). Then, the queue model can be expressed as

Bk (t + 1) = max
{
Bk (t)− Ek (t)+ A

(E)
k (t), 0

}
(7)

According to the energy consumption model, it can be seen
that in each time slot t , the static baseline power Ps,k of
the base station k is constant. For the wireless transmission
power, when Bk (t) > 0, the small base station k is powered
by renewable energy. When Bk (t) ≤ 0, the renewable energy
is insufficient. To ensure sustained operation of the small base
station, the power grid is used for power supply. However, this
increases the cost of energy consumption.

Regarding macro base station of the MEC, the static offset
of power is stable, and the energy consumption of the macro
base station changes little too, so the total cost of the MEC
system is not affected by macro base station. We do not
consider the consumed energy and computing delay while
the MEC server transmits the computing results back to IoT
terminals because the energy consumption of MEC is stable
and the computing size of the backhaul is slight compared
with transmitting to MEC.

C. BANDWIDTH ALLOCATION MODEL
The IoT devices in the service equipment layer should first
communicate with small base station, then offload the task
data to the MEC server, and finally perform computing
offloading by the MEC server. We assume that the bandwidth
of the small base station k is Bk in the time slot t . τn is
the proportion of the bandwidth allocated to IoT device n.
By Shannon’s theorem, the data transmission rate between
IoT device n and small base station k can be written as

rk,n(t) = τnBk log2

(
1+

Pk,nhk,n∑
i∈N ,i 6=n pk,ihk,i + σ

2

)
(8)

where Pk,n(t) is the transmission power of the IoT device n,
hk,n(t) is the channel power gain from the n-th IoT device to
the small base station k , and σ is the noise power at the small
base station.

We assume that the bandwidth of the macro base station
in the MEC layer is Bm, τk is the proportion of bandwidth
allocated to the small base station k , so that the maximum
allocated sub-bandwidth of the small base station k is Bm in
the time slot t . The maximum achievable data transmission
rate between the small base station k and the macro base
station m is

rm,k (t) = τkBm log2 (1+ ζk (t)) (9)
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D. COMPUTING MODEL
As the arrival of computing tasks is time-varying, we design
a buffer queue system as the data buffer. Namely, the comput-
ing tasks of IoT devices are first pushed into the buffer queue,
and then choose to pop the data from the buffer queue when
there are tasks for local execution or offloading to small base
station or the MEC server.

1) ARRIVAL OF COMPUTATION TASKS
We assume that the arrival of computing tasks at the IoT
device n follows the Poisson distribution with λ(D)n . The
arrival of computing tasks in time slot t can be processed in
the next time slot t + 1. As can be seen, there are A(D)n (t)
(bits) of computation tasks that arrive at the n-th IoT device
in time slot t . We assume A(D)n (t) in different time slots are
i.i.d., which implies that E

[
A(D)n (t)

]
= λ

(D)
n . Then, the total

size of tasks A(D)k (t) that should be processed at the buffer
queue of small base station k in time slot t can be written as

A(D)k (t) =
N∑
n=0

A(D)n (t) (10)

2) LOCAL EXECUTION
When there is a computing task request for an IoT device, and
the computation capacity of the device is sufficient, the task
can be processed by local computing. For the IoT devices n,
let fn be the clock frequency of the CPU and Ln the number
of clock cycles required for the execution of tasks that can
be availed by off-line measurements [36]. In time slot t ,
the number of computing bits for local execution is

Dl,n(t) = ρn ·

[
Pl,n(t)

]1/3 fn
Ln

(11)

where ρn is the weight coefficient, which depends on the
computation capability of the IoT device. Pl,n is the allocated
local execution power [37], [38].

3) COMPUTATION OFFLOADING
As the coverage of small base stations in the service
equipment layer does not overlap, each computing task for
offloading is assigned to only one small base station. When
a computing task is selected for offloading to the small base
station k , the size of computing tasks offloaded from the IoT
device n to the small base station k in time slot t is

Dk,n(t) =

{
rk,n(t) ∗ t, τn > 0
0, τn = 0

(12)

where τn is the proportion of bandwidth allocated to IoT
device n. When the bandwidth of the small base station is
insufficient, the IoT devices cannot offload computing tasks.
Thus, the total size of computing tasks offloaded from all IoT
device to the small base station in time slot t is

Dk (t) =
N∑
n=1

Dk,n(t) (13)

The MEC server has usually sufficient computing power
and can rapidly process offloading tasks and even handle
multi-tasking. Therefore, we neglect the processing and trans-
mission delay (sending the computing results back to IoT
devices) of the MEC server because the computing size of the
backhaul is too small compared with that of task offloading
to the MEC. That is, the total size of task offload to the MEC
server in time slot t is

Dm,k (t) =

{
rm,k (t) ∗ t, τk > 0
0, τk = 0

(14)

where τk is the proportion of bandwidth allocated to the small
base station k . When the bandwidth of the MEC server is
insufficient, the small base station cannot offload the task.
Thus, the total size of computing tasks offloaded from all
small stations to the MEC server in time slot t is

Dm(t) =
K∑
k=1

(
Dm,k (t)

)
(15)

According to Little’s law, the average size of computing
tasks in the queue system is equal to the average arrival rate
multiplied by the average time that the task stays in the queue
system. We consider utilizing the average length of the task
buffer queue to represent the average delay of computing
tasks. In time slot t , the total computing tasks of the MEC
system are

D(t)=
K∑
k=1

N∑
n=1

Dl,n(t)+
K∑
k=1

ξkDk (t)+ (1− ξk )Dm(t) (16)

The arrival rates of the computing tasks for IoT device n
follow the Poisson distribution with λ(D)n . If L(t) denotes the
length of the computing task buffer queue in time slot t , then
the length of the computing task buffer queue in time slot t+1
is

L(t + 1)=


L(t)− D(t)+

∑K

k=1
A(D)k (t), 0 ≤ L(t) ≤ S

S, L(t) > S
0, L(t) < 0

(17)

where S is the upper bound of the buffer queue and ξk is the
ratio of data offloading to the small base station k or MEC.

IV. PROBLEM STATEMENT AND RL
A. PROBLEM STATEMENT
The objective of the proposed MEC model is to minimize the
total cost of the consumed energy, bandwidth utilization, and
the length of the buffer queue under the constraint conditions.
The optimization scheme can be summarized as follows:
In time slot t , there are the task requests of the IoT node
n, and these tasks are pushed into the buffer queue L(t).
Depending on the length of the energy queue, the tasks are
either executed locally or offloaded to the small base station
or the MEC server. For the energy consumption of the pro-
posedMECmodel, we focus on the consumed power for local
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execution as well as the transmitting power for offloading to
the small base station or MEC server. We define the energy
consumption as the sum of the allocation power for local
execution and the transmission power of IoT devices and
the small base station k . The cost of the consumed energy,
allocated bandwidth, and the length of the buffer queue under
the constraint conditions is

min
1
T

T∑
t=0

[
ω1

K∑
k=0

(
Ek (t)+ τkBm(t)+

N∑
n=1

τnBk (t)

)
+ (1− ω1)L(t)] (18a)

s.t. Pl,n(t) ≤ P(l)max , Pk,n(t) ≤ P(k)max , Pm,k (t) ≤ P
(m)
max

(18b)

0 ≤ τk ≤ 1 (18c)

0 ≤ τn ≤ 1 (18d)

0 ≤ L(t) ≤ S (18e)

0 ≤ ξk ≤ 1 (18f)

where, ω1 is an adjustment coefficient satisfying 0 ≤ ω1 ≤ 1
and Ek (t) can be obtained by (5). (18b) denotes the total
energy consumption constraint for the IoT devices and the
small base stations. (18c) is the limiting condition for the
ratio of bandwidth allocation on offloading to the MEC
server. (18d) is the limiting condition for the ratio of band-
width allocation on offloading to the small base station k .
(18e) ensures that the buffer overflowmay not occur when the
computing tasks arrive. (18f) denotes the ratio of computing
offloading to the small base station or the MEC server.

B. DEEP REINFORCEMENT LEARNING
OPTIMIZATION SCHEME
In the proposed MEC model, the IoT devices choose either
local execution or offloading to the small base station
or the MEC server. The arrival of computing tasks and
renewable energy are stochastic and the wireless channel
is time-varying. Accordingly, we do not select traditional
machine-learning methods for computing offloading with
labelled historical data for supervised learning. For learning
the optimal computing offloading policy, we useDRLmethod
to learn the optimization policy under stochastic tasks, renew-
able energy, and the wireless channel state. We use the DDPG
algorithm for adaptively learning the optimal policy for local
execution and task offloading based on continuous action
space. DQN [39] is the baseline algorithm of deep rein-
forcement learning. It is widely used in various optimization
areas. DDQN [40] and Dueling DQN [41] are improvements
of DQN. However, the action spaces of DQN, DDQN, and
Dueling DQN are discrete. For the proposed MEC model,
the action space is continuous and which is require to dis-
cretize when DQN, DDQN or Dueling DQN are selected.
If the action space is excessively large, the curse of dimen-
sionality will occur. But DDPG can effectively handle contin-
uous action space [42] and is an extension of the actor-critic
algorithm. The actor network updates the parameters of the
neural network by deterministic policy gradient to determine

the optimal action in the current state. The critic network uses
the time difference error to evaluate the policy of the actor
network. Using the Q-function, the critic network updates the
parameters of the neural network. DDPG is different from tra-
ditional stochastic policy gradient by choosing actions based
on action distribution. DDPG ensures that a smaller amount
of data is sampled, and the efficiency of the algorithm can
be improved. To obtain the tradeoff between exploration and
exploitation, DDPG uses the structure of DQN in the critic
network and off-policy for sampling.

In time slot t , the actor selects an action at by the deter-
ministic policy µ:

at = µ
(
st |θµ

)
+Nt (19)

where θµ is the parameter of the actor’s target network and
Nt is stochastic noise for encouraging exploration.

Based on the deterministic policy gradient, the parameters
of the actor neural network can be updated as follows:

∇θµJ (µθ ) = ESt∼ρµ
[
∇θµµθ (st)∇atQ

µ (st , at)|at=µs(st )
]
(20)

We note that the deterministic policy gradient does not con-
sider the action at and only samples st . DDPG updates the
parameter of the actor network ∇θµθ (st) and the parameter
of the critic network ∇atQ

µ (st , at).
Then, the parameters of the critic network can be updated

by

L = E(st ,at ,rt ,st+1)∼M
((
yt − Q

(
st , at |θQ

))2)
(21)

yt = rt + γQ′
(
st+1, µ′

(
st+1|θµ

′
)
|θQ

′
)

(22)

To obtain the optimal policy for task offloading, energy
allocation, and bandwidth allocation, we define state, action
and reward of RL.

1) STATE SPACE
In time slot t , the agent observes the network environment,
and either local execution or offloading to the small base
station or MEC server will be selected for the computing
tasks from the IoT devices. We assume that the channel
vectors can be obtained by (1), (2), the size of the data to be
offloaded changes with the channel vector and the allocated
bandwidth in the next time slot. The agent can learn and
predict the channel state. The bandwidth provided by small
or macro base stations in the MEC server varies in each time
slot. For optimizing the policy of RL, we denote S as the
state space, and the state st can be defined by the following
parameters:

st = {B1(t),B2(t), . . . ,Bk (t), . . . ,BK (t),

βL(t),

Hm,1(t),Hm,2(t), . . . ,Hm,k (t), . . . ,Hm,K (t),

ζ1(t), ζ2(t), . . . , ζk (t), . . . , ζK (t),

ξ1(t), ξ2(t), . . . , ξk (t) . . . , ξK (t)} (23)
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where
Bk (t) is the length of the energy queue k .
L(t) is the length of the buffer queue for computing tasks

in the MEC system.
Hm,k (t) is the channel vector between the small base station

k and the MEC server for uplink transmission.
ζk (t) is the SINR of the small base station k .
ξk (t) is the offloading ratio to the small base station k or

MEC server.

2) ACTION SPACE
In time slot t , the agent selects an action at from the action
space according to the value of state st . If the policy of
offloading to the small base station or the MEC server
is chosen, the power and bandwidth are allocated to IoT
devices. If local execution is chosen, the local power is
consumed to execute the task. In the proposed MEC model,
the agent will select the values of allocated power, trans-
mitted power, and allocated bandwidth for the IoT nodes in
each time slot. The action space is denoted as A and which
is continuous. The action at in time slot t can be defined
as

at =
{
El,1(t),El,2(t), . . . ,El,n(t), . . . ,El,N (t),

Ek,1(t),Ek,2(t), . . .Ek,n(t), . . . ,Ek,N (t),

Em,1(t),Em,2(t), . . .Em,k (t), . . . ,Em,K (t),

τ1(t), τ2(t), . . . , τn(t), . . . , τN (t),

τ1(t), τ2(t), . . . , τk (t), . . . , τK (t)} (24)

where
El,n(t) is the energy consumption of the IoT device n for

local execution which can be obtain by Pl,n(t) ∗ t .
Ek,n(t) is the energy consumption of the IoT device n for

offloading to the small base station k which can be obtain by
Pk,n(t) ∗ t .
Em,k (t) is the energy consumption of the small base station

k for offloading to the MEC server m which can be obtain by
Pm,k (t) ∗ t .
τn(t) is the ratio of bandwidth allocated to the IoT device

n for offloading to the small base station k .
τk (t) is the ratio of bandwidth allocated to the small base

station k for offloading to the MEC server.
It should be noted that we do not define the consumed

power ofMEC for processing the offloaded tasks from a small
base station, as explained in detail in Section III.B.

3) REWARD FUNCTION
The agent interacts with the environment and selects the
action at according to the input state st , and the immediate
reward can be obtained then added to the cumulative rewards
of the previous state st−1, the current cumulative reward can
be obtained. The goal of RL is to maximize the expected
cumulative rewards. In general, the reward function is related
to the cost function. The agent of RLwants to find the optimal
policy for minimizing the cost of the proposed system, which
consists of the energy consumption, the allocated bandwidth,

and the length of the task buffer queue. According to the
energy model, the energy consumed by the IoT devices and
the small base stations includes the transmission power for
local execution and offloading to small base stations or the
MEC server. That is, the reward function includes the pay-
ment for renting bandwidth, the cost for energy consumption,
and the cost for the task buffer queue.We assume that the pay-
ment for renting bandwidth is proportional to the bandwidth.
In the time slot t , we can define the reward rt under the given
conditions as follows:

rt =−E

[(
ω1

[
α1

K∑
k=1

[Ek (t)]+ α2
K∑
k=1

[τkBm(t)]

]

α3

K∑
k=1

N∑
n=1

[τnBn(t)]+(1− ω1) α4L(t)

)
− P(t)

]
(25)

where ω1 is a coefficient satisfying ω1 ≤ 1 and is used
to adjust the penalty ratio for the energy consumption, allo-
cated bandwidth of IoT devices and small base station, and
task buffer delay of the MEC system. α1, α2, α3, α4 are the
weight parameters of the consumed energy Ek (t), the allo-
cated bandwidthBm(t),Bn(t), and the length of the task buffer
queue L(t), respectively, and P(t) is a negative penalty factor
for buffer overflows. To improve the convergence of pro-
posed DRL algorithm, the value of rt is defined as negative.
We define the cost of energy consumption, bandwidth, and
buffer queue delay as the negative of rewards. Minimizing
the cost amounts to maximizing the expected cumulative
rewards, that is,

R = max

[
lim
T→∞

1
T

T−1∑
t=0

rt

]
(27)

The details of the proposed algorithm are shown in
Algorithm 1.

V. NUMERICAL RESULTS
In this section, we will evaluate the performance of the
proposed joint optimization scheme for data transmission
delay, energy consumption, and bandwidth allocation based
on JODRBRL through computer simulations.

A. SIMULATION SETUP
The simulations are run on a PC with an Intel Core
i9-9900K CPU at 3.6 GHz. The graphics card is the NVIDIA
GeForce RTX2080Ti with 11 GB memory. We use Tensor-
flow 1.10.0 with Python 3.6 on Ubuntu 16.04 LTS in the sim-
ulations to implement JODRBRL and compare JODRBRL to
three benchmark algorithms. In the simulations, we assumeN
IoT devices are located at an equal distance of 20 m from the
small base station k and 80 m from the MEC server. There
are 4 IoT devices and 2 small base stations. Each small base
station covers 2 IoT devices.Moreover, t = 2ms, σ 2

= 10−9,
ρc = 0.95, fn = 1.2 GHz, Ln = 1200, S = 100, P = 50 and
η = 1. The maximum allocated power for IoT devices P(l)max
is 0.5 W. The maximum transmission power of an IoT device
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Algorithm 1 Joint Optimization Method Based on the Pro-
posed JODRBRL
1: Initialize the parameters of the actor’s and critic’s main

networks: θµ, θQ;
2: Soft copy all the parameters of the main network of the

actor and the critic to the target network of the actor and
the critic:θµ

′

← θµ, θQ
′

← θQ

3: Initialize the experience replay memory M ;
4: for episode = [1, 2, · · · ,Emax] do
5: Reset the simulation environment of the proposed

MEC model;
6: Reset the state s0: including the length of the renewable

energy queue, the length of the computing task buffer
queue, the channel vector, the SINR, and the offload-
ing ratio to a small base station or MEC server for all
n IoT devices; reset r0 = 0;

7: for [t = 1, 2, · · · ,T ] do
8: Reset the OU noise vector Nt ;
9: According to the policyµ, select at in line with (19),

including the average consumed power for local
execution and offloading to a small base station and
MEC server, the allocated bandwidth, and the OU
noise vector Nt ;

10: Choose at in the simulation environment and obtain
the reward rt and the next state st+1;

11: Store the transition tuple < st , at , rt , st+1 > in
experience replay memoryM as the training dataset
for the main network of the actor and the critic;

12: Randomly sample N transition tuples from expe-
rience replay memory M as mini-batch data for
training the main network of the actor and the
critic;

13: According to (21) and (22), calculate the gradient
∇θ%L of the critic’s main network;

14: Update the parameters θQ of the critic’s main net-
work using the Adam optimizer;

15: According to (20), calculate the policy gradient
∇θµJ (µθ ) of the actor’s main network;

16: Update the parameters θµ of the actor’s the main
network using the Adam optimizer;

17: Soft update the parameters θQ
′

, θµ
′

of the actor’s
target network and the critic’s target network;

18: {
θQ
′

← τθQ + (1− τ )θQ
′

θµ
′

← τθµ + (1− τ )θµ
′ (26)

where τ = 0.001
19: end for
20: end for

to small base station P(k)max is 0.5 W. The MEC server P(m)max
is 0.5 W. The static power of each small base station Ps,k is
0.5W. Themaximum bandwidth of theMEC server and small
base station is respectively 6 MHz and 3 MHz.

For JODRBRL, Dueling DQN, and DDQN, we construct
fully connected neural networks with an input layer, two
hidden layers, and an output layer. We take advantage of
two advanced techniques for the three algorithms, including
fixing the parameters of the target network in a certain period
of time and experience replay memory which can obviously
improve the convergence of the algorithms. Regarding the
main hyperparameters of the neural networks, the number
of neurons in two hidden layers is set to 200 and 100. The
learning rate of the actor and critic is set to 10−4 and 10−3,
respectively, and the learning rate of Dueling DQN and
DDQN is set to 10−3. The size of the experience replay
memory is 200000. The action bound and the state bound
are set to 5. The value of the penalty coefficient α1 is related
to renewable energy. According to section III.B, the energy
model is described in detail. Renewable energy supply can
greatly reduce energy consumption, but we should consider
the loss of the energy harvested by IoT devices from energy
AP. So, if the renewable energy supply for IoT devices and
small base stations is sufficient, we do not set the penalty
coefficient for energy consumption α1 to 0. Considering the
loss of energy harverst and transmission, α1 is set to 0.5.
When there are no sufficient renewable energy supply, α1 is
set to 1. α2, α3, α4 of from the reward function are set to
0.5,0.5, 0.05, respectively.

B. PERFORMANCE COMPARISON
We compare the performance of JODRBRLwith that of three
benchmark algorithms: Dueling-DQN, DDQN, and greedy
policy.

However, the action space of Dueling DQN and DDQN
is discrete. Thus, we should quantize the continuous-valued
actions in the simulation environment. The discrete value is
an approximation to the real continuous values. We imple-
mented the joint optimization algorithm based on Dueling
DQN, DDQN, and uniformly quantized at from the action
space into 10 levels.

1) DUELING DQN
Dueling DQN divides the state-action function Q(st , at ) into
two parts: the state value function V (st , at ) and the advantage
function A(st , at ). V (st , at ) is independent of the action at ,
and A(st , at ) represents the advantage of selecting action at
in state st .

2) DDQN
DDQN realizes action selection and evaluation by dif-
ferent value functions to resolve the over-estimation
of DQN.

3) GREEDY POLICY
In time slot t , the greedy policy chooses to execute computing
tasks at maximum power and bandwidth to ensure that the
length of the data buffer queue is minimized regardless of
whether local execution or offloading is selected.
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FIGURE 2. Average cumulative reward achieved by different algorithms when ω1 = 0.1.

FIGURE 3. Average cumulative reward achieved by different algorithms when ω1 = 0.5.

FIGURE 4. Average cumulative rewards achieved by different algorithms when ω1 = 0.9.

C. SIMULATION RESULTS
Figure 2, Figure 3, and Figure 4 show the average cumu-
lative rewards curves for JODRBRL and the other algo-
rithms obtained by different values of the adjust coefficient.

The adjust coefficientω1 is set to 0.1, 0.5, and 0.9 respectively
in Fig. 2, Fig. 3, and Fig. 4. The arrival rate λ(D)n of computing
tasks for IoT device n is set to 0.75, and the arrival rate
λ
(E)
k of renewable energy for the small base station k is set
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FIGURE 5. Comparison on the number of discretization levels for Dueling
DQN and DDQN.

to 1. As shown in Fig. 2, when ω1 = 0.1, the cost of the
average consumed energy and allocated bandwidth is smaller,
whereas the cost of the task buffer delay is greater. Although
greedy policy handles computing data at the maximum
transmission power and bandwidth, the average cumulative
rewards are greater than that of the other three algorithms.
However, the average cumulative rewards of JODRBRL is
nearly equal to that of the greedy policy. As shown in Fig. 3,
when ω1 = 0.5, the cost of the average consumed energy
and allocated bandwidth equals to the cost of the task buffer
delay. The performance of JODRBRL is better than that
of Dueling DQN, DDQN, and greedy policy owing to the
continuous action space of JODRBRL. As shown in Fig. 4,
when ω1 = 0.9, the cost of the average consumed energy
and allocated bandwidth is far greater, and greedy policy has
the worst performance. Although the performance of Dueling
DQN and DDQN is close to that of JODRBRL with different
adjustment coefficient ω1, the discretization of the action
space for Dueling DQN and DDQN affect performance in the
simulations.

We compare the performance of JODRBRL, Dueling
DQN, DDQN, and greedy policy in Fig. 5, where the action
space of Dueling DQN and DDQN is discrete. We set ω1 =

0.5 and uniformly quantize the average consumed energy
and allocated bandwidth into 5 to 10 levels in this simu-
lation because the action space includes the average con-
sumed power for the allocated power for local execution,
the average consumed power (transmission power of IoT
devices to small base stations and the MEC server), and the
allocated bandwidth for offloading to small base stations and
the MEC server. To ensure the performance of Dueling DQN
and DDQN, the maximum number of discretization levels
is set to 10. As shown in Fig. 5, the average cumulative
rewards of Dueling DQN and DDQN increases with the
number of discretized levels, but which are still less than that
of JODRBRL. However, as the action space of JODRBRL
is continuous, the actions need not be discretized. Greedy
policy processes computing tasks at maximum power and
bandwidth and the rewards does not change with the number

of discretized levels. That is, the average cumulative rewards
of JODRBRL and greedy policy is fixed.

Figure 6 shows the performance of the four algorithms
under different task arrival rates. We set the parameter ω1
to 0.5, the renewable energy arrival rate λ(E)k for the small
base station k is set to 1, and the total renewable energy rate
is 2. We set the range of the total task arrival rate to [1, 6].
In this simulation, we assumed that the task arrival rate for
each IoT device is the same. Fig. 6(a) shows the compar-
ison of the average cumulative rewards for the four algo-
rithms under different task arrival rates. Lower task arrival
rate implies greater average cumulative rewards for all IoT
devices. This is because the size of task data that should
be processed increases with the arrival rate. The length of
data buffer queue is greater, and more energy is consumed.
JODRBRL outperforms Dueling DQN, DDQN, and greedy
policy in terms of the average cumulative rewards. When
the total task arrival rate is 5 or 6, the average cumulative
rewards of Dueling DQN and DDQN is less than that of
greedy policy. Power and bandwidth discretization in the
action space affects the performance of Dueling DQN and
DDQN. As shown in Fig. 6(b), in terms of the average
cost of consumed energy, greedy policy chooses to process
computing tasks at the maximum energy and bandwidth for
local execution and offload to small base stations and MEC
server, and the average cost of energy consumption of all
IoT devices is greater than for other algorithms. Although
the cost of energy consumption for JODRBRL is greater than
that of Dueling DQN and DDQN when the total task arrival
rate is 3, 4, 5, and 6, JODRBRL uses joint optimization to
obtain the maximum cumulative rewards. Fig. 6(c) shows
the comparison of the average length of the task queue for
different algorithms. The average length of the task queue
increases with the arrival rate of all IoT devices. As greedy
policy executes computing tasks at the maximum energy and
bandwidth, the queue length is less than that of the other
three algorithms. However, in terms of average cumulative
rewards, the performance of greedy policy is worse than that
of the other three algorithms. Dueling DQN and DDQN can
decrease the energy consumption as much as possible but do
not consider the length of the buffer queue for the optimal
policy.

In order to verify the effectiveness of the renewable
energy supply, when there are no renewable energy, we show
the effectiveness of JODRBRL and other three algorithms
in Fig. 7. Further more, we compare JODRBRL under renew-
able energy arrival rates λ(E)k = 1 with DRL without the
renewable energy supply which is shown in Fig. 8.

As shown in Fig. 7, we set the parameter ω1 = 0.5,
the task arrival rate of IoT device n λ(D)n = 0.75. So the
arrival rate of all computing tasks is 3. There are no renewable
energy supply for MEC model and all IoT devices, small
station station and MEC server is powered by the power grid.
Therefore, α1 is set to 1. the penalty for energy consump-
tion is great. Although there is no renewable energy supply,
the performance of JODRBRL is still better than the other
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FIGURE 6. Performance of four algorithms under different task arrival rates.

FIGURE 7. Comparison on the performance of four algorithms without
renewable energy.

three algorithms in terms of average cumulative rewards(the
cost of MEC system). Because the cost of energy consump-
tion is greater than that of JODRBRL, Dueling DQN and
DDQN, the performance of the greedy policy is the worst
regardless of what the value of the task arrival rate is.

Figure 8 demonstrates the performance of JODRBRL com-
pare to DRL without the renewable energy supply. We set

the parameter ω1 = 0.5, the total task arrival rate is 3.
The only difference between DRL and JODRBRL is that
there are no renewable energy supply for DRL in the pro-
posed MEC model, and the rest processing of DRL is the
same as JODRBRL. In order to compare DRL without the
renewable energy supply with JODRBRL, we set α1 to 1,
1.5 respectively for DRL. For JODRBRL, the total arrival rate
of renewable energy is set to 2 and α1 is set to 0.5 when there
is sufficient renewable energy supply. As shown in Fig 8(a),
although α1 is 1 or 1.5, in terms of average cumulative
rewards, JODRBRL outperforms DRL algorithm without the
renewable energy supply. When α1 = 1.5, the cost of energy
consumption is great. The performance of DRL is worse than
that of α1 = 1. When the arrival rate of all computing
tasks is 6, due to the exploration the average cumulative
rewards of JODRBRL with α1 = 1.5 is slight less than
that of α1 = 1. As shown in Fig 8(b), We plot the per-
formance improvement ratio between JODRBRL and DRL
without renewable energy. When the total computing tasks
arrival ratio is set to 1, 2, 3 or 4, the performance improve-
ment ratio gradually become greater when tasks arrival ratio
increases. This is because the processing capacity of local
proccessor and MEC server can meet requirement for the
less tasks arrival rate. When the total computing tasks arrival
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FIGURE 8. Comparison on JODRBRL and DRL without renewable energy under different α1.

FIGURE 9. Performance of four algorithms under different renewable energy arrival rates.

rate is 5 or 6, the tasks in buffer queue need to be exe-
cuted locally and offloaded to MEC server with great trans-
mitting power and bandwidth. Therefore, the performance
improvement ratio slightly decreases. In short, the cost of
renewable energy supply is less than the power supply of
the grid, so the performance of the JODRBRL algorithm is
significantly better than DRL without the renewable energy
supply.

Figure 9 shows the performance of the four algorithms
under different renewable energy arrival rates. We set the
parameter ω1 to 0.5, the task arrival rate λ(D)n for each IoT
device is set to 0.75, and the total task arrival rate is 3. We set
the range of the total renewable energy rate to [1, 3]. In this
simulation, we assumed that the renewable energy arrival rate
for all small base stations is the same. In the simulation setup,
we analyzed that the value of the adjustment coefficient α1 is
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related to renewable energy. If the renewable energy supply
to IoT devices and small base stations is sufficient, α1 is
set to 0.5; otherwise, it is set to 1. As shown in Fig. 9(a),
when the total arrival rate of renewable energy is 2, 2.5, or 3,
the renewable energy is sufficient. The average cumulative
rewards, the cost of average energy consumption and the
average length of the task queue do not significantly change
and stabilize near a certain value. In terms of the average
cumulative rewards under different renewable energy arrival
rates regardless of whether the renewable energy is sufficient,
the four algorithms are ranked as follows: JODRBRL, Duel-
ing DQN, DDQN, and greedy policy. Fig. 9(b) shows the
comparison of the average cost of energy consumption for the
four algorithms. Although the cost of energy consumption for
JODRBRL is greater than that of Dueling DQN and DDQN,
the difference is small, and the cost of energy consumption for
these algorithms is significantly less than that of greedy pol-
icy. Fig. 9(c) shows the comparison of the average length of
the task queue for different algorithms. When the renewable
energy arrival rate is 1 or 1.5, the renewable energy cannot
meet the power supply demand, and the cost of the energy
consumption becomes large. At this time, the average length
of the buffer queue becomes larger. When the renewable
energy arrival rate is greater than 2, the average length of
the task queue does not significantly vary with the renewable
energy arrival rate.

VI. CONCLUSION
In this study, we design an MEC framework in the het-
erogeneous cellular networks that included the communica-
tion of IoT devices with small base stations and the MEC
server. Considering that the wireless channel condition is
time-varying, renewable energy and computing tasks arrive
randomly, and the action space is continuous, we proposed an
joint optimization scheme for data transmission delay, energy
consumption and bandwidth allocation based on JODRBRL,
which is a model-free DRL framework. Interacting with
the dynamic simulation environment, JODRBRL adaptively
learned the optimal policy to minimize the cost of the energy
consumption, bandwidth allocation, and data transmission
delay. Simulation results demonstrated that JODRBRL has
stable learning capacity and performance for various param-
eter configurations. The computing tasks handled in our
work are computation-intensive which are required to execute
locally and offload to small base station or MEC in time.
In future work, when dealing with computing tasks that are
not intensive or in sparse networks, we consider to use the
duty cycle of IoT devices to make full use of the computing
power and residual energy for improving system utilization.
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