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ABSTRACT In this paper, we propose a novel patch-based adaptive nonlocal gradient regularization method
for image restoration in sensor networks. It formulates the hyper-Laplacian distribution to regularize the
global gradient distribution. The patch-based nonlocal gradient prior is utilized to regularize the nonlocal
self-similarity of image gradients. Firstly, the L0-norm smoothing scheme is used innovatively as the
preprocessing step to preserve strong edges, which are critical to improve the accuracy of clustering the
similar image patches. Then, adaptive weights for each patches are developed from a set of clustered nonlocal
self-similarity patches by learning the the expectation and variance for sparse gradient distribution at each
pixel. Comparing with several recent state-of-the-art methods, experimental results show that the proposed
method has better performance in alleviating block effects and preserving image details.

INDEX TERMS L0-norm regularization, image restoration, hyper-Laplacian, image priors.

I. INTRODUCTION
With the rapid development of wireless sensor networks,
there is an increasing demand for the quality of signal trans-
mission, especially for the two-dimensional images, which
are inevitably degraded in the process of image acquisition,
transmission and processing. Naturally, image restoration
with the purpose of recovering a high quality original images
plays an important role in mid-level and high-level image
processing tasks [1], [2]. In the spatially invariant system,
the imaging process is often formulated as a common model
y = Hx + n. Here y is the degraded image, x is the desired
image and n is the additive Gaussian white noise with zero
mean. H denotes the degraded process, which is the discrete
point spread function (PSF) and usuallymodeled as a blurring
matrix. The recovered results may be discontinuous because
of observation errors, which lead to the high ill-posed prob-
lem. Thus, regularizing such ill-posed problem is critical to
obtain a stable solution and produce a desire image.

In the maximum a posterior (MAP) framework, the pos-
terior of the recovered procedure often be modeled as
P(x |y,H )∞P(y |x,H )P(x). Here, the likelihood P(y |x,H )
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is usually specified as Gaussian distribution, which yields a
well-known conditional probability density function

P(y |x,H )=N(y
∣∣∣Hx, σ 2

n I )∞exp
(
−

1
2σ 2

n
‖y− Hx‖22

)
, (1)

where σ 2
n is the noise variance and I denotes an identity

matrix. According to the Bayes rules, the corresponding
object function can be modeled as

x̂ = argmin
x

{
λ

2
‖y− Hx‖22 +8(x)

}
, (2)

where ‖·‖2 is the Euclidean norm and the first term
λ ‖y− Hx‖22/2 denotes the energy-fidelity or data-fidelity
term. 8(x) is the regularization term that usually needs the
image prior information to obtain the underlying solution.
λ > 0 is the regularization parameter used to balance the
fidelity term and regularization term. The PSF H is unknown
in actual imaging cases, and the image restoration problem
is still highly ill-posed even the blur kernel is known. It can
be explained that the blur kernel is regarded as the low pass
filter that tends to smooth the high frequency components,
which leads to a loss of image details such as textures and
edges. Therefore, developing an accurate image regulariza-
tion method is critical to obtain the stable solution and
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produce the high-quality recovered image. And the main
purpose of this paper is developing appropriate image priors
and adaptive spatial constraints.

A. RELATED WORKS
Many approaches have been developed for modeling and
regularizing image priors. Some can be ascribed for image
priors that exploit the statistics of natural image [3], others
are based on the salient edges extracted from the image
gradient domain [4]. Previous attempts in establishing image
priors relied onmodeling local pixel gradients with Laplacian
distributions (total variation) [5], hyper-Laplacian distribu-
tion [6], [7], Gaussian mixture models [8], or generalized
Gaussian distribution [9]. Recently, image priors have also
been designed by formulating coefficients of the image in a
transformed domains such as the discrete cosine transform
domain and the discrete wavelet transform domain via scaled
mixture of Gaussian priors [10]. The most basic idea of these
works can be considered that images are sparsely represented
in certain domains. In addition to the transform domain,
the gradient domain is also widely used in image restoration
problems as a typical spatial domain. The statistics and anal-
ysis of the images in the transform and the spatial domain
show that images have self-similarity, scale in-variance, edge-
dominant characteristics and high-dimensional heterogene-
ity. However, the high-dimensionality of the image makes it
difficult to learn and optimize related prior knowledge from
natural images. Obviously, the more appropriate the image
priors and regularization schemes are, the more the natural
information of the image can be better used to obtain high
quality results.

Patch-based image priors have drawn more and more
attention from experts to try various regularization schemes.
Especially formulating the distribution of image patches has
proven to get a stable solution [11], which mainly use the
non-local self-similarity [12], [13], fields of experts [14],
learned patch distribution [15]–[18]. Cho et al. [19] proposed
a variational image restoration method that divided the image
into square patches and used image priors to each patches
independently. A typical non-local based variant total vari-
ation (NLTV) algorithm [20] assigns weights using the varia-
tion between any two pixels in a searching window. If they are
not relevant, they will be assigned a small weight. However,
the irrelevant contents can still influence the accuracy of
algorithm. The popular BM3D [21] algorithm applies both
two-dimensional and three-dimensional transform domains
of the non-local self-similarity of image patches to achieve
collaborative filtering. Using the non-local mean theory,
Dong et al. [22] propose the non-local centralized sparse rep-
resentation model to obtain the estimation of the sparse cod-
ing coefficients of the original image. By taking advantage
of the non-local similarity of natural images, Liu et al. [23]
formulate the sparsity of the image gradient with pixel-wise
content-adaptive distributions to reflect the non-stationary
nature of image statistics. Daniel and Weiss [24] propose the
Expected Patch Log Likelihood (EPLL) method by using a

Gaussian mixture model (GMM) prior, which trains clean
image patches to regularize degraded image patches. The
GMM model has been proved to be more effective, popu-
lar and extendable to other sparsity constraints [25], [26].
Considering each patch has a patch classification step and
a shrinkage step, Alban et al. [27] provide approximations
and computational recipes to evaluate these two steps by
embedding a generalized Gaussian mixture model into EPLL
for an image with more than tens of thousands of patches.
Assuming that the gradient distribution is spatial variant,
Kang and Wu [28] propose an adaptive patched L0 gradient
minimization model that exploits the variational coefficient
of roughly divided patches and sets the patch size adaptively.
Clearly, developing appropriate patch-based adaptive gradi-
ent priors can improve the regularization of local information
and obtain more satisfactory results.

B. OUR CONTRIBUTION
In this paper, we propose a patch-based adaptive nonlo-
cal gradient regularization method for image restoration.
The hyper-Laplacian distribution is formulated to regular-
ize the global gradient distribution, and the nonlocal self-
similarity of image gradients is utilized to regularize the
patch-based nonlocal gradient prior. Especially, the L0-norm
smoothing scheme is used innovatively as the preprocess-
ing step to improve the accuracy of clustering the similar
image patches. For spatial variation image prior, adaptive
weights for each patches are developed from a set of clus-
tered nonlocal self-similarity patches by learning the the
expectation and variance for sparse gradient distribution at
each pixel. Experimental results show that the proposed
method can effectively alleviate block effects and preserve
image details.

The main contributions of the proposed method can be
summarized as follows:

1) proposing a novel patch-based adaptive nonlocal gra-
dient regularization method that applies the statistical prop-
erties of the entire image and the self-similarity of image
patches.

2) applying the L0-norm smoothing image as the prepro-
cessed image to improve the accuracy of clustering the similar
image patches. The K-Nearest-Neighbor (KNN) method is
used to measure the similarity of image patches. KNN is
calculated based on Euclidean distance by L2-norm to save
computations.

3)developing patch-based adaptive weights from a set of
nonlocal self-similarity patches by learning the expectation
and variance for sparse gradient distribution at each pixel.

The reminder of this paper is organized as follows.
Section II describes the image prior sparsity regularization
scheme including the motivation of the proposed method,
the novel image gradient prior and the adaptive patch-based
non-local image prior. Section III introduces the proposed
model and analyzes the numerical optimization algorithm.
Experimental results are reported and discussed in Section IV,
and Section V makes a conclusion.
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II. IMAGE PRIOR SPASITY REGULARIZATION
A. MOTIVATION
Generally, the heavy-tailed distribution of the whole image
gradient distribution is formulated as a unified hyper-
Laplacian prior for the global image prior. However, the gra-
dient distribution is spatially variant, it might be misleading
because the statistic of natural images may not be stationary
and the distribution of gradient data usually varies from one
patch to another. Especially for the image with rich details,
the regularization on regions with more textures or structures
is usually emphasized that makes edges over-smoothed and
leads to under-utilization of local information of the image.
Many state-of-the-art algorithms can be attributed to using
image priors obtained from statistical information of the nat-
ural image [6], [29]. However, some image information is still
lost when noise is removed because of the prepossessing of
the image. In the previous research [28], L0-norm is mainly
used for resolving the image smoothing problem, in which
image details are not important but edges are emphasized.
Inspired, this paper considers preprocessing the image by the
L0-norm to get strong edges and regularize the image gradient
as the global constraint.

In many image restoration tasks, images to be recovered
belong to some specific classes, such as faces, text, finger-
prints, plants and buildings. Some images may have two or
more classes because of multiple objects. Teodoro et al. [30]
propose using patch-based image priors that are learned off-
line from sets of clean images, and different image priors
can be learned from sets containing just one class, or from
sets containing two or more classes. This method is proven to
effectively restore images with different structures. However,
for a particular image restoration task, there may be several
image classes in different regions of interest, which are hard
to be extracted adaptively. In addition, both the selecting and
the training of image sets are complicated and time consum-
ing. Inspired by the nonlocal patch-based image priors and
image classified training schemes, we mainly focus on utiliz-
ing the similar patches of the image itself that means using
the self-similarity of image patches. For spatial constraints,
we develop adaptive weights from a set of the searched non-
local self-similarity patches by deriving the sparse gradient
distribution at each pixel. The flow chart is shown in Figure 1,
which briefly introduces the main schemes and steps of the
proposed method. The image energy prior block is shown
in Figure 1, and Eq.(1) in section I has given the specific
formulation as an energy fidelity term ‖y− Hx‖22/2σ

2
n for the

whole image. In the following subsections, we will explain
the proposed global image gradient regularization based on
the hyper-laplacian distribution and the patch-based nonlocal
regularization.

B. GLOBAL GRADIENT DISTRIBUTION PRIOR
The L0-norm regularization has been used for image smooth-
ing by minimizing the image gradient. It can get better results
for the piecewise constant image than the total variation

FIGURE 1. Flow chart of the proposed method.

method, which is the typical model using the L1-norm [31].
Xu et al. [32] propose an unnatural L0 framework for single
image deblurring by leveraging the L0 sparse representation
to greatly benefit kernel estimation and large-scale optimiza-
tion. Based on the statistical characteristics of text images,
Pan et al. [33] present a simple and effective L0-regularized
prior from image intensity and gradient to estimate the blur
kernel and latent images for text image deblurring. in sin-
gle image deblurring. Therefore, the L0-norm can effec-
tively protect strong edges in image denoising and smoothing
tasks.

As mentioned above, the degraded image is obtained by
the convolution operation of the original image and the
blurred path. This is equivalent to image smoothing filter
mathematically, which lead to a considerable amount of
information lost. Thus, it is worth exploring whether the
gradient distribution of the image is changed before and after
degradation. Does the L0-norm image smoothing scheme
also make the gradient distribution change? To explore the
answer, we carry out experiments with various images and
take a typical example for a natural image ‘‘flower’’, whose
gradient histograms in various cases are shown in Figure 2.
Figure 2(a) is the original image that obeys the heavy-tailed
distribution, as shown in Figure 2(b). Figure 2(c) is the image
smoothed by the L0-norm, some details are smoothed but
the strong edges are strengthened, which is reflected in the
image gradient distribution histogram that the middle peak
becomes sharper, as shown in Figure 2(d). Figure 2(e) is the
blur image degraded by the random blur kernel in the top
right. The gradient distribution histogram becomes narrower
compared with that of the original image in Figure 2(b).
This can be explained that some details-rich regions with the
large pixel rang are smoothed out, and flat areas with small
pixel rang occupy a relative larger proportion. Comparing
Figure 2.(b) and (d), (f) and (h), it can be concluded that
L0-norm smoothing scheme does not affect the gradient dis-
tribution of the image. Therefore, the L0-norm smoothing
scheme is reasonable to be regarded as a global smoothing
filter based on sparse strategy. Inspired, in this paper we use
the L0-norm smoothing as the image preprocessing scheme,
which can effectively smooth out the additional noise and
preserve strong edges, and improve the clustering accuracy
of similar patches.
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FIGURE 2. Images in different cases and corresponding gradient
distributions: (a) Original image; (b) Gradient distribution of
(a); (c) L0-norm smoothing image; (d) Gradient distribution
of (c); (e) Degraded image by the blur kernel in the upper
right of the image; (f) Gradient distribution of (e);
(g) L0-norm smoothing for degrade image;
(h) Gradient distribution of (g).

The global gradient distribution prior based on natural
image statistics can be well modeled as the hyper-Laplacian
distribution, and formulated by

P(x) =
∏
i

exp
(
− |(∇x)i|p

)
. (3)

And its logarithm is

8global(x) = − log P(x)∞|(∇x)i|p . (4)

According to the statistics of natural images, the norm p is
usually ranged from 0.5 to 0.8. Moreover, if p is set to 1,
it is the typical total variation norm; and if p is set to 2, it
corresponds to the Gaussian function.

FIGURE 3. Image and gradient distributions of similar patches: (a) House
image; (b) Gradient distribution of the sample image patches.

C. PATCH-BASED NONLOCAL GRADIENT PRIOR
Above hyper-laplacian gradient prior is formulated for the
whole image, however, for the divided image patches, not
each patch follows the same heavy-tailed distribution, espe-
cially for some flat patches that the gradient value tends to
zero. The patch-based nonlocal gradient prior is proposed to
regularize the information of image patches. More precisely
speaking, the relevant image patches are similar to the current
patch and are clustered by block matching scheme from the
divided image patches. The patch-based nonlocal scheme is
illustrated by the following Figure 3. In Figure 3(a), patches
with the similar content marked by blue squares are collected
as data samples to estimate the patch-based gradient distribu-
tion, and their gradient histogram is shown in Figure 3(b).

It is well known that the histogram curve does not repre-
sent the actual gradient value of all pixels but the statistical
distribution. Pixels with large gradient values are not shown
in the curve itself but located at the strong edges, and pixels
with the gradient value of zero are located at the flat regions
of the image. In order to establish an accurate gradient model
at each pixel, the reference patch is located at the current pixel
and similar patches are selected to form a set of divided image
patches, and then the K-Nearest-Neighbor (KNN) algorithm
is used to cluster the similar patches. There is a critical prob-
lem that cannot be ignored. Since the image is degraded and
some details are lost, and the target image patch also becomes
inaccurate. According to [34], the number of similar patches
of an exemplar patch decay exponentially with the increase
of the complex patches, which means that there may exist
outliers within these KNN patches, especially for detailed
patches. From this perspective, it can be better explained
why the L0-norm image smoothing can help improve the
extraction accuracy of similar patches. KNN has been used
frequently in non-local methods to measure the similarity in
the distance. By the L2-norm of intensity level of pixels in
patches, it is defined as

d(i, j) =
∥∥∥x0i − x0j

∥∥∥2
2
. (5)

Here, x0i and x
0
j denote the L0-norm smoothed image patches

located at the pixel i and j, respectively.Block matching algo-
rithm is applied for clustering the K most similar patches,
whose positions are gathered in a set Si. In order to provide
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the adaptive spatial constraint and predict the actual gradi-
ent, the expectation mi and variance σi of the gradient at
pixel i from similar patches is calculated to learn the pixel
distribution by

mi =
1
|Si|

∑
j∈Si

Djx,Dj =

[
Dhj
Dvj

]

σi =

√√√√ 1
|Si|

∑
j∈Si

(
Djx− mi

)2 (6)

Here, D denotes the directional difference operator, Dhj and
Dvj denote the horizontal and vertical directions respectively.
Inspired by [23], the gradient difference between the target

patch and similar patches is regularized by the total varia-
tion that is a typical L1-norm and has better performance
in handling the directionality of the image. It can ensure
the accuracy of prediction to avoid the disadvantage of the
traditional total variation, which simply makes the regular-
ization on the patch itself as zero. This deviation from the
actual value often leads to staircase effects or block effects
in the final recovered image. Hence, the patch-based spatial
adaptive prior is formulated as

8nonlocal(x) =
∑
i

(√
2

σ hi

∣∣∣Dhi x− mhi ∣∣∣+√2σ vi
∣∣Dvi x−mvi ∣∣

)
. (7)

Here, it should be noted that ‘‘non-local’’ doesn’t express
the same concept as the above definition ‘‘global’’ liter-
ally. 8nonlocal(x) means that uses the regularization informa-
tion learned from the highly relevant image patches rather
than local pixelwise, and thus is defined as the non-local
regularization.

III. PROPOSED MODEL AND OPTIMIZATION
A. PROPODED MODEL
The novelty of the proposed model is to make full use of the
image statistical information. On the one hand, the whole dis-
tribution of the image gradient is used as the global constraint,
and on the other hand, the self-similarity of similar image
patches is used as the non-local adaptive gradient constraint.
The framework of the proposed model is

min
x

{
λ

2
‖y− Hx‖22 + α8global (x)+8nonlocal (x)

}
, (8)

and the corresponding objective function can be
formulated as

min
x

{
λ

2
‖y− Hx‖22 + α

(∣∣∣Dhx∣∣∣p + ∣∣Dvx∣∣p)
+

∑
i

(√
2

σ hi

∣∣∣Dhi x− mhi ∣∣∣+ √2σ vi
∣∣Dvi x− mvi ∣∣

)}
. (9)

Here, λ depends on the noise level σ 2
n that is often discussed

together with the number and size of clustered patches [7].
It is a complex problem because the combination of three

norms, L2-norm, Lp-norm and L1-norm. The splitting varia-
tion method is applied to simply the problem and the function
is rewritten as a constrained problem

min
x

{
λ

2
‖y− Hx‖22 + α

(∣∣∣ωh∣∣∣p + ∣∣ωv∣∣p)
+

∑
i

(√
2

σ hi

∣∣∣ωhi x− mhi ∣∣∣+ √2σ vi
∣∣ωvi x− mvi ∣∣

)}
,

s.t. ω = Dx, ωi = Dix. (10)

The augmented Lagrangian method is used to transform
it into an unconstrained problem and helps to avoid the ill-
conditioning by implanting penalty terms [35]. The aug-
mented Lagrangian is formulated as

LA
(
x,wh,wv

)
=
λ

2
‖y− Hx‖22 + α

(∣∣∣wh
∣∣∣p + ∣∣wv∣∣p)

+

∑
i

(√
2

σ hi

∣∣∣wh
i x− m

h
i

∣∣∣+ √2
σ vi

∣∣wv
i x− m

v
i

∣∣)

+
β

2

(∥∥∥wh
− Dhx

∥∥∥2 + ∥∥wv
− Dvx

∥∥2)
−γ h

(
wh
− Dhx

)
− γ v

(
wv
− Dvx

)
, (11)

where wh
= Dhx, wv

= Dvx, wh
i = Dhi x and wv

i = Dvi x
are the auxiliary variables introduced. α and β are the regu-
larization parameter for quadratic penalty terms ‖w− Dx‖2.
γ h and γ v are the Lagrangian multipliers for the constraint
(w − Dx). The problem in Eq.(11) is decomposed into three
subproblems, which are simplified and resolved iteratively as

(
xk+1,wh

k+1,w
v
k+1

)
← min

x,wh,wv
LA
(
x,wh,wv

)
γ hk+1← γ hk − β(w

h
k+1 − D

hxk+1)
γ vk+1← γ vk − β(w

v
k+1 − D

vxk+1).

(12)

Here, k represents the number of iterations, and the alter-
nating direction minimization method (ADMM) is adopted
to solve above subproblems in Eq.(12) because of the good
performance in terms of convergence.

B. OPTIMIZATION
With the fixed the norm p, an iterative optimization scheme
is proposed to update w and x.

1) UPDATING x
Given wh and wv, the problem can be rewritten as

min
x

λ

2
‖y− Hx‖22 +

β

2

(∥∥∥Dhx− wh

+
γ h

β

∥∥∥∥2 + ∥∥∥∥Dvx− wv
+
γ v

β

∥∥∥∥2
)
. (13)
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It is a typical quadratic problem and has the closed-form
solution

x =
[
HTH +

β

λ
DTD

]−1 [
HTy+

β

λ
DT

(
w−

γ

β

)]
. (14)

Here, h and v are omitted to simplify the expression. For
deconvolution, the degradation matrix H is factorized as
a diagonal matrix by the two-dimensional discrete Fourier
transform on the point spread function H . The coefficient
matrix in Eq.(14) is always non-singular and should obey
the standard assumption N (H ) ∩ N (D) = 0 to ensure
the non-singularity. Here, N (D) denotes the null space of
a matrix. Obviously, with the periodic boundary condition
of f , both HTH and DTD are block circulant matrix with
circulant blocks (BCCB), and the HTH + βDTD/λ can
obtain its decomposed eigenvalues and is diagonalized by
the two-dimension discrete Fourier transform, which only
needs to calculate once. The BCCB matrix in Eq.(14) can be
efficiently solved by the fast Fourier transform (FFT), and
we get

x = F−1

F∗(D) ◦ F
(
w− γ

β

)
+

λ
β
F∗(H ) ◦ F(y)

F∗(D) ◦ F(D)+ λ
β
F∗(H ) ◦ F(H )

 , (15)

where F and F−1 represent the Fourier transform and the
inverse Fourier transform respectively, ∗ denote the com-
plex conjugate, ◦ denotes the entry-wise multiplication. This
scheme can reduce the computation cost to be O(n log n),
where n denotes the number of pixels.

2) UPDATING wh AND wv

According to the Eq.(11) and (12), given x, wh and wv are
updated by following form

min
wh
α

∣∣∣wh
∣∣∣p +∑

i

(√
2

σ hi

∣∣∣wh
i x− m

h
i

∣∣∣)

+
β

2

(∥∥∥∥wh
− Dhx−

γ h

β

∥∥∥∥2
)

(16)

and

min
wv
α
∣∣wv∣∣p +∑

i

(√
2
σ vi

∣∣wv
i x− m

v
i

∣∣)

+
β

2

(∥∥∥∥wv
− Dvx−

γ v

β

∥∥∥∥2
)
. (17)

The above two subproblems can be solved by the generalized
iterative shrinkage algorithm(GISA)[36].

Now the whole algorithm can be formally summarized as
follows

IV. EXPERIMENTAL RESULTS
A. PARAMETER SETTING
We selected nine natural images as experimental image.
Specially, for the global regularization, the hyper-laplacian

TABLE 1. Patch size testing (Lena-denoising resultes).

FIGURE 4. Test images: from left and right, from up and down, numbered
from #1 to #9.

parameter p is determined from a large number of image
statistics and is set to 0.5 based on research experience.
We use the peak signal-to-noise ratio (PSNR) to evaluate the
performance of the proposed patch-based nonlocal adaptive
gradient regularization method.

In order to determine the most appropriate patch size,
we test various sizes as 5 × 5, 9 × 9, 13 × 13,
17 × 17, 25 × 25, and the whole image 255 × 255.
Results of the typical denoising experiments for the image
‘‘Lena’’ are list in table 1, it can be found that the smaller
and the finer the size is, the better the evaluation value
is obtained.

Both the patch size and the number of similar patches
depend on the noise level, which also determines the value of
the regularization parameter λ. [7] has provided the reference
range of values, in this paper we set the noise standard devia-
tion σn = 20 and λ = 0.0025, the patch size is 5× 5 and the
search window size is 32×32. For each patch, number of the
nearest neighbor patchesN is set to 25. The exemplar patches
are chosen along row and column directions every 5 pixels.
The value of α controls the weight of the gradient regulariza-
tion, here we set is as 0.005. The auxiliary parameters are set
to β = 0.012 and γ = 0.008.

B. IMAGE RESTORATION RESULTS
In experiments, we use several common images to test
the performance of the proposed method, as shown in
Figure 4.

Different convolution matricesH in eq.(1) represent differ-
ent tasks, which is essential in image transmission in sensor
networks [37]. When H represent the identity matrix I, it
corresponds to the image denoising. When H is a diagonal
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FIGURE 5. Comparison for image denoising methods of the noisy Cameraman at σ = 20: (a) Degrade image;
(b) DnCNN [5], PSNR = 30.08dB; (c) FID-HL [6], PSNR = 29.33dB; (d) NLTV [20], PSNR = 29.80dB;
(e) NGS [23], PSNR = 29.69dB; (f) Proposed method, PSNR = 30.11dB.

TABLE 2. Image denosing results of compared methods in PSNR(dB).

matrix with entries 0 or 1, it corresponds to the image inpaint-
ing. For image deblurring, we consider it as an randommotion
blur kernel.

1) IMAGE DENOSING
In image denoising, we compare the proposed method with
several state-of-the-art methods, DnCNN [3], FID-HL [6],
NLTV [20] and NGS [23]. The typical example on the
image Cameraman is shown in Figure 5, Figure 5(a) is
the noisy image degraded by the Gaussian noise with the
standard deviation σ = 20. Figure 5(b) shows the result
of the DnCNN method based on the convolutional neural
network that uses an end-to-end trainable deep CNN for
Gaussian denoising. It can not only speed up the training

but also boost the denoising performance that benefit the
CNN learning. Figure 5(c) shows the result by the fast image
deconvolution method FID-HL using Hyper-Laplacian pri-
ors, it is also effective and retains some details. Figure 5(d)
is the result of the nonlocal image restoration method NLTV
that reduces blocking artifacts. Figure 5(e) shows the result
by the nonlocal gradient sparsity regularization method,
which can balance preserving edges and retaining details.
Figure 4(f) shows the recovered image of our proposed
method that effectively alleviated block effects. Obviously,
the proposed method can obtains the satisfied recovery result
similar to that of the CNN method but does not need the
high-performance hardware configuration required by the
CNN algorithm.
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FIGURE 6. Comparison for image inpainting methods on image Barbara with the data ratio r = 0.4:
(a) Masked image; (b) TwIST [13], PSNR = 25.39dB; (c) SALSA [16], PSNR = 25.62dB; (d) TVAL3 [5],
PSNR = 25.83dB; (e) NGS [23], PSNR = 29.73dB; (f) Proposed, PSNR = 30.21dB.

TABLE 3. Image inpainting results of compared methods in PSNR(dB).

Denoising results of all test images are list in Table 2.
Here, σn denotes the noise level with three different degrees
10, 20, 50. We can see that FID-HL and NLTV show the
similar performance with the objective evaluation PSNR.
Our proposed method using the nonlocal spatial gradient
information is similar with the NGS but shows better per-
formance. The improvement is using the L0-norm image
smoothing preprocessing to get the accuracy and efficiency
of block matching for similar patches clustering. Compared
with the DnCNN method, the proposed method achieves
comparable results when the noise level is low, and the
DnCNN method shows better recovery performance when
the image is severely degraded. It can also be observed that
as the degree of degradation becomes larger, the difference

in recovery performance becomes smaller. This is due to the
limited information available.

2) IMAGE INPAINTING
In image inpainting, the date ratio r varies from 0.2 to
0.8. The comparison methods including TwIST [13],
SALSA [16],TVAL3 [5] and NGS [23] are all state-of-the-
art methods and the recovered results on image Barbara are
shown in Figure 6. Figure 6(a) is the masked image with the
data ratio r = 0.4. Figure 6(b) shows the result of the TwIST
by the two-step iterative shrinkage thresholding algorithms,
which also apply the weighted Lp-norm in image restoration.
Figure 6(c) shows the result of the SALSA (split augmented
Lagrangian shrinkage algorithm), which uses the L2-norm
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FIGURE 7. Comparison for image deblurring methods on image Children with the random motion blur:(a)
Blurred image; (b) TVAL3 [5], PSNR = 18.89dB;(c) FID-HL [6], PSNR = 19.27dB;(d) LINC [10], PSNR =

19.23dB;(e) NGS [23], PSNR = 20.46dB;(f) Proposed method, PSNR = 20.87dB.

TABLE 4. Image deblurring results of comparison methods in PSNR(dB).

data-fidelity term and a nonsmooth regularizer based on total
variation. Figure 6(d) recovered by TVAL3 shows the similar
visual effects with Figure 6(c). Figure 6(e) apply the nonlocal
gradient sparsity regularization and preserves more details.
Our result is shown in Figure 6(f), from which we can see
that the proposed method has better performance that other
methods. The most obvious comparison is reflected in the
enlarged region of Barbara’s scarf, marked as the red block.
It contains lots of details and is usually used as a region of
interest for comparison of recovery results.

The results of the restored image data PSNR with r = 0.2,
r = 0.4 and r = 0.8 are list in Table 3. It can be seen that that
images with less details get better results, such as House and
Lena. This is because the more scattered pixel details makes
the image more complicated and harder to recover. In the
recovery process, they are easier to be treated as false edges
that lead to block effects.

3) IMAGE DEBLURRING
In image deblurring, we choose the random motion blur
and compare with TVAL3 [5], FID-HL [6], LINC [10] and
NGS [23]. Typical experimental results on the image Chil-
dren are shown in Figure 7. Figure7 (a) is the degrade image
and the blur kernel with the size 27 × 27 is embedded in
the lower left corner. Figure 7(b) is the result of TVAL3
algorithm that shows obvious block effects. Figure 7(c) shows
the result of the fast image decovolution method FID-HL that
also uses hyper-Laplacian priors and alleviates block effects.
Figure 7(d) is the result of linear estimator with neighborhood
patch clustering (LINC) [10] algorithm that uses Gaussian
Mixture Models (GMM) with spatially constrained patch
clustering. Figure 7(e) shows the result of the NGS algo-
rithm that applies nonlocal gradient sparsity regularization
and patch-based adaptive spatial constraint. Compared with
Figure 7(e), our method improves the strategy of selecting
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Algorithm 1 Image Restoration Method With Patch-Based
Nonlocal Adaptive Gradient Regularization

Input: a degraded image y and the matrix of degradation
kernel H
• Initialization: w = y, γ h = γ v = 0.
Laplacian parameter p is fixed by the statistic from the
natural image gradient distribution;
Preprocessing with image smoothed by the L0-norm and
getting the image x0;
Calculating the expectation mi and variance σi according
to the Eq. (6).
• Iteration:
for k = 1, 2, . . . ,K
— for each exemplar patch (x0i ) do
∗ Collecting KNN patches Siin the neighbourhood of

x0i with the l2-norm distance in Eq.(5).
∗ Calculating the expectation miand variance
σiaccording to the Eq. (4).
∗ Solve x according to the Eq.(14);
∗ Solve wh-problem according to the Eq.(16);
∗ Solve wv-problem according to the Eq.(17);

— end for
Update auxiliary multipliers γ hand γ v,∥∥xK − xK+1

∥∥/∥∥xK+1∥∥ ≤ 1× 10−3.
end for

Output: Obtain the restored image x̂(K+1)

similar regions, which is to cluster similar patches from the
L0-norm smoothed image and alleviates block effects and
preserves image edges, as shown in Figure 7(f). Since the
visual differences are not obvious, we also choose the smaller
kernel 19× 19 and list data results in the Table 4.

V. CONCLUSION
In this paper, a patch-based adaptive nonlocal gradient regu-
larization method is proposed for image restoration in sen-
sor networks. In order to make full use of image priors,
it applies the hyper-Laplacian prior to formulate the gradient
distribution of the statistics of natural images, and explores
the patch-based nonlocal gradient prior to regularize the
nonlocal self-similarity of similar image patches. Especially,
the L0-norm smoothing image is innovatively used as the
preprocessed image to improve the accuracy of clustering
the similar image patches. For spatial variant constraints,
adaptive weights are learning from the expectation and vari-
ance of a set of clustered nonlocal self-similarity patches
to adjust weights for sparse gradient distribution at each
pixel adaptively. Experimental results show that the proposed
method has better performance in alleviating block effects
and preserving image details.
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