
Received November 22, 2019, accepted December 6, 2019, date of publication December 13, 2019,
date of current version December 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2959696

Statistics-Based Music Generation Approach
Considering Both Rhythm and
Melody Coherence
IZARO GOIENETXEA 1, IÑIGO MENDIALDUA 2, IGOR RODRÍGUEZ 1,
AND BASILIO SIERRA 1
1Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastián, Spain
2Department of Computer Languages and Systems, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastián, Spain

Corresponding author: Izaro Goienetxea (izaro.goienetxea@ehu.eus)

This work was supported in part by the Basque Government Research Teams under Grant IT900-16, in part by the Spanish Ministry of
Economy and Competitiveness under Grant RTI2018-093337-B-I00, and in part by the Provincial Council of Gipuzkoa under Grant
DGE19/04.

ABSTRACT This paper presents a music generation method which is an extension of a previously presented
method that generates coherent melodies using a melodic coherence structure extracted from a template
piece. This extension, which has been applied for generating bertso melodies, adds the generation of the
rhythmic content of the melodies, for which a rhythmic coherence structure of the template piece is also
created. To do so, a pattern discovery and ranking method is used to discover the rhythmically repeated
segments that are interesting, and create a rhythmic coherence structure which can have several levels of
nesting. Independent sampling processes have been developed for melodic and rhythmic content, using an
adapted optimization method for sampling the rhythmic content of the new pieces. An evaluation process has
been carried out to evaluate some of the generated pieces, considering on one hand how the listeners perceive
them and on the other hand whether they share the features with bertso melodies. It has been concluded from
this evaluation that the method is capable of generating good coherent bertso melodies.

INDEX TERMS Coherence, computer generated music, rhythm generation, statistical models.

I. INTRODUCTION
Automatic generation of music has a long history of research
since the creation of the first computer in 1840 by Lovelace
and Babbage [1], but the idea of composing music auto-
matically has existed even before the existence of com-
puters. Some examples of this idea are the Musikalisches
Würfelspiel or musical dice games, like the one published
in 1792 that was attributed to Mozart [2].

The earliest automatically generated compositions are
from the mid-1950s, around the same time as the concept
of Artificial Intelligence was coined. Among the first auto-
matically generated compositions are those of Lejaren Hiller
and Leonard Isaacson from 1955-56 [3]. Since these first
steps many different algorithms have been developed to com-
pose music automatically, such as knowledge based systems,
evolutionary and other population-based methods, fractals or
statistical models [4]–[6].
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Statistical models of symbolic music have been used
in computational modelling of several musical styles, for
which many computational approaches have been developed
[7]–[10]. The main advantage they offer is that they can be
learned from a corpus of music to extract its musical features.
These features can be then used to generate new musical
sequences that reflect an explicit musical style [11]–[13].

An important issue that needs to be taken into consideration
when generating music automatically is the coherence of
the generated pieces. New pieces should contain material
that is related (by repetition or a more abstract relation)
to segments seen earlier in the piece, in order to endow it
with some musical meaning. Different theories have been
developed on how the music should be structured in order
to be comprehensible. Arnold Schoenberg [14] believed that
laws are needed to write music; acoustic laws and laws that
result from the combination of time and sound. Accord-
ing to him listeners have to recognize musical figures and
how they cohere in order to comprehend what they are
listening.
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Some theories compare musical discourse and linguistics,
as well as the mechanisms the human brain has to understand
them [15], [16]. These works suggest that, as in linguistics,
relations between different segments in musical pieces are
necessary to build a coherent discourse. The most obvious
relation between musical segments is repetition. It is a fact
that almost all forms of music involve repetition [17], either
of sequences of pitch of notes or at some higher level of
structural grouping, and that repetition imparts a sense of
meaning to music [18]. These repeated segments are named
motives, where a motif is defined as ‘‘the smallest part of a
piece or a section of a piece that, despite change and vari-
ation, is recognizable as present throughout’’ [19]. Though
early knowledge-based methods [20] explicitly considered
repetition, the problem of achieving coherence in music
generated from machine learning models remains largely
unsolved. Some approaches have been developed to deal with
the coherence of the generated music, like the description of
its acoustic structure, functional structure or semiotic struc-
ture. Semiotic structure is defined as the representation of
similar segments by similar arbitrary symbols [21]. Once
the semiotic structure of a piece is described, the process
can be ‘‘inverted’’, to generate new music by instantiating
the symbols of the structure, getting pieces with new music
material but the same coherence structure of the original
piece.

That is the generation idea followed in [22], which uses a
coherence structure that describes the melodic relations of a
template piece to generate new pieces along with a statistical
model created from a corpus of bertso melodies. Bertsos
are Basque improvised songs, which must respect various
melodic and rhyming patterns, and their rhythmic structure
has to fit in one of the many accepted metrics. They are
defined as sung, rhymed and metered discourses by the book
The Art of Bertsolaritza: Improvised Basque Verse Singing
[23]. There is evidence of bertso singing and written bertso
poem samples since the 15th century, and it is a very popular
art nowadays in the Basque Country. Bertsos are sung in
many different occasions, like informal lunches with friends,
homage ceremonies or competitions, and any topic can occur
in a bertso. Many bertsolarism competitions take place every
year in the Basque Country, and every four years the national
championship final is held, with around 15000 people in
attendance.

Experts say that the chosen melody for singing a bertso and
the manner in which it is sung can be the key for the commu-
nicative success of the bertsolari, since the chosen melody
must be able to combine with the created lyrics to transmit
what the bertsolari wants to express with the bertso. These
melodies can be traditional folk melodies, new melodies
that have an appropriate rhythmic structure and melodies
that are specifically composed. Bertso melodies usually have
repeated and similar phrases, making them a challenge for
statisticalmodels and a good style for exploring the coherence
problem.

In this work the music generation method presented in [22]
is extended. In this extension in addition to the melodic
content the rhythm of the new pieces is also sampled. To do
so the same idea of using a template piece is followed, and
its rhythmic coherence structure is described to be then used
along with a statistical model of rhythmic information of the
corpus to generate new complete pieces.

The rest of the paper is organized as follows. Section II
gives an overview of the related work of the field of automatic
music generation, Section III describes the corpus used in this
work and Section IV gives a complete description of the pre-
sented generation method. In Section V some of the obtained
results are shown and in SectionVI the evaluation process that
has been followed to evaluate some of the generated pieces is
described. Finally, in Section VII the extracted conclusions
and the identified future work are presented.

II. RELATED WORK
Several approaches have been developed in automatic music
generation that, even though a fixed taxonomy of this
kind of methods does not exist, are often classified as
knowledge-based (or rule-based), evolutionary methods,
machine learning methods or hybrids.

Knowledge-based methods use pre-made sets of argu-
ments or rules that describe a style or genre, to compose
music on the same style or genre. Some examples of this
type of generation are the grammar models and the rule
learning methods. Grammar models produce musical pieces
using rules, which expand high level symbols into detailed
sequences of symbols (words). These rules can be hand coded
by an expert or they can be learned from a corpus of melodies
that share a genre or style. An example of the use of grammars
for music generation is the method developed by Chemillier
[24], which generates jazz chord sequences based on Steed-
man’s grammar. This grammar was created from a set of
modern jazz 12-bar chord sequences, which is considered a
wide and representative range of permissible variations of the
blues basic form.

Evolutionary methods are based on the improvement of
a population by cycles of evaluation and reproduction with
variation of its individuals. The process starts with the gener-
ation of the candidate solutions of the initial set, then in each
cycle the candidates are changed by mutation or recombina-
tion and they are evaluated using a fitness function. These
cycles are repeated until a stopping criteria is satisfied.

Evolutionary algorithms have been used in different tasks
of music generation like in GenJam [25], an interactive
jazz improvisation system. GenJam uses a training process,
in which the system plays a tune and a human mentor eval-
uates it as good or bad. These evaluations are then used to
adjust the fitness function. Another example of the use of
evolutionary algorithms for music composition isMetaCom-
pose [26], which is a component-based system for music
generation that supports real-time improvisation. The com-
position process has three main steps: creation of a chord
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sequence, evolution of a melody fitting this chord sequence
and creation of an accompaniment for the melody/chord
sequence combination. Jeong et al. [27] propose a multi-
objective evolutionary approach to automatic melody com-
position. They produce a variety of melodies at once using
genetic algorithms, and apply two fitness measures (stability
and tension) to evaluate the created melodies. Muñoz et al.
[28] proposed an adaptive multi-agent memetic approach that
takes a bass line as input and creates a four voice piece.

Machine learning methods extract the knowledge from a
corpus instead of having it previously defined. Statistical
models are an example of machine learning methods, where
different features of a corpus can be represented in a model
that will be able to assign probabilities to automatically
generated melodies.

Statistical models of music have been used for generating
melodies and harmonies in several works, and they go from
the earliest Markov models [29] to newmodels based on deep
learning [30], [31]. Whorley and Conklin [32] use statistical
models to generate four-part harmonizations using horizontal
and vertical viewpoints of music and an iterative randomwalk
sampling. Herremans et al. [33] use a first order statistical
model to capture the melodic and harmonic features of a
first species counterpoint corpus and generate new musical
content. To do so, they use a samplingmethod namedVariable
Neighborhood Search (VNS), which starts with a randomly
generated fragment and optimize it making local changes to
increase the probability of the fragment, and they compare it
to other sampling methods like random walk or Gibbs sam-
pling. Padilla and Conklin [34] have developed a method to
compose Palestrina masses using a combination of statistical
models, to capture the stylistic aspects of the music, and
pattern discovery to extract the coherence structure of original
melodies. The pattern discovery process is performed on a
single viewpoint representation of the pieces, and the pat-
terns used to build the coherence structure are used to guide
the generation of new musical material. Collins et al. [35]
consider the coherence problem for generating new melodies
by defining a template from an existing polyphonic piece to
sample new notes onto it. Geometric patterns are discovered
in a point representation of the notes in a pitch-time space,
for which a pattern discovery method named SIACT [36] is
used. This method is able to discover exact repetitions and
transposed segments.

Roig et al. [37] proposed a music generation method that
generates new melodies in a certain style. The method is
based on extracting rhythmic patterns from musical pieces
of the same style, patterns having a length of a measure, and
using probabilistic models of these patterns tomodel different
styles. They also give the user the choice to specify the
rhythmic and harmonic structures of the final pieces, which
are used to sample contours that respect the defined harmonic
proprieties. Same authors [38] also presented a method that
generates harmonic sequences using probabilistic models of
progressions.

Deep learning architectures are used more and more in
music generation, and well known groups like Magenta1 at
Google are using them to generate newmusic. An example of
their work is the Bach doodle [39], which is able to harmonize
in the style of Bach the melodies that users create manually.
Deep learning is defined as a repertoire of machine learning
techniques based on artificial neural networks which have
multiple layers to process multiple abstraction layers of the
data [40], and several approaches to automatically create
music using these techniques have been developed. Some
works [41] use a unit selection methodology to analyse if
using only the units available in a library can be enough
to generate a wide spectrum of new musical content. They
then use a combination of a Deep Structured Semantic Model
(DSSM) and an Long Short-Term Memory (LSTM) to pre-
dict the next unit in the generation model. Other generation
works are based on the use of GAN (Generative Adversarial
Network) to create music, like MidiNet [42] and MuseGAN
[43]. Hadjeres et al. developed DeepBach [44], which is
capable of generating chorales in the style of Bach using four
neural networks.

Even though this is a growing area of research and inter-
esting results are obtained using these architectures for music
generation, they still have some limitations, like the control
(of tonality conformance, rhythm...), structure (giving direc-
tion to the generated music), creativity (versus imitation) and
interactivity [40]. Trying to solve the structure limitation,
Medeot et al. [45] proposed StructureNet, which is a neural
network that is trained with structure definition along with a
probabilistic model of events.

III. CORPUS
The corpus used in this work is the Bertso doinutegia, a col-
lection created by Joanito Dorronsoro and published for the
first time on 1995 [46]. It is maintained and updated every
year by Xenpelar Dokumentazio Zentroa2 with new melodies
that are used in competitions and exhibitions. Entries in the
collection have a melody name, the name or type of the stanza
and type of the melody (genre), among other information.
Melodies are classified into 17 different types or genres, and
381 of the melodies in the collection have links to recordings
of exhibitions or competitions where those melodies were
used.

The scores included in the collection have been encoded
in Finale and exported to MIDI. Currently the collection
is composed of 2382 bertso melodies, which have a mean
length of 60 notes. 85 of the melodies are polyphonic or have
polyphonic parts. Since in this work monophonic pieces are
generated, all the pieces with polyphony are processed using
a skyline method, which takes the event with highest pitch at
unique onset times.

Since in this work statistical models are built to capture
different aspects of the corpus, it has been studied in order

1https://magenta.tensorflow.org/
2http://bdb.bertsozale.eus/es/
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FIGURE 1. Score of the melody neska zaharrak eta apaizak II.

to detect anomalies within the pieces that could affect on
the creation or use of the statistical models. It has been
found that many pieces have long sequences of repeated
notes. Sequences of four repeated notes have been discovered
occurring at least twice in 744 pieces (31% of the corpus),
and at least once in 1064 (44.7% of the corpus). A model
built from these sequences would assign high probabilities
to long note repetitions, and even though these sequences
exist in the corpus of the style that is being replicated, it has
been decided that the generation of such sequences should be
avoided because of their lack of interest. Figure 1 shows the
score of the melody with the highest number of sequences of
repeated notes, which clearly is not musically interesting.

To avoid the negative effect that these pieces could have on
the statistical model, the pieces with the highest proportion
of repeated notes are removed from the corpus. To do so,
the list of pieces has been sorted according the proportion
of sequences of repeated notes they have, and a manual
analysis has been made to discard those pieces that have a
high proportion of repeated notes that make the pieces of little
musical interest. After the analysis the size of the corpus has
been reduced to 1934 pieces (82.2% of the original corpus).

IV. PROPOSED METHOD
The method presented in this paper is an extension of the
work presented in [22], which is able to generate newmelodic

information maintaining the rhythm of an existing piece.
In this approach, in addition to the melodic information,
the rhythmic part is also generated. The generation process
is based on the use of an abstract template that consists
of a melodic coherence structure and a rhythmic coherence
structure, both extracted from an existing piece, and two
statistical models, a melodic model and a rhythmic one. The
coherence structures ensure that the final pieces have related
segments within them, while the statistical models are able
to capture certain melodic and rhythmic features of a corpus
that are then reflected in the generated material. In Figure 2
a diagram of the presented method can be seen. It can be
seen that themelodic and the rhythmic information are treated
independently, both for building the coherence structures and
the statistical models and for generating newmusical content.
Each of the components of the figure are described in more
detail below.

A. COHERENCE STRUCTURES
The aim of the coherence structure is to describe the relations
between similar segments of a piece. In this work, since
melodic and rhythmic relations are considered, the coher-
ence of the template is described by two independent com-
ponents; the melodic coherence structure and the rhythmic
coherence structure. It has been decided to create indepen-
dent structures to describe melodic and rhythmic coher-
ence, because in bertso melodies many rhythm repetitions
can occur where the melodic content is different between
the repetitions. In Figure 3 an example is shown where a
rhythmic pattern is highlighted. The pattern has a length
of 19 components and is repeated four times through the
piece, but there is no melodic relation between all the
occurrences of the pattern. It has been considered that
these cases make it necessary to have independent coher-
ence structures for the melodic relations and the rhythmic
ones.

FIGURE 2. Diagram of the method proposed in this work.
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FIGURE 3. Score of the melody Abiatu da bere bidean where the main
rhythmic pattern is highlighted.

TABLE 1. A specification for a small set of viewpoints. Top: Two basic
attributes of notes. Bottom: derived viewpoints.

The melodic coherence structure needs to capture the most
relevant melodic similarity relations between segments in the
piece, while the rhythmic coherence structure must describe
the rhythmic repetitions between segments. Similarity rela-
tions of various abstraction level are considered to be included
in the melodic coherence structure, in order to be able to
capture not only the more obvious relations like repeti-
tion or transposition, but also the more abstract ones. Since
in bertso melodies exact rhythmic repetitions are very com-
mon, only this type of relation is represented in the rhythmic
coherence structure of a piece.

The process to build both of the coherence structures has
three main steps: viewpoint representation, pattern discovery
and pattern ranking and covering. They are explained
below.

1) VIEWPOINT REPRESENTATION
In order to analyse the template piece on different abstrac-
tion levels a multiple viewpoint representation [47] is used.
A viewpoint τ is a function that maps an event sequence
e1, . . . , e` to a more abstract sequence τ (e1), . . . , τ (e`), com-
prising elements in the codomain of the function τ . In the
building process of the melodic coherence structure notes are
the only events that are taken into account.

In Table 1 some melodic viewpoints (pitch, int, intpc,
3pc and 5pc), and three rhythmic viewpoints (dur, intDur,
and d3pc) are presented. The viewpoint pitch represents the
MIDI number of each note; the viewpoint int computes the
interval between a note and the preceding one; the viewpoint
intpc computes the pitch class interval (interval modulo 12)
between a note and the previous one. A three-point contour
viewpoint 3pc computes the melodic contour between two
notes: upward (u), downward (d) or equal (eq); and a five-
point contour viewpoint 5pc computes whether the contour

between two contiguous notes goes more than a scale step
down (ld), goes one scale step down (sd), goes more than a
scale step up (lu), goes one scale step up (su), or stays equal
(eq). The duration viewpoint dur represents the duration of
each note, while durInt represents the relation between the
durations of two contiguous events. Contour viewpoint d3pc
computes if the duration of a note is shorter (d) than the
previous one, longer (u) or equal (eq). The representation
of an example segment, using several viewpoints of Table 1,
is shown in Figure 4.

a: MELODIC VIEWPOINTS
In this work melodic and rhythmic coherence are
independently analysed, so they have been independently
represented. The template pieces are represented using pitch,
int, 3pc and 5pc melodic viewpoints, to be able to capture
relations between segments in different abstraction levels.

b: RHYTHMIC VIEWPOINTS
Since in this approach of the generation method only exact
rhythmic repetitions are considered, dur is the only viewpoint
used to represent the template piece, which indicates the
duration in ticks of each event in the piece.

2) PATTERN DISCOVERY
To construct the coherence structure of a template piece it
is necessary to discover and join the interesting patterns that
are repeated through every viewpoint representation of the
piece and cover it in the most dense way possible. Patterns are
defined as sequences of event features (or viewpoints), and a
piece instantiates a pattern if the pattern occurs (one or mul-
tiple times) in the sequence: if the components of the pat-
tern are instantiated by successive events in the sequence
[48]. More precisely, a pattern of length m is a structure
τ:(v1, . . . , vm), where τ is a viewpoint and the vi are elements
of the codomain of τ . For example, in Figure 4 a pattern of
five elements in the dur representation is highlighted.

Pattern discovery methods identify segments that are
repeated through a symbolic representation of a musical
piece or a corpus. In this work a pattern discovery algorithm
named SPAM [49] has been used to identify similar segments.
This is an algorithm that finds all the frequent sequential
patterns (patterns that occur more times than a given thresh-
old) in a transactional database, specially efficient with large
databases, but the method has been adapted to be used to
discover patterns within a single sequence. Candidates are
created with a depth-first search strategy and various pruning
mechanisms are used to reduce the search space.

3) PATTERN RANKING AND COVERING
The pattern discovery algorithm produces all the patterns that
appear more times than a given threshold and it does not have
a more sophisticated method to rank the discovered patterns.
One way to do this is by measuring the distinctiveness of
each pattern [50], but in this work the priority is not to find
patterns that are over-represented in a piece with respect to
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FIGURE 4. A fragment from the melody Abiatu da bere bidean and its viewpoint representation. A pattern of
length five is highlighted.

an anticorpus. The priority is to find patterns that are signifi-
cant in the piece, in terms of occurrence and length.

Measuring the interest of the discovered patterns is a very
important task; many patterns can occur in a piece, but not
all of them are important enough to be used on the building
of the coherence structure. For example, the d3pc pattern
shown in Figure 4 would likely be instantiated many times in
any piece, but its occurrences (simply three notes with an up-
down duration contour motion) are probably not structurally
related or distinctive to the template piece. In order to build
a good coherence structure of the template piece, distinctive
and interesting repetitions should be identified using a sta-
tistical method which provides the probability of seeing an
indicated pattern at least the observed number of times in
a template piece. Then a pattern is considered interesting if
it occurs more frequently than expected. This is a standard
model for assessing discovered motifs in music informatics
[51] and bioinformatics [52].

We derive a function I measuring the interest of a pattern.
First, we note that the background probability p of finding a
pattern P = τ :(v1, . . . , vm) in a segment of exactly m events
can be computed using a zero-order model of the corpus:

p =
m∏
i=1

c(vi)
c
,

where c(vi) is the total count of the feature τ : vi and c is the
total number of places in the corpus where the viewpoint τ is
defined. Then the binomial distribution B

(
k; n, p

)
gives the

probability of finding the pattern exactly k times in n events,

B(k; n; p) =
(
n
k

)
pk (1− p)n−k

and therefore the negative log probability of finding k or more
occurrences of the pattern in a template piece with ` events is

I(P) = − lnB≥
(
k; n, p

)
, (1)

where B≥ is the upper tail of the binomial distribution, with
n = `−m+1 being the maximum number of positions where
the pattern could possibly occur in the template piece.

The interest of all patterns discovered within all the view-
point representations is computed and, in order to discard
patterns that are not important enough for the coherence
structure, an interest threshold is set. This threshold is set
at 9.5, as a result of an analysis of the discovered patterns

FIGURE 5. Score of the melody Argi emaile txit diztiratsu.

FIGURE 6. Score of the melody Lagundurikan danoi I.

performed by hand, comparing different patterns, their signif-
icance in the score they are discovered in, and their interest
value. As an example, in Figure IV-A.3 a score of the melody
Argi emaile txit diztiratsu is shown, which is part of the
corpus and where a three element pattern is highlighted. It is
the pattern pitch : (64,65,67) which has an interest value
of 9.2 and, given its length and information it represents, is not
considered distinctive enough. The interest threshold is set at
9.5 to avoid this kind of patterns in the coherence structures.

In Figure IV-A.3 the score of the melody Lagundurikan
danoi I is shown, where the melodic contour pattern 3pc :
(u, u, d, d, eq, d, eq, d) is highlighted. The interest value of
this pattern is 9.55, it is near the established interest threshold,
but it is considered a good enough pattern, taking into account
the amount of information it represents, showing that the
chosen threshold is acceptable.

Once all the patterns in the different viewpoint representa-
tions of the template are discovered and their interest values
are computed, they are used to cover the piece, trying to use
the most interesting patterns but also striving for a dense
covering. Since finding a covering that optimally fulfils both
requirements is not easy, a greedy method can be used to
rapidly find a reasonable semiotic structure. In the greedy
covering method, discovered patterns are sorted from most
to least interesting using Equation 1, then this sorted list is
processed to choose the patterns that fit into the positions of
the template piece that have not been yet covered by any pat-
tern, not allowing overlapping between contiguous patterns.

183370 VOLUME 7, 2019
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FIGURE 7. Example of the effect of computing the interest value of the
patterns with the actual number of occurrences used on the covering. P
represents the pattern that would be covered using the number of
occurrences of the template piece, and P′ is the actual pattern used.

As two different coherence structures are built, two indepen-
dent template coverings are performed; one considering all
the patterns discovered in the different melodic representa-
tions of the piece and one only considering the rhythmic ones.

Every time a pattern is used on the template covering,
the interest value of the patterns that remain in the sorted list
must be recomputed. Their number of occurrences must be
updated to consider only those that happen on the positions
of the piece that are still uncovered. Once the interest value
is recomputed for all the patterns in the list, it is resorted.

An example of the recomputing process is shown on
Figure 7, where a stave of a melody of the corpus can be
seen, and patterns P and P′ are highlighted. Pattern P occurs
four times in a piece and has an interest value of 41.2. Pattern
P′ is instantiated twice in the piece and has an interest value
of 30.2, soPwill have a higher position on the pattern list and
would presumably be used on the covering of the segment
shown on Figure 7. When the piece covering process begins,
a higher interest pattern covers the positions where two of the
occurrences ofP happen (not shown in the figure), making its
number of occurrences lower to two. The interest values of the
patterns that remain in the list are recomputed and the interest
of pattern P drops to 19.7, which is lower than the interest
value of P′, that will be used on the covering of the segment.
The covering of the piece ends when there is no free

sequences in the piece that can be covered by any pattern in
the list.

a: MELODIC COHERENCE STRUCTURE
In the building of themelodic coherence structure the patterns
discovered in the representations of the four melodic view-
points presented in Table 1 are used. Even though the patterns
are discovered in different representations, all of them are
gathered in a single pattern list that is used in the covering of
the template piece in order to create the melodic coherence
structure.

b: RHYTHMIC COHERENCE STRUCTURE
To build the rhythmic coherence structure, patterns are dis-
covered within the dur representation of the template piece,
where significant patterns are intended to be identified. It has
been noticed that in many of the bertso melodies the most
significant rhythmic patterns are long patterns, which can
have other significant patterns within them. These so called
nested patterns are also important when building the coher-
ence structure of a piece, and have been considered in other
music generationworks [35]. In Figure 8 an example of a long
pattern can be seen which has shorter patterns within it.

FIGURE 8. Score of the melody Neure lagunak lagun zakidaz where its
most interesting pattern is highlighted.

FIGURE 9. Nested pattern (in purple) found within the principal pattern
(in black) in the melody Neure lagunak lagun zakidaz.

To discover this kind of nested patterns, once the most
significant patterns are selected to cover the template piece,
the sorted list of all discovered patterns is processed again,
to look for patterns that happen, twice or more, within those
significant ones. This process is repeated until all the nested
patterns in the piece are discovered, making it possible to
nest pattern within other nested patterns, creating a pattern
hierarchy.

c: EXAMPLE
In Figure 9 the rhythmic structure of the piece Neure lagunak
lagun zakidaz after the nested pattern discovery process is
shown, where patterns of different nesting level are repre-
sented with different colours. It can be seen that the piece has
one main rhythmic pattern that is repeated twice in the piece,
and even if the whole piece is covered by this pattern, it does
not provide enough information about how the rhythm is
structured through the piece. Since the only information that
this pattern represents is that the piece has a long segment that
is repeated twice, the patterns that occur within that principal
pattern are discovered and represented in the figure in purple.

The nested pattern discovery has also been applied in this
purple pattern, in which another nested pattern of 7 elements
has been discovered, represented in Figure 9 in green. In this
example a pattern hierarchy of three levels is created.

B. STATISTICAL MODELS
Once the coherence structures of the template piece are built,
the new notes that will be sampled within them need to
be chosen, in order to get new pieces that are stylistically
similar to the ones in the bertso corpus. To sample these
notes statistical models of the corpus are used, which assign
probabilities to sequences of events, where high probability
sequences are assumed to retain more aspects of the music
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TABLE 2. Cross-entropy of different viewpoints and different models,
determined by leave-one-out cross validation on the corpus.

style of the corpus than sequences with low probability. Since
in this work a rhythmic generation process is presented in
addition to the melodic generation, two different statistical
models have been built; one to capture the melodic aspects of
the corpus and one to capture the rhythmic ones. An n-gram
model is used for both, for which a length and the feature it
describes must be chosen, taking into account that different
features are needed for each model.

1) MELODIC MODEL
In order to decide whichmelodic featuremodel fits the corpus
best, models based on every melodic viewpoint presented
in Section IV-A.1 have been evaluated with leave-one-out
cross validation. The cross-entropy of each model has been
computed, where lower cross entropies are preferred. The
cross-entropy of a model is defined as the negative base-
2 logarithm of the product of the probabilities of all the
1934 pieces of the corpus.

To compute the probabilities of the pieces Equation 2 is
used, which depends on the length of the n-gram. Letting vi =
τ (ei|ei−1) be the viewpoint τ value of event ei in the context
of its preceding event ei−1, the probability of a piece e =
e1, . . . , e` is computed as:

P(e) =
∏̀
i=n

P(vi|vi−n+1, . . . , vi−1)× P(ei|vi, ei−1). (2)

To elaborate, the product of all features in the sequence
according to a n-gram model is represented by the first term.
N-gram probabilities of the viewpoint τ are computed from
the reduced corpus. The second term is the probability of
the particular event given the feature, defined as a uniform
distribution over events having the property vi:

P(ei|vi, ei−1) = |{x ∈ ξ : τ (x|ei−1) = vi}|−1,

where ξ is the set of possible pitches (see Table 1). Since this
model can be applied for any viewpoint, it has been tried with
different melodic viewpoints presented earlier in this work
and different n-gram lengths, and the cross-entropies of the
corpus represented with each viewpoint have been presented
in Table 2. It can be seen that the interval viewpoint int has
the lowest cross-entropy value in all the models, and how
the value goes down when the length of the model increases,
just until the trigram model is reached. After that the cross-
entropy value starts going up. The lowest value indicates
that a trigram int model fits the corpus best. Once the int

trigram model is created Equation 3 is used to compute the
probabilities of the generated event sequences,

P(e) =
∏̀
i=3

P(vi|vi−2, vi−1). (3)

since for this viewpoint P(ei|vi, ei−1) = 1.

2) RHYTHMIC MODEL
As in the melodic model, to capture the rhythmic features of
the corpus a trigram model has also been chosen. The same
rhythmic viewpoint dur used in the viewpoint representation
has been chosen to be used of the building of the rhythmic
statistical model. To compute the probability of a rhythmic
sequence Equation 3 is used.

C. GENERATION
The created statistical models are used to sample new high
probability sequences into the semiotic structures, in order to
generate pieces that retain more aspects of the pieces in the
corpus. To do so, as two independent coherence structures
and statistical models are created for the generation of new
pieces, their melodic and rhythmic information are generated
independently. For both generations a stochastic hill climb-
ing optimization process has been used, which starts with a
random sequence and iteratively changes random positions
to improve its probability according to a statistical model,
always respecting the coherence structures.
The vocabularies for both generations are fixed to ensure

that the pitch and the duration of the generated notes are
within a fixed range. The melodic vocabulary ξ ′m is defined
by choosing the pitches from the tonality of the template
piece, limiting them to the range of it, and which defines
the admissible pitches for the generated pieces. The rhythmic
vocabulary (ξ ′r ) that is initially used in the generation is
defined by taking the duration of the notes of the template
piece. When the vocabularies are not big enough to create
diverse generations, some entries can be added by hand,
to generate more diverse pieces. The generation process starts
with the rhythmic generation, and once it is finished the
melodic generation step begins.

1) RHYTHMIC GENERATION
When generating rhythmic sequences different constraints
should be considered. As the generated pieces are bertso
melodies, their note number and total duration should be
conserved, in order to fit them into one of the accepted
metrics and be able to use them to sing existing or new bertso
lyrics. Taking that into account, when creating the initial
random sequence for the stochastic hill climbing process,
the rhythmic information that is contained within each pattern
is randomized instead of sampling a random duration in each
of its positions. Since rests act like phrase boundaries in many
bertso melodies, their positions have been fixed, and they are
never moved.
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FIGURE 10. A rhythmic pattern of the melody Abiatu da bere bidean
before (up) and after (bottom) the randomization step.

FIGURE 11. Rhythmic pattern of Figure 10 after the optimization phase.

When randomizing patterns that contain nested patterns
within them, first the patterns that are nested deeper in the
hierarchy are treated, and the process then goes up until
the patterns that are in the top level of the hierarchy are
randomized. Every time a pattern is randomized all its other
occurrences need also to be sampled, in order to conserve
the rhythmic coherence of the piece defined in Section IV-A.
When a segment of notes is not covered by any pattern of
the coherence structure, it is treated like a one occurrence
pseudo-pattern.

An example of randomizing patterns is shown in Figure 10,
where a segment of the melody Abiatu da bere bidean is
shown before and after the randomization. The segment is
covered by a pattern that has a nested pattern repeated three
times, highlighted in green. In the top stave the segment
before the randomization is shown, while in the bottom stave
the same pattern is shown after the rhythmic randomization
and the random melodic sampling. The occurrences of the
nested pattern cover almost all the notes in the main pattern,
except the last three quarter notes and the rest, and the ran-
domization can not have any effect in the duration of these
last notes.

In each iteration of the optimization step a random position
j of the piece is chosen, and the pattern that the position
belongs to is identified. When j is part of a pattern that is
nested within a larger one, the nested one is taken and a
random element r ∈ ξ ′r is chosen to subtract its value to
the duration of j. The value of r is added to the duration
of a position z randomly selected within the same pattern
in the same pattern level. Once a pattern is updated, all its
other occurrences are also updated, and the probability of
the new sequence is computed with Equation 3. If the new
probability is higher than the last saved one, the change
is conserved. In Figure 11 the rhythmic pattern shown in
Figure 10 can be seen after the optimization process, where
it can be seen that the coherence of the nested patterns is
conserved.

In this step it is very important ensuring that no duration
is set to 0 or negative values, so if this happened in an
iteration of the optimization step, the change would not be
valid. The rhythmic optimization process is run 106 times
total.

2) MELODIC GENERATION
The initial random information of the melodic generation
process is created with a left-to-right random walk, which
must respect the coherence structure extracted from the tem-
plate piece; a new note is sampled in every position of the
template, and every time a complete pattern is instantiated,
all of the future locations of the pattern are also instantiated.
The piece is then iteratively modified: in each iteration of the
process a random location i in the current piece e is chosen.
A random element ei ∈ ξ ′m is substituted into that position,
and the pattern to which that position belongs is identified,
to also update all the other instances of the pattern, producing
a new piece e′. Thus the pieces generated at every iteration
conserve the semiotic structure. The probability (P(e′)) of the
new piece is computed using Equation 3, and if it is higher
than the last saved one, (P(e′) > P(e)), then the change is
retained and piece e′ is taken as the new current piece. This
optimization process is iterated up to 104 times.

V. RESULTS
To illustrate the method, several melodies have been created
using various pieces as template. Some examples of gener-
ated melodies using two different template pieces are shown
below. The shown examples are high probability melodies
according to the melodic and rhythmic models created from
the corpus.

A. TEMPLATE ABIATU DA BERE BIDEAN
The first piece used as template piece is Abiatu da bere
bidean. It is a piece with a length of 100 notes with a smooth
melody and a pretty simple rhythm, and it has six phrases, all
delimited by a rest.

The melodic structure that has been created from this
template piece can be seen in Figure 12. Five patterns have
been used in the covering of the piece, where four of them
are pitch patterns and patternE is an interval pattern. It can be
seen that the second occurrence of pattern E has a rest in the
middle, covering the end of a phrase and the beginning of the
next one. This happens because no rhythmic information is
used in the melodic coherence structure generation, and rests
are not considered as events. Even if many melodic contour
patterns have been identified in the piece, their interest value
is not high enough to be included in the structure of this piece.

The rhythmic coherence structure of the template can be
seen in Figure 13, where three rhythmic patterns are high-
lighted in black. A five element nested pattern has also been
discovered within pattern A, which is repeated three times
within each occurrence of A. All the events in the piece
are covered by some rhythmic pattern except two rests that
cannot be covered with any pattern, since the last rest in the
score is not part of the viewpoint representation of the midi
file.

In Figure 14 two pieces generated using this template can
be seen. In both cases the generated melodies are smooth,
with no big leaps. It can be seen that both melodies respect
themelodic and rhythmic coherence structures extracted from
the template piece.
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FIGURE 12. Score of the piece Abiatu da bere bidean with its melodic coherence structure highlighted. The type and
label are shown above each pattern in the structure.

FIGURE 13. Score of the piece Abiatu da bere bidean with its rhythmic coherence structure highlighted. The label of
each main pattern (in black) is shown, as well as the nested patterns (in green).

Theirmelodic information is quite different, but it is notice-
able that the rhythm is similar in both, even if it is not
the same. Since in the original piece only quarter notes and
quavers are used, the rhythmic vocabulary for the generations
is limited. Even though semiquavers have been added by hand
to the rhythmic vocabulary in order to have more options
in the generation, they are not used in the shown generated
pieces.

In the top piece of Figure 14 it can be seen that the interval
int:E pattern has been sampled as an exact repetition, instead
of a transposition. This is allowed in this approach of the
method, since repetition is considered a particular case of a
transposition.

B. EGUNTTO BATEZ NINDAGUELARIK
The second template used to illustrate the method is Eguntto
batez nindaguelarik. It is a piece with 69 notes with no big
leaps but a more diverse rhythm than the template Abiatu da
bere bidean, and it has four phrases.

In Figure 15 the score of the melody can be seen where
the melodic coherence structure that has been built for this
template is highlighted. Only a pitch pattern has been chosen
in the covering strategy, since, even if other melodic patterns
can be found that cover free spaces of the score, their interest
is not high enough to be considered. Even though the melodic

coherence structure is very simple in this template, it has been
chosen because its rhythmic content is more interesting than
the rhythm in template Abiatu da bere bidean.

The rhythmic coherence structure of the piece is shown
in Figure 16, where four main patterns are highlighted. Dura-
tion pattern A has a nested pattern that happens twice in
each occurrence of A. It can be seen that in this case not
all of the notes are covered by a pattern in the rhythmic
coherence structure, and as mentioned before, the segments
that are not part of any pattern are treated like one occurrence
patterns.

In Figure 17 the scores of two melodies generated with
this template are shown. The first generated melody is pretty
smooth with a nice rhythmic sequence which respects the
rhythmic structure of Figure 16. The second generation, how-
ever, is an example of a melody that even if it has a high
probability according to the statistical models (both melodic
and rhythmic ones) has some rhythmic issues in the fourth and
the 16th bars. The rhythm in these bars is not usual for bertso
melodies and it would make them difficult to sing. Apart
from these bars, both the rhythm and the melodic line in the
piece are smooth and coherent. Since in this template more
different measures are used compared to the first template,
the generated pieces have more rhythmic differences between
them.
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FIGURE 14. Examples of pieces generated from template Abiatu da bere bidean.

FIGURE 15. Score of the piece Eguntto batez nindaguelarik with its melodic coherence structure highlighted. The
type and label are shown above each pattern in the structure.

C. DISCUSSION
The obtained results show that the method presented in this
work can be used to generate new acceptable and coherent
melodies. The rhythmic generation process that has been fol-
lowed is conservative in order to generate pieces that maintain
the original number of notes of each template, as well as
its total duration, but in some cases it can be too conser-
vative when the number of allowed rhythmic generations is
low. This issue can be solved by allowing more duration
values in the vocabulary of the piece or by using a model
based on duration intervals instead of concrete duration
values.

It also has been noticed that even if the statistical models
assure that the generations will have certain melodic and

rhythmic features, this is not always enough to guarantee
that the generations will be musically pleasant. Since bertso
melodies have no defined stylistic rules, rule sets cannot be
used to evaluate the generations, but maybe some abstract
rules could be learned from the corpus that would improve
the musical quality of the generations.

VI. EVALUATION
To evaluate the results of the method presented in this paper
an evaluation process has been carried out, which has two
phases, the listeners’ evaluation and the style evaluation.

A. LISTENERS’ EVALUATION
For this phase of the evaluation five pieces have been ran-
domly selected from the corpus, and they have been used as
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FIGURE 16. Score of the piece Eguntto batez nindaguelarik with its rhythmic coherence structure highlighted. The
label of each main pattern (in black) is shown, as well as the nested patterns (in green).

FIGURE 17. Examples of pieces generated from template Eguntto batez nindaguelarik.

template to generate a new melody from each of them. Two
sets of melodies were created from the ten initial pieces, mak-
ing sure that a generated melody was never in the same set as
the piece used as template to generate it. The scores in each
melody set can be seen in Appendix VII. Each melody was
sung using some lyrics that fitted the metrics of the melodies
downloaded from the website of the centre of documentation
Xenpelar3 and recorded. 31 professors and researchers from
the Faculty of Informatics of the University of the Basque
Country participated in the evaluation process, where one of
the two sets of melodies was assigned to each participant.

3https://bdb.bertsozale.eus/en/web/bertsoa/bilaketa

The first step of the evaluation process was a train-
ing phase, in which the participants listened to the MIDI
files of the melodies in their set once. After this pro-
cess the participants were given a questionnaire in which
they needed to mark if they thought that the record-
ings they would listen were original bertso melodies or
generatedones.

In Table 3 an excerpt of the questionnaire given to the
participants can be seen, where for a melody eight options are
given. The first seven options indicate if the participants think
that the melody is an original piece or a generated one, and in
which degree they are certain of that. The eighth option has
been added to mark the melodies that the participants knew,
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FIGURE 18. Scores of the pieces in set A.

since it is possible that some of the melodies used as template
are well known for some participants.

They listened to each of the five recordings of their set
once to fill the questionnaire, and after finishing, they were
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FIGURE 19. Scores of the pieces in set B.

asked to give a score from 1 to 10 to each of the gener-
ated melodies from their set. This evaluation was subjective

and the participants were not given any more information
about what they needed to take into account to evaluate
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TABLE 3. Excerpt of the questionnaire that was given in the evaluation. Each participant needed to evaluate five melodies.

TABLE 4. Results obtained in the evaluation of sets A and B. The pieces generated with the presented method are shown in red, and the options that
obtained more votes are presented in bold.

the melodies. They just needed to evaluate them as they usu-
ally decide if they like a song or not. In Table 4 the obtained
results are shown.The pieces generated with the presented
method are shown in red, and the options that obtained more
votes are presented in bold.

The results of set A show that both piece3 and piece5
were perceived as generated, even if only two people were
100% sure. However, piece2 was also perceived as a possibly
generated piece even though it is an original bertso melody.
The only clear result in this set is the one obtainedwith piece4,
which is a well known melody and 9 people knew it.

The results of set B show that piece1 was perceived as pos-
sibly generated, even though, in the cases of piece2 and piece4
the results are not clear, and the responses are distributed
between possibly original and possibly generated.

The evaluation of the generated pieces show that even
if they obtain a mean score from 6.06 to 7.63, the scores
are quite different depending on the listener as some of
the standard deviation values show. These results show
that even though the participants were able to identify
some of the generated melodies as possibly generated, they
were overall confused and not able to clearly distinguish
between original and generated pieces, as the numbers in bold
show.

B. STYLE EVALUATION
In addition to the listeners subjective evaluation, a style eval-
uation has also been carried out. The goal of this evaluation is
to determine if the generated pieces have the features of the
bertso melodies, given that statistical models have been used
in order to generate pieces that share stylistic features with
the corpus. To do so, 20 new pieces have been generated with
the presented method, and added to the five pieces that were
evaluated.

The generated pieces have been compared to pieces of two
corpora in addition to the bertso melody corpus; a subset
of the Meertens Folk Tune Collection named The Anno-
tated Corpus4, which is a collection of 360 Dutch folk song
melodies, and a corpus of pieces of three classical composers
used in [53]. A classification process has been carried out in
which the generated pieces have been classified within one
of the three genres, bertso melodies, classical pieces or dutch
folk melodies. Two different representations have been used
to represent the pieces to be classified, both used in [53]:
interval matrix and global feature representation.

The matrix representation represents the probabilities of
the transitions between all the pitch class interval pairs that

4http://www.liederenbank.nl/
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TABLE 5. Global feature collection used in the piece representation.

TABLE 6. Classification accuracies for the generated pieces with different
classifiers and representations.

occur in each piece, representing pieces as 12× 12 matrices.
For the global feature representation 12 melodic features
presented in Table 5 have been used, which was used by
Herremans et al. [54].
Several different classifiers from the machine learning

software Weka [55] have been tried in the classification of
the generated pieces: J48, SMO, JRip, Random Forest (RF)
andMultilayer Perceptron (MP). All the classifiers have been
applied with the default parameters. The results obtained with
each classifier and representation are shown in Table 6.

As it can be observed in the table, very high accuracies are
obtained with both representations, and accuracies of 100%
are obtained in some cases, which indicates that all the gen-
erated melodies are classified as bertso melodies. From these
results it can be concluded that the method generates music
that really emulates the style of the corpus, in this case it
generates pieces that are classified as bertso melodies.

VII. CONCLUSION AND FUTURE WORK
This work extends the automatic music generation paper
by Goienetxea and Conklin [22], which presents a music
generation method that generates new melodic information.
It is based on the use of the semiotic structure extracted from
a template piece and a statistical model created from a corpus,
in order to obtain new coherent melodies in the style of the
corpus.

The extension described in this paper presents several con-
tributions to the melody generation method of [22]. A rhyth-
mic generation process is added, which follows the idea of
identifying the rhythmically related segments in the template
piece and respecting these relations when generating new
rhythmic content. To do so, the abstract template that is
extracted from the template piece is extended to include its
rhythmic coherence structure too. To create the rhythmic
structure a method to discover nested patterns has been devel-
oped, which is capable of discovering patterns with several

levels of nesting, creatingmulti-level pattern hierarchies. This
method allows more complex analysis of the coherence of
the piece, and it could be used to discover interesting patterns
within the patterns in the melodic coherence structure as well.

Given that in this case the generation method is applied to
generate bertso melodies and they need to respect some of
the allowed metrics, the strategy that is followed to sample
the melodic information of the new pieces has been adapted
for the rhythmic content. The proposed sampling strategy
guarantees that the generated pieces respect the rhythmic
coherence structure defined in the abstract template and that
they have the same number of notes of the template piece.

An evaluation process was carried out to evaluate the
melodies that are created with this method. In the first phase
of the evaluation 31 participants from the university listened
to five melodies, where original and generated pieces were
mixed. First they had to say if the melodies were original
bertso melodies or generated pieces, and then, they needed to
score the generated pieces from 1 to 10. In the second phase of
the evaluation the style of the generations was evaluated with
a classification process in which the style of the generated
pieces was classify as bertso, classical piece or Dutch folk
melody.

The results obtained from the first phase of the evaluation
show that, even if some of the participants were able to iden-
tify some of the generated pieces, these generations obtained
good scores, showing that the participants liked them. In addi-
tion, the stylistic evaluation shows that the generated pieces
are classified as bertsomelodies, using bothmatrix and global
feature representation.

In the presented method the melodic and the rhythmic
information are treated independently; independent coher-
ence structures are created to analyse the melodic line and the
rhythm of the template piece, and two independent statistical
models are also created. As mentioned before, it has been
decided that it is the best way to deal with bertso melodies,
considering that they can have segments with rhythmic repe-
titions that are not completely related melodically. However,
the method presented herein is intended to be a general music
generation method, and the melodic and rhythmic informa-
tion can also be combined just linking melodic and rhythmic
viewpoints. These linked viewpoints would be then used
both for the semiotic analysis of the template piece and the
building of the statistical model.

As future work different paths have been defined. Since
the abstract template of the pieces can include both melodic
and rhythmic coherence structures, adding more information,
like harmonic structure, is envisaged. This would allow hav-
ing richer abstract template and generating more interesting
pieces, that take into account not only the melodic statistical
model, but also different harmonic directions. This could
be done adding new viewpoints of the template piece that
represent harmonic information.

Thanks to the simplicity of viewpoint representations to
describe events in various abstraction levels, new levels
can be added in the melodic analysis or in the rhythmic
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one, or even to extract the structures from polyphonic pieces
using viewpoints that describe vertical relations.

Regarding the proposed strategy to sample the rhythmic
content of the new pieces, even though it is capable of gener-
ating sequences that respect the coherence structures and also
maintain the number of notes of the template piece, it may
sometimes be too restrictive. As future work, it should be
updated in order to allow more possible generations.

The automatic generation of coherence structures is also
being considered; learning the different coherence structures
that appear in a corpus in order to be able to generate new
ones. This would guarantee the generation of coherent new
pieces without the need of a piece that is used as template.

The use of heterogeneous patterns has also been identified
as future work; patterns that not only describe one type of
segment relation, but patterns that can have different abstrac-
tion mixed. The need of nested pattern discovery within the
melodic coherence structure should be studied.

The generation method is currently being used to generate
music therapy exercises for people with Alzheimer’s disease
within a regional project funded by the Provincial Council of
Gipuzkoa.

APPENDIX
EVALUATION SCORES
See Figure 19.
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