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ABSTRACT Indoor localization technology plays an important role in many indoor application scenarios.
Existing WiFi-based indoor localization methods mainly obtain channel state information (CSI) through
the personal computer, or obtain coarse-grained received signal strength (RSS) through the smartphone
to finish the localization. Little work has been done on using smartphones to obtain fine-grained channel
state information for localization. In this paper, we use the smartphone to collect fine-grained CSI that
is more convenient and applicable, and propose a indoor fingerprinting localization. Compared with the
CSI collected by the computer, the CSI signal collected by the smartphone fluctuates greatly. Hence,
we corrects the CSI data through the signal processing technique and selects optimal subcarriers to obtain
more stable and effective signals. In order to cope with the noisy WiFi environment, the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) method is used to remove abnormal sample points
to reduce environmental interference. Moreover, the support vector machine multi-classification method is
used for training and classification to achieve localization. Finally, we use the Google Nexus 5 smartphone
to conduct experiments in two typical indoor environments. The localization accuracy is 91% and 86%,
respectively, and both average localization errors are less than 0.5m. Experimental results show that the
proposed algorithm has higher localization accuracy compared with the typical algorithms.

INDEX TERMS Indoor localization, smartphone, channel state information, support vector machine.

I. INTRODUCTION
With the continuous development of wireless network
technology [1], [2] and the rapid increase of mobile
devices [3], [4], indoor localization and related applications
have received extensive attention. Unlike outdoor localiza-
tion systems (such as Global positioning system and Beidou
satellite navigation system), indoor localization is subject to
interference from some wireless signal propagation environ-
ments, including multipath effects, shadow fading and delay
distortion. Therefore, outdoor localization technology is not
suitable for indoor localization. How to provide good local-
ization services in indoor environments has received exten-
sive attention. WiFi-based indoor localization has become
a research hotspot of indoor localization due to low cost
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and simple technology implementation without additional
hardware equipment.

At present, WiFi-based indoor localization technol-
ogy is mainly divided into fingerprint-based localization
technology [5], [6], ranging-based localization technol-
ogy [7], [8] and angle of arrival-based localization technol-
ogy [9]–[11]. The fingerprint-based localization method has
good robustness to the environment and high localization
accuracy because it does not need to know the location infor-
mation of the Access Point (AP) and the distance between
the antennas in advance [12], [13], which has attracted the
attention of many researchers.

Due to its simplicity and low hardware requirements, pre-
vious indoor localization systems used the Received Sig-
nal Strength (RSS) based localization method [14], [15].
However, this RSS-based approach has two main limita-
tions. First, the RSS value usually has a high time-varying
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at a fixed position. Even for a fixed device, this high time
variation can cause large position errors. Second, the RSS
signal is easily interfered by multipath effects and noise in
the indoor environment, and the RSS is the coarse-grained
information. With the continuous development of net-
work technology [16], channel state information (CSI)
can now be obtained from some WiFi network interface
cards (NICs), which is more fine-grained. It uses subcarri-
ers [17], [18] based on Orthogonal Frequency Division
Multiplexing (OFDM) technology to obtain more abundant
multipath information. The indoor localization technology
based on channel state information [19]–[21] has been widely
used due to advantages of high processing efficiency, strong
anti-interference and high localization accuracy. FILA is the
first system to achieve indoor localization using fine-grained
CSI instead of RSS [7]. It proposes the relationship between
CSI value and distance, and applies trilateration to achieve
localization. Jiang et al. [22] proposed a CSI-based indoor
fingerprint localization system(FIFS), which used the diver-
sity of time and space dimensions to process CSI to estab-
lish a fingerprint database, and combined Bayesian model
to achieve position estimation. Wang et al. [23] proposed
a indoor fingerprinting localization system (DeepFi) using
deep learning and CSI. The weights of the deep network
were trained as fingerprints using deep learning and the
estimated position was obtained using a radial basis func-
tion based probabilistic method. Chapre et al. [24] proposed
an indoor WiFi fingerprint system CSI-MIMO, which com-
bined multiple input multiple output (MIMO) information
and used the CSI amplitude and phase deviation between
subcarriers to establish a fingerprint database. Qian et al. [25]
established a theoretical model Widar, which can geomet-
rically quantify the relationship between CSI changes and
the human’s position and moving velocity, thus achieving
personnel localization and tracking. Mugahid and Yun [26]
estimated the indoor distance for passive UHF RFID tag
based on RSSI and RCS. Although the localization accuracy
is improved, they may not work well in terms of scala-
bility due to either high specialized infrastructure cost or
extra device carrying. Whereas in fact, Smartphone-based
approaches can efficiently utilize the available infrastruc-
ture for indoor localization. Schulz et al. [27] proposed that
researchers’ own WiFi test platforms with low-level mac and
phy-access can be built by using firmware patches on mobile
devices. By using the firmware patch on the smartphone,
the Wi-Fi firmware is modified and CSI can be extracted
on the smartphone [28]. And the Nexmon firmware patching
framework is designed by Schulz et al. [29] to make MAC
frame and physical-layer functionalities on Broadcom Wi-Fi
chips accessible to researchers.

The existing WiFi-based indoor localization method has
not yet appeared to use the smartphone to obtain fine-grained
channel state information for localization and channel state
information can only be obtained through the computer
equipped with Intel 5300 NIC. However, the size of the com-
puter is large, the battery life is short, and the mobility is poor,

which makes people unable to carry it with them. And the
computer is expensive and the operation is relatively compli-
cated. Therefore, it is not suitable for some real indoor scenes.
Nowadays, almost everyone uses smartphones. As smart-
phones play an increasingly important role in people’s daily
lives, people are increasingly inseparable from smartphones.
Due to the convenience of smartphones, people carry smart-
phones almost everywhere. Compared with computers, it is
more convenient to obtain fine-grained channel state infor-
mation through smartphones. This paper uses the smartphone
instead of the computer to collect CSI for indoor localization
for the first time, which is more convenient and applicable.
However, compared with the CSI collected by the computer,
the CSI signal collected by the smartphone fluctuates greatly
and the signal stability is poor, which is also an inherent prob-
lem of CSI signal collected by smartphone. In order to solve
this challenge, this paper proposes the smartphone-based
indoor fingerprinting localization using channel state infor-
mation. This paper firstly processes the CSI data to correct the
data, and obtainsmore stable and effective data to improve the
localization accuracy by selecting the optimal subcarrier data
and removing the abnormal sample points. The processed
data is used as the final fingerprint, and then Support vector
machine multi-classification algorithm is used to achieve
localization. We conducted experiments in two real indoor
environments, the corridor and laboratory. The localization
accuracies are 91% and 86%, respectively, and both average
localization errors are less than 0.5m. Specifically, the main
contributions of this paper are as follows:
• Realizing the inconvenience of network card-based solu-
tions, we propose a smartphone-based indoor localiza-
tion using CSI, which has the priority in pervasiveness
in practical application rather than the computer. The
fine-grained CSI is firstly collected by the smartphone
and then used for localization.

• In order to solve the instability problem of signals col-
lected by smartphones, some suitable pre-processing
techniques are applied to correct the CSI data and an
optimal subcarrier selection scheme is designed accord-
ing to the characteristics of the CSI data collected by the
smartphone.

• Extensive experiments have been conducted in multiple
indoor environments, and the effects of methods used in
this paper on the localization result have been studied.
The experimental results show that the proposed algo-
rithm outperforms state-of-the-art algorithms.

The rest of the paper is organized as follows: Section II
introduces the basic theory of CSI. Section III presents the
architecture of the system. Section IV reports the experimen-
tal design, evaluations and analyses. And section V concludes
this paper and introduces future work.

II. CSI COLLECTION
A. CHANNEL STATE INFORMATION (CSI)
In the IEEE 802.11n/ac standard, orthogonal frequency divi-
sion multiplexing (OFDM) technology is used to transmit
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signals over multiple different orthogonal subcarriers. Today,
detailed amplitude and phase information for different sub-
carriers can be provided in the form of CSI. CSI is also the
channel property of the communication link. To a certain
extent, it can describe the attenuation factor for each trans-
mission path, revealing information such as signal scattering,
mutipath fading and power attenuation.

As well known, the OFDM system with a narrowband flat
fading channel in the frequency domain can be expressed as

y = Hx + n, (1)

where y and x are the received and transmitted signal vec-
tors, respectively, H and n are the channel information
matrix and the additive white Gaussian noise (AWGN) vector,
respectively.

According to Formula (1), the CSI of each subcarrier can
be estimated as the below equation.

Ĥ =
y
x
, (2)

From here we can see that it is fine-grained and comes from
the physical layer.

The CSI collected by the receiver can be divided into
different subcarrier clusters, and the CSI matrix H can be
expressed as

H = [H1,H2, . . . ,HN ] , (3)

where N is the number of subcarriers, N = 56 in the 20MHz
bandwidth and N = 114 in the 40MHz bandwidth.

The signal can use the channel frequency response (CFR)
to describe the multipath propagation of the signal from the
amplitude frequency characteristic and the phase frequency
characteristic respectively. CSI can be extracted in the fre-
quency domain in the form of CFR, and CSI of a single
subcarrier can be expressed as

Hi = |Hi| e
j sin

{
6 Hi

}
, (4)

where |Hi| and 6 Hi are the amplitude and phase of the i-th
subcarrier, respectively.

B. IMPACT OF SMARTPHONE LOCATION ON CSI
Since only the CSI amplitude information can be extracted
through the smartphone, this paper only considers the
CSI amplitude for fingerprint recognition, so as to solve the
localization problem. The CSI amplitude value varies when
the smartphone is in different positions. Hence this difference
can be used to establish the mapping between location and
CSI data. Fig. 1(a) and Fig. 1(b) show the amplitudes of
the acquired subcarriers over packets when the smartphone
is in two different positions. Obviously, the CSI data of
these two positions show significant differences. Therefore,
the localization problem can be solved by analyzing the CSI
fingerprint characteristics.

FIGURE 1. CSI data at different locations.

III. SYSTEM ARCHITECTURE
In this paper, the CSI amplitude information of the reference
point is collected by using the smartphone. First, the abnor-
mal value processing, denoising and smoothing of the CSI
signal are performed. Second, the optimal sub-carriers are
selected and the abnormal sample points are removed. Then
the processed data is used as the final CSI fingerprint infor-
mation for building the fingerprint database. Finally, the sup-
port vector machine multi-classification algorithm is used
to finish localization. The whole system architecture of this
paper is shown in Fig. 2.

A. CSI SIGNAL PROCESSING
Compared with the CSI collected by the computer, the CSI
signal collected by the smartphone fluctuates greatly, which
is also an inherent problem of the CSI collected by the
smartphone. To solve this problem, this paper processes the
original CSI data to make them relatively stable and effective.
First, the outliers are removed from the original CSI data.
The main idea is to calculate the median value of the window
composed of the sample data and its ten surrounding sample
data, and estimate the standard deviation of each sample data
with respect to the median value using the median absolute
deviation. If the difference between the sample data and the
median is greater than the three standard deviations, replace it
with the median value. After removing the outliers, the noise
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FIGURE 2. System architecture.

of CSI data is removed, which mainly uses the wavelet soft
threshold denoising method to remove some noise existing
in the environment. Then the signal is smoothed. The main
step is the polynomial smoothing algorithm based on the
least squares fitting principle. This paper uses some suitable
filtering methods to realize the correction of CSI data.

Then the optimal subcarrier selectionmethod is performed.
In order to obtain more stable subcarriers, we remove the
subcarriers with large amplitude fluctuations by using the
variance selection method. The key idea is to set a suitable
threshold. If the amplitude variance of a certain subcarrier is
greater than the predefined threshold, it indicates that signal
is unstable and should be removed. We first calculate the
magnitude variance of each subcarrier over a period of time,
and then set the second tertile of variances of all subcarriers
as the variance threshold. Hence, only about one-third of the
subcarriers will be removed, and the filtered features will
not be large or small. By the optimal subcarrier selection
method, some more stable subcarrier data are selected to
further improve localization accuracy. In this paper, the infor-
mation of 55 available subcarriers can be obtained from
the smartphone and 37 optimal subcarrier information are
selected by the variance selection method.

Fig. 3(a) shows the amplitude of the each original sub-
carrier that is continuously sampled 300 times at a certain
location. A total of 55 subcarrier data can be obtained through
the smartphone, and it can be seen that the CSI signal is
unstable. Fig. 3(b) shows the CSI data processed by the above
methods. The subcarrier data is corrected by the preprocess-
ing method, and 37 optimal subcarrier data are selected by
the optimal subcarrier selection method. The CSI data is
normalized prior to classification to achieve higher preci-
sion and faster convergence. The CSI amplitude is mapped
to [0, 1], and the formula is as follows:

CSI =
CSI-CSImin

CSImax − CSImin
, (5)

where CSImin represents the minimum CSI amplitude and
CSImax represents the maximum CSI amplitude.

FIGURE 3. CSI data before and after pre-processing.

Compared with the CSI collected by the computer, the CSI
signal collected by the smartphone is very unstable, which
is a challenge for the smartphone-based localization. After
processing the signal by the aforementioned methods, there
is still a lot of noise. If it is used directly for classifica-
tion experiments, the error will be very large. Therefore,
the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) method here is used to remove the abnor-
mal sample points, and the sample points are automatically
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classified into sub-classes of different sizes and shapes. In the
final classification, the sample points become more efficient
and relatively concentrated, thus the localization effect will
be improved.

DBSCAN is a density-based clustering algorithm that
divides the region of sufficient density into multiple clusters.
In a spatial database with noise, clusters of any shape rep-
resenting the largest set of density-connected points can be
found. The closely packed points are grouped and the points
in the low-density area are marked as outliers. There is not
necessary to specify the number of clusters in advance and the
outliers can be effectively detected and removed [30], [31].
In this paper, DBSCAN clustering algorithm is used to judge
whether the sample point is an abnormal point, and the abnor-
mal sample point is removed. The pseudo code is given in
Algorithm 1. Where ε-neighborhood with sample point k as
the core is Uε(k) = [p ∈ H |dist(k, p) ≤ ε]. dist(k, p) is
the distance between two sample points k and p in data setH ,
indicating similarity between samples, most commonly using
Euclidean distance and Manhattan distance.

Algorithm 1 Abnormal Sample Point Removal With
DBSCAN
Input: CSI data set H of all sample points, radius parameter

ε, neighborhood density parameterMinPts;
Output: CSI data set H ′ for removing abnormal sample

points;
1: Set all sample points in H as unvisited;
2: for Sample point K marked as unvisited in H do
3: Set K as visited;
4: Compute the number of sample points n in the
ε-neighborhood of K ;

5: if n ≥ MinPts then
6: Create a new cluster C and add K to C ;
7: Let S be the set of sample points in the
ε-neighborhood of K ;

8: for Sample point K ′ marked as unvisited in S do
9: Mark K ′ as visited;

10: Calculate the number n of sample points in the
ε-neighborhood of K ′;

11: if n ≥ MinPts then
12: Add all sample points in the

ε-neighborhood of to S;
13: end if
14: if K ′ does not belong to any cluster then
15: Add K ′ to C ;
16: end if
17: end for
18: Output C ;
19: else
20: K is an abnormal sample point;
21: end if
22: end for
23: Remove all abnormal sample points in H and output H ′.

The DBSCAN algorithm has two important parameters
ε and MinPts, where ε represents the neighborhood radius
of the sample point and MinPts represents the neighbor-
hood point threshold. However, these two parameters are not
automatically estimated, usually based on the experimenter’s
experience. If the parameter value is not suitable, it is easy
to lead to poor clustering results. Hence this paper uses the
adaptive mesh method to estimate ε and MinPts according
to the sample characteristics and experimental experience,
which can reduce the clustering error. The optimal radius
parameter ε and the neighborhood density parameterMinPts
are set by the experiment. By removing the abnormal sample
points, the noise is eliminated, the localization accuracy is
improved. And the number of samples is reduced, so the
operation rate is accelerated.

B. MODEL OF SVM LOCALIZATION ALGORITHM
The concept of Support Vector Machine (SVM) was orig-
inally proposed by Vapnik [32]. Nowadays, SVM methods
have been widely used in classification and regression meth-
ods [33]–[35]. This paper employes the SVM classification
method to achieve the aim of localization. The main idea
is to assume that the sample set consists of two classes.
After training with the samples marked with y = 1 and
y = −1, a classifier is generated, and then correct labels of the
unlabeled samples can be identified, so they can be correctly
classified. By finding an optimal hyperplane, the SVM can
distinguish between positive and negative marker samples as
much as possible, and make the two types of samples farthest
from the classification plane [36].

After obtaining the CSI amplitude information of the
selected reference point, preprocessing the CSI data, extract-
ing the feature values, and so on, the final CSI fingerprint
information is obtained, and the fingerprint database is con-
structed. Let Fi, Fi = [Fi1,Fi2, . . .Fin], denotes the CSI
fingerprint vector at the reference point i and n denotes the
number of fingerprint attributes. The classification label cor-
responding to each fingerprint vector is yi = ±1. After estab-
lishing the fingerprint database and category correspondence,
the support vector machine classification method can be used
to achieve localization.

In general, when SVM classification is performed,
the sample set is not linearly separable. Therefore, the linear
mapping, φ : Fi → D, is first used to map CSI fin-
gerprint information from a low-dimensional space Fi to a
higher-dimensional feature space D, thereby achieving linear
separability in a high-dimensional space, where the classifi-
cation hyperplane is

wTφ (Fi)+ b = 0, (6)

where w is a weight vector and b is a bias coefficient.
In order to maximize the distance between the points

closest to the classification hyperplane in all sample points,
the optimal hyperplane problem is transformed into solv-
ing the optimization problem, and the objective function is
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FIGURE 4. Experimental setup of the corridor and the laboratory.

solved as

min
1
2
‖w‖2 + c

n∑
i=1

ξi, (7)

where 
yi
(
wTφ (Fi)+ b

)
≥ 1− ξi

ξi ≥ 0
c > 0,

(8)

where ξi denotes the slack variable of the function interval
allowed to control the sample point, and c denotes the penalty
coefficient.

The above formula is a classic quadratic programming
problem, and its Lagrangian polynomial is

L =
1
2
‖w‖2 + c

n∑
i=1

ξi − A−
n∑
i=1

τiξi, (9)

where A =
∑n

i=1 αi
(
yi
(
wTφ (Fi)+ b

)
− 1+ ξi

)
, and

αi and τi are Lagrangian multipliers.
By solving, the above formula can be transformed into

L =
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk
(
Fi,Fj

)
, (10)

where k
(
Fi,Fj

)
=

〈
φ (Fi) , φ

(
Fj
)〉

is the kernel function.
By solving maxL, where

∑n
i=1 αiyi = 0, 0 ≤ αi ≤ c, i =

1, . . . , n, and the optimal parameters,α∗ =
(
α∗1 , α

∗

2 , . . . , α
∗
n
)
,

can be obtained. The optimal weight vector and the optimal
bias coefficient can be obtained by calculation, and the best
discriminant function is obtained as follows:

f (Fi) = sgn
[
w∗φ (Fi)+ b

]
= sgn

 n∑
j=1

α∗j yjk
(
Fi,Fj

)
+ b∗

 . (11)

Therefore, the SVM classification algorithm can be imple-
mented by the above formula, and the grid search method is

FIGURE 5. Floor-plan of the corridor.

used to select the optimal parameters c, gamma and kernel
function. The support vector machine multi-classification
algorithm mainly deals with multi-classification problems
by constructing and combining multiple two-classifiers to
realize the construction ofmulti-classifiers. This paper adopts
one-against-one classification method, and the main idea is
to construct a two-classifier between the training samples of
any two categories to achieve multi-classification. If there
are a total of k categories of training samples, k(k − 1)/2
two-classifiers can be constructed to classify the samples into
the one with the largest number of samples.

IV. EXPERIMENT
A. EXPERIMENT SETUP
Experiments were conducted in the corridor and labora-
tory on the fifth floor of the academy of computer. The
experimental environment of the corridor and laboratory is
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FIGURE 6. Floor-plan of the laboratory.

FIGURE 7. Confusion matrix of experimental results in the corridor.

FIGURE 8. Confusion matrix of experimental result in the laboratory.

shown in Fig. 4 and the corresponding floor-plans are shown
in Fig. 5 and Fig. 6, respectively. Nowadays, CSI can be
obtained from the computer with the Intel 5300 NIC, but this
paper uses the smartphone instead of the computer to collect
CSI for indoor localization for the first time.We execute some
commands on the smartphone whose WiFi firmware is mod-
ified to extract the CSI signal. Therefore, the experimental
equipment only needs a smartphone and a wireless routing
device, which is easy to operate and simple to implement.

We used the AC1200 dual-band wireless router as the
transmitter, and the Google Nexus 5 smartphone as the
receiver. We chose the 5GHz frequency band with 20MHz
bandwidth of WiFi. The experimental area was divided into
square small areas at intervals of 1.2m, that is, the area of
each small area was 1.2 m × 1.2 m. 16 training points and
16 test points were selected in the laboratory, and 14 train-
ing points and 14 test points were selected in the corridor.
The original CSI data are collected from the connected AP
at each reference position by the smartphone. 500 samples

FIGURE 9. CDF of localization errors in the corridor and laboratory.

are continuously sampled at each position, and 100 samples
before and after the sample points are respectively removed,
so 300 samples are obtained for the experiment. The smart-
phone can obtain 55 available subcarrier information in total.
We first collected the CSI data of the training positions, and
then collected the CSI data of the test positions after a period
of time, that is, the training samples and the test samples are
not acquired at the same time.

B. EXPERIMENTAL RESULTS
In this paper, the localization results of the algorithm designed
in this paper are measured by two indexes: localization accu-
racy and average localization error.

1) Localization accuracy
The localization accuracy is defined as the ratio of
the number of correctly classified samples to the total
number of test samples.

loaccy =
numcorr

mumtotal
, (12)

where numcorr represents the number of correctly clas-
sified test samples and numtotal represents the total
number of test samples.

2) Average localization error

avgerr =
1
n

n∑
i=1

√(
xi − x ′i

)2
+
(
yi − y′i

)2
, (13)

where xi and yi represent the actual coordinate of the i-
th test sample, x ′i and y

′
i represent the position estimate

coordinate of the i-th test sample, and n is the total
number of test samples.

We evaluate the performance of the algorithm designed in
this paper in the corridor and laboratory. The confusionmatri-
ces of the corresponding test results are shown in Fig. 7 and
Fig. 8, respectively.

When experimenting in the corridor, the localization accu-
racy is about 91% and the average localization error is
about 0.30 m. The prediction result of each test position
is basically accurate. When experimenting in the laboratory,
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FIGURE 10. Localization effect of different localization algorithms.

FIGURE 11. Comparison of localization effects of different methods.

the localization accuracy is about 86% and the average local-
ization error is about 0.36m. However, the prediction results
of position 1 and position 3 are not good, probably because
their positions are far from the router and the received sig-
nal is weak. The cumulative distribution function(CDF) of
localization errors in the corridor and laboratory are shown
in Fig. 9.

C. COMPARISON AND ANALYSIS
This paper conducts experimental tests in the laboratory to
evaluate the effects of the different methods used in this paper.

1) Impact of the optimal subcarrier selection method: The
optimal subcarrier selection method is applied to the
CSI data, which can remove unstable subcarriers and
select optimal subcarrier information, thereby improv-
ing localization accuracy. The evaluation results with
and without the optimal subcarrier selection method
are shown in Table 1. The cumulative error distribution
function of localization errors is shown in Fig. 11(a).
Compared with not using this method, the localization
accuracy after use is improved by 9.5% and the average
localization error is reduced by 0.17m. Obviously, the
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TABLE 1. Localization effect of different methods.

FIGURE 12. Localization result plans of different methods.

effect after the optimal subcarrier selection method
outperforms the unprocessed effect.

2) Impact of the abnormal sample point removal method:
DBSCAN clustering method can be used for CSI data
to remove abnormal sample points. The evaluation
results with and without DBSCAN method are shown
in Table 1. The cumulative error distribution function
of localization errors is shown in Fig. 11(b). It can be
found that the localization result using the DBSCAN
method is better.

3) Impact of Kernel function selection: This paper com-
pares the influence of some common kernel functions
on the localization accuracy. The comparison results
are shown in Table 1. The localization accuracy of the

kernel function for RBF is slightly higher than other
kernel functions. The cumulative distribution function
of the localization error is shown in Fig. 11(c). It can
be seen that the four kernel functions have little impact
on the final localization accuracy.

4) Impact of different localization algorithms: This paper
uses SVM multi-classification algorithm to achieve
localization and other common localization algo-
rithms include DNN, KNN and Bayesian classifica-
tion algorithm, and so forth. For comparison, this
paper selects the KNN, DNN and BAYES algorithm
for the localization effect test. The comparison results
are shown in Fig. 10(a), (b) and (c), and the cumulative
error distribution function of the localization error is
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shown in Fig. 11(d). It can be seen that the SVM
multi-classification algorithm is more suitable than
other algorithms in terms of localization problems.The
localization result plans are shown in Fig. 12, where
the line is the connection between the real position
and the estimated position. Obviously, the algorithm
in this paper performs better than other localization
algorithms.

V. CONCLUSION
Different from existing indoor localization methods, which
can only obtain CSI by the computer equipped with Intel
5300 NIC, this paper uses the smartphone instead of the
computer to collect CSI and proposes the smartphone-based
indoor fingerprinting localization using channel state infor-
mation. However, compared with the CSI collected by the
computer, the CSI signal collected by the smartphone fluc-
tuates greatly, which is also an inherent problem of the CSI
collected by the smartphone. In order to solve this problem,
the CSI signal is processed first, and the optimal subcarrier
selection and abnormal sample point removal methods are
designed to obtain relatively stable and effective data, and the
SVMmulti-classification method is applied to achieve indoor
localization. The high efficiency of the algorithm is proved by
a large number of experiments. We conducted experiments in
two typical indoor environments, the corridor and laboratory.
The localization accuracies in the corridor and laboratory
are 91% and 86%, respectively, and both average localiza-
tion errors are less than 0.5m. The smartphone that obtains
CSI in this paper is a specific smartphone, namely Google
Nexus 5 smartphone. At present, it is impossible to obtain
CSI through any type of smartphone. In the future work,
we can try to study the firmware of any smartphone to achieve
CSI collection using any smartphone. Nowadays, the existing
technology is better for achieving single-person localization,
and the performance of multi-person localization is not good.
In order to cope with this challenge, designing more efficient
algorithms to solve multi-person localization problems is also
the focus of future work.
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