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ABSTRACT Cascading failure may incur catastrophic consequences. The high order and non-
simultaneousness properties are the leading causes for the massive power flow (PF) calculations of the online
static security assessment (SSA). Current PF models fail to satisfy the requirements for accuracy, speed, and
robustness. This paper proposes a novel method where line outage distribution factor (LODF) model and
AC model are coordinated by a binary classifier. The classifier determines the feasibility of LODF model in
a specific case by evaluating its potential error. Cases are preferred to be analyzed by LODF model, while
the ones with large potential errors will be analyzed by AC model. Case studies of three IEEE systems and
the Texas 2000-bus system are given to verify the effectiveness, flexibility, and robustness of the proposed
method.

INDEX TERMS Cascading outages, classifier, feature, power flow calculation.

I. INTRODUCTION
Large-scale blackouts have happened worldwide during the
past decades, resulting in economic loss, social inconve-
nience, and cyber physical-attacks [1]–[5]. For the sake of
ensuring security and reliability of the power system opera-
tion, the principle of N − 1 security is widely employed in
industry [6], where the whole system is required to withstand
the failure of any single component. However, it is still inade-
quate to promise the system security. One example is that the
Italian 2003 blackout occurred even though theN−1 criterion
was fulfilled [7]. In order to further improve the reliability of
the bulk transmission system, system operators are suggested
to add the analyses of selected high-order contingencies
in their operation manuals or energy management system
(EMS) [8], [9]. Besides, non-simultaneous events are con-
sidered, and the North American Electric Reliability Council
(NERC) has underlined the modified requirements for the
N−1−1 outages in transmission system planning (TPL) [10].
In light of the high order and non-simultaneousness proper-
ties of cascading outages, more accurate outage probabilities
and better system adjudgments can be acquired for indepen-
dent system operators (ISOs) [11].

Although the operation reliability is significantly improved
with these assessments, it is computationally infeasible to
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analyze all cascading contingencies due to the above proper-
ties. For a system containing N elements, when k of them are
sequentially out of service, the total number of contingencies
will reachN !/(N−k)!. When we take a medium-sized system
containing 500 components as an example, there will be
nearly 62 billion contingencies to be analyzed when k = 4.
The post-contingency PF offers basic information for SSA.

Accurate solutions can be obtained by the traditional full
AC power flow model with relatively heavy computational
burdens [12]. It is computationally burdensome to analyze
massive cascading contingencies with AC model.

For burden reduction, the parallel computation technique is
applied and indicates superior performance, especially in the
large-scale system [13]. Unfortunately, it is constrained by
industrial computational resources. Remarkable speed-up is
witnessed in other trials like the application of holomorphic
embedding method and deep convolutional neural network
(CNN) [14], [15]. However, limited by the robustness, the
industrial applicability of these methods needs to be further
improved.

Alternatively, approximate models are developed to
accelerate the PF calculations of enormous cascading chains.
Initially, DC power flow model is extensively used in con-
tingency screening and ranking owing to its simplicity.
Afterward, matrix inverse lemma has been applied [16], fur-
ther reducing the PF calculations under outage scenarios.
Particularly, LODF and generalized line outage distribution
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factor (GLODF) model the single line and simultaneous mul-
tiple line outages, respectively [17], [18]. Despite the high-
speed performances, the accuracies of approximate methods
are inherently rough due to the nonlinearities of PF equations.
Moreover, the errors of approximate models usually accumu-
late with the growing number of outage lines.

Apparently, neither AC model alone nor any approximate
model could speed up the PF calculations with satisfying
accuracies. By combining AC model and one approximate
model, a hybrid method is thereafter proposed. Current
researches can be categorized into topology dependent and
case dependent types. The former employs different PF mod-
els for different parts of a power grid. Precise solutions
can be acquired in the targeted part once different parts
are ideally decoupled [19]. Addressed to the limitations of
the decoupling assumption, different PF models are applied
to different cases in the case dependent type. The hot-start
DC model and the ACLODF-based model are two typical
approaches, where an approximate model is used for the base
case or the first round of cascading outages, whereas AC
model for the rest [20], [21]. This method reaches notable
acceleration in PF calculations, yet with poor accuracy when
high order contingencies are involved. Reference [22] con-
siders the high order property, but the accuracy gain from
AC model is not fully taken as the non-simultaneousness
property is ignored. Anyhow, the above methods are of insuf-
ficient robustness resulting from the empirical designation
of the PF model. In order to overcome the shortcoming,
the feasibility evaluation of the approximate method turns
out to be a critical issue. For the sake of determining the
feasibility of approximate model, the error of approximate
model is experimentally explored [23]–[25]. However, it is
uncertain to pre-estimate the errors of specific cases without
analytical analyses. This uncertainty complicates the judg-
ment of the feasibility of approximate model in any given
case.

Addressed to the empirical designation of PF models and
the neglect of high order or non-simultaneousness property
of cascading outages, this paper proposes a novel hybrid
method where LODF model and AC model are adaptively
selected by a binary classifier. The classifier systematically
determines the feasibility of LODF model by pre-evaluating
its potential error without AC model verifying. According to
the classification results, cases with acceptable errors will
be analyzed by LODF model for rapidity, whereas cases
with large potential errors will be examined by AC model
to enhance accuracy. The contributions of this paper are
threefold.

First, a classifier-based method is proposed to accelerate
PF calculations with high precision. Instead of conventional
hybrid methods with empirical judgments, the feasibility of
LODF model in specific cases is systematically determined
by the binary classifier designed in this paper.

Second, features of the classifier are extracted upon the
analytical error of LODF model, considering both high order
and non-simultaneousness properties of cascading outages.

The involvement of causal inference guarantees high gener-
alization capability.

Third, accuracies and speeds of themethod are controllable
and adjustable by tuning the parameter of the proposed clas-
sifier, enhancing the industrial applicability to ISOs.

The remainder of the paper is organized as follows.
Section II proposes the novel hybrid method coordinating
LODF model and AC model. In Section III, the classifier is
designed, and the feature extraction is underlined. Section IV
presents the performance evaluation. Numerical simulations
are given in section V. Section VI concludes the whole paper
and offers suggestions for future work.

II. METHOD FOR CASCADING OUTAGES ANALYSES
A. FRAMEWORK OF THE PROPOSED METHOD
As for the online PF calculations of cascading outages, rarely
could a single PF model reach an acceptable compromise
between speed and accuracy. These two demands are usu-
ally contradictory. Approximate models like LODF model
significantly speed up PF calculations. However, the rough
precisions impede their industrial applications. On the other
hand, AC model guarantees high accuracy yet with a heavy
computational burden.

Regarding the paradox, it is promising to develop a novel
hybrid method, where LODF model and AC model are coor-
dinated in this paper. To accelerate PF calculations, LODF
model is the ideal option to improve rapidity, considering its
outstanding speed advantage in cascading failure analyses.
For the sake of guaranteed accuracy, AC model is applied
to cases with large potential errors. The two models are
adaptively selected according to a binary classifier, distinct
from the empirical designation in previous researches.

The proposedmethod consists of four modules, as depicted
in Fig. 1. The initialization module offers outage information,
including the candidate round i of cascading and the nearest
AC round r . Based on the information of the initialization
module, the classification module then evaluates the potential
error of LODF model, and the feasibility of LODF model
is systematically determined. Finally, the calculation module
analyzes the case according to the result of the classification
module. For cases with small potential errors, the fast calcu-
lation module with LODF model is activated. For cases with
large potential errors, the accurate calculation module with
AC model works.

The focus of the proposed method lies in the binary clas-
sification. Cases are classified into feasible ones and infeasi-
ble ones, according to the potential errors of LODF model.
Cases with small potential errors are labeled with feasible
tags and analyzed with LODF model for rapidity. For cases
with large potential errors, infeasible tags are stuck, and AC
model is utilized for accuracy. Additionally, owing to the
accuracy gain from the hot-start DC method, the base case of
each cascading chain is analyzed by ACmodel. We denote by
r the most recent round of outage analyzed by ACmodel, and
r should be initialized as 0. Besides, the influence of utilizing
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FIGURE 1. Proposed method for online PF calculations.

ACmodel in previous rounds of an outage is fully considered
during the classifier design. With the increasing round of
cascading outages, although error usually increases when
LODFmodel is successively employed, it decreases to 0 once
AC model is applied. Given such an ‘‘error elimination’’
ability of AC model, round r should be timely recorded and
updated to calculate features. The entire designing process of
the classifier will be systematically introduced in section III.

B. LODF MODEL
LODF model in the proposed method is the linear approxi-
mation of MW flow. As an incremental form of DC model
in outage scenarios, it avoids the complex computations of
Jacobian matrices and MVAR flows, indicating rapid perfor-
mance in PF calculations for cascading outages.

FIGURE 2. Equivalent topology for PF calculations with LODF model.

The principle of LODF model is explained in Fig. 2.
Considering the non-simultaneousness property of cascading
outages, we only discuss the single line outage in each round
of cascading outages. Without loss of generality, we assume a
power system with N buses and L transmission lines. Before

the outage of branch l(between bus m and n), a transfer of f l

is observed on l.
Based on the linear assumption of PF equations, fictitious

power is injected into the pre-contingency topology to model
the outage. With an equal and opposite fictitious injection
1pm at bus m and n, MW flow change on l equals to
(1 − ϕl)1pm where ϕl = ψ lm

− ψ lm. Here, we denote by
9 the power transfer distribution factor (PTDF) matrix of
L × N , where ψ lm, ψ ln are the (l, m)th and (l, n)th element,
respectively. The MW flow on l decreases to 0 when 1pm

satisfies

1pm =
f l

1− ϕl
(1)

We denote the active power of the outage line by Ḟ, a sparse
L×1 vector with only the l th element equaling f l . The change
in Ḟ is 1Ḟ and Ḟ = 1Ḟ under any single line outage. We
denote the fictitious equivalent active power injection by1Ṗ,
a sparse N×1 vector with themth, nth element equaling1pm,
−1pm, respectively. The node-branch incidence matrix C is
a sparse matrix of N × L where the (l, m)th and the (l, n)th

element of C are 1 and −1, respectively. Then (1) can be
rewritten in matrix form

1Ṗ = C · (I − I ◦ (ψ · C))−11Ḟ (2)

where I is an identity matrix of L×L and ◦ is the operator of
Hadamard product as formulated in (A-1) of the Appendix A.
We use B to denote the N ×N nodal admittance matrix. As is
described in DC model, the relationship between the changes
of voltage angles 1θ and 1Ṗ is given by

1θ = B−1 ·1Ṗ (3)

Substituting (2) into (3), we have

1θ = B−1 · C · (I − I ◦ (ψ · C))−11Ḟ (4)

Assume an L × 1 vector 1F describing the flow changes
of all branches. Based on DC model, 1F is determined by

1F = BL · CT
·1θ (5)

where BL represents the branch admittance matrix and ζ is
the LODF matrix of L × L. Substituting (4) into (5), 1F can
be calculated by 1Ḟ.

1F=BL · CT
· B−1 · C · (I − I ◦ (ψ · C))−11Ḟ=ζ ·1Ḟ

(6)

Accordingly, ζ can be given by

ζ = BL · CT
· B−1 · C · (I − I ◦ (ψ · C))−1 (7)

When LODF model is applied for the ith round of outage,
the post-contingency MW flow Fi is calculated as

FLODF
i = Fi−1 + BL · CT

·1θ = Fi−1 + ζ i−1 ·1Ḟi (8)

However, the solutions of LODF model in cascading out-
ages are inaccurate, and the errors usually accumulate with
the increasing number of outage lines.
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C. AC MODEL
AC model in the proposed method is a complete description
of PF equations. The nonlinearity of the power system is
retained to acquire accurate PF solutions.

For the power system with N buses and L branches men-
tioned above, the active power injection of AC power flow
modeling is formulated as

pm = vm
N−1∑
n=1

vn
(
gmn cos θmn + bmn sin θmn

)
(9)

where pm is the active power injected at m; vm and vn are
the voltage at the node m and n, respectively; θmn is the
voltage angle difference between the node m and n; gmn and
bmn are the real and imaginary parts of the element in the
bus admittance matrix, respectively. We denote by tmn the
transformer ratio of l and MW flow on l can be calculated
as

f l=vmvn
(
gmn cos θmn+bmn sin θmn

)
− tmngmn

(
vm
)2 (10)

Accordingly, when the ith round of outage occurs, (10) can
be rewritten as

FAC
i = h (X i,Y i) (11)

where Xi is the post-outage state variable including θ and
v; Yi is the network parameters including g, b, and t . Here,
we ignore the ill-conditioned situation and take Xi−1 as the
starting point, and Xi can be solved by the Newton method
in (9). Then, the post-contingency MW flow Fi can be
acquired in (11).

Though accurate, the solutions of AC model rely on the
repeated calculations of the Jacobi matrix, which is quite
time-consuming.

III. CLASSIFIER DESIGN
A binary classifier is designed offline to evaluate the feasi-
bility of the appropriate PF model for specific outage cases
systematically. Generally, it consists of feature extraction
(inputs), classification learning (input-output relations), and
pattern generation (outputs).

A. INTEGRATION OF CAUSAL INFERENCE AND
STATISTICAL PARADIGM
With the advancement in classification learning algorithms,
targets can be efficiently related to features, and the clas-
sification accuracies are improved correspondingly [26].
However, supported by statistical analysis alone, the per-
formances of these classifiers are easily affected by the
over-dependence on quantity and quality of prior-knowledge
database [27]. Causality underlies mechanisms and thus pro-
motes the robustness of the statistical analysis. Therefore,
causal analysis is indispensable during the classifier design.
In this paper, causality inference and statistical paradigm are
deeply incorporated throughout the whole offline training
process, as depicted in Fig. 3.

FIGURE 3. Offline training of the classifier.

With the causality involved in feature extraction, the fea-
tures are designed upon the analytical error of LODF model
and thus retain fundamental physical causality. In other
words, the features quantify the potential error of LODF
model in specific cases by logic reasoning, and the pat-
terns are then determined. Therefore, compared with the raw
empirical data, features extracted upon causality indicate
higher correlations to patterns in most cases [28]. As the
crucial point of classifier design, feature extraction will be
comprehensively presented in part C of this section.

During the process of classification learning, the corre-
lation between the features and the targets is efficiently
analyzed. As is not the main contribution of this paper, classi-
fication learning will be briefly introduced in part D, and the
support vector machine (SVM) will be applied to train the
classifier.

With the robustness strength of causal analysis and the
efficiency advantage of statistical analysis, the mutual ben-
efits are highlighted by the integration of causal inference
and statistical paradigm. To better clarify the purpose of the
classifier design, we would introduce the pattern generation
next.

B. PATTERN GENERATION
Due to the vague boundary between feasibility and infeasibil-
ity of the approximate model, the empirically-based methods
are of limited robustness. The classifier is thereby designed
to draw the boundary, and patterns are generated accordingly.

In this paper, the potential error of LODF model is the
essential basis to quantify its feasibility. In other words,
the binary patterns should be whether or not LODF model
is feasible to be applied. It is feasible to apply LODF model
only for caseswith acceptable errors. Consequently, each case
(one round of a cascading outage) is judged as a feasible
one or infeasible one, as presented in Table 1. Cases with
small potential errors would be tagged with feasible labels,
and it is feasible to apply LODF model to these cases for
rapidity. Those with large potential errors would be tagged
with infeasible patterns, and AC model is utilized to avoid
unacceptable rough solutions. It is worth mentioning that
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the threshold of potential error is user-defined. When high-
precision PF solutions are required, the threshold value is
usually small so that more cases would be analyzed by AC
model. On the other hand, when rapidity turns out to be the
primary goal, the threshold value is usually large so that more
cases would be analyzed by LODF model.

TABLE 1. Class labels of cases.

C. FEATURE EXTRACTION
Traditionally, key features are selected among raw data by
statistical approaches for dimensionality reduction and per-
formance improvement. However, arbitrary parameters may
turn out to be the critical feature in a specific scenario. It is
impractical to take all raw data as inputs for the classifier.
Besides, the classifier is of limited robustness when little
physical causality is involved in the selected feature.

In this paper, fundamental physical causality is retained in
feature extraction to facilitate better data understanding and
enhance the generalization capability. For the sake of learning
the feasibility of LODF model, the error should be pre-
estimated without being verified by AC model. Therefore,
the analytical error of LODF model should be quantified
under an arbitrary round of a cascading failure.

The influence of the change in voltage magnitude on active
power is assumed to be ignored here. As the necessary and
sufficient condition for the existence of the Taylor series,
the post-contingency flowFi is infinitely derivable in the field
of real numbers. We expand Fi into Taylor series at the pre-
fault equilibrium point θ i−1

Fi=h (θ i)=Fi−1 + h′ (θ i−1)1θ i+
1
2!
h′′ (θ i−1)1θ2i + · · ·

(12)

where1θ i = θ i−θ i−1. When LODF model has been repeat-
edly applied, the error consists of two parts by comparing (8)
and (12). Accordingly, two types of features are extracted as
follows.

1) FEATURE EXTRACTED FROM NONLINEAR ERROR
Features can be extracted from the nonlinear error en, which
is the consequence of linear approximation of MW flow vari-
ation when the candidate outage occurs. It should be noted
that the starting value Fi−1 in (8) is assumed to be accurate to
underline this type of error alone. Features extracted from en
include λ1 and λ2 deduced as follows.
In the linear approximation method, only the constant term

Fi−1 and the first-order term h′(θ i−1)1θ i in (12) are retained.
To highlight the influence of ignoring the nonlinear nature
of PF equations, we assume the constant term Fi−1 to be

accurate. Therefore, en is equal to the sum of infinite Taylor
series truncating at second-order term.

en =
1
2!
h′′ (θ i−1)1θ2i +

1
3!
h′′′ (θ i−1)1θ3i + · · · (13)

We could extract one feature from the second-order term
h′′(θ i−1)1θ2i , considering its dominant role in en. However,
LODF model cannot provide voltage magnitude information
for precise calculations of the second-order term. Disregard-
ing the voltage magnitudes and assuming them unchanged
during the contingency, the analytical calculations of the
Hessian matrix are still cumbersome.

Addressed to the issuesmentioned above, we apply the per-
turbation method, and the second-order derivative h′′(θ i−1)
in (13) can be approximated as h′(θ i)/1θ i−h′(θ i−1)/1θ i . The
second-order term is thereby (h′(θ i)−h′(θ i−1))1θ i. Since θ is
not directly given in LODF model, we utilize the correlation
between1θ i and1Ḟi presented in (4), and h′′(θ i−1)1θ2i can
be estimated as (h′(Ḟi)−h′(Ḟi−1))1Ḟi. The outage MWflow
Ḟi is defined in LODF model description (Part B, Section II)
and h′(Ḟi) = ∂Fi /∂Ḟi = ζ i, where ζ i is the LODF matrix
of the ith round of outage. Therefore, the second-order term
is estimated as ( ζ i − ζ i−1)1Ḟi. As the Hessian matrix is
approximated and lots of its valuable information are lost
when multiplied with the sparse vector 1Ḟi, the direct mul-
tiplication of ( ζ i − ζ i−1) and 1Ḟi makes little sense. For
dimension reduction, the elementwise F-norm and the 1-norm
are applied to ( ζ i−ζ i−1) and1Ḟi, respectively. Calculations
of the two norms are formulated and listed in Appendix B.
Feature λ1 is defined as the product of these two norms.

λ1 =
∥∥ζ i − ζ i−1∥∥F · ∥∥1Ḟi∥∥1 (14)

Besides (13), en could also be described as follows.

en = h (θ i−1 +1θ i)− h (θ i−1)− h′ (θ i−1)1θ i (15)

Applying with the linear approximation, we get

en ≈ en|1θ i=0 +
∂en
∂θ i

1θ i

=
(
h′ (θ i−1 +1θ i)− h′ (θ i−1)

)
1θ i (16)

Considering that h′(θ ) is a trigonometric function of θ , term
|h′(θ i−1 +1θ i)− h′(θ i−1)| is a limited number smaller than
twice the amplitude. When 1θ is no longer trivial, the entire
error en turns out to be nonignorable. The consequence may
be better understood if we compare the results between mul-
tiple line outages and single line outages. Statistically, both
1θ and en will increase with the growing number of outage
lines. Therefore, the change in phase angle 1θ i is strongly
correlated to en and could be another key feature. As LODF
model directly offers 1Ḟi rather than 1θ i, we may employ
the correlation between 1θ i and 1Ḟi again and use the
1-norm of 1Ḟi to define feature λ2 as follows.

λ2 =
∥∥1Ḟi∥∥1 (17)

It should be noted that λ2 can hardly quantify the whole
en alone. The value of en is usually considerable when λ2 is
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large, but not vice versa. We may conclude that λ2 presents
better performance when it takes a larger value.

2) FEATURE EXTRACTED FROM ACCUMULATED ERROR
Another feature can be extracted from the accumulated
error ea, originating from the imprecise Fi−1. It equals to the
deviation between the AC solutions and the LODF solutions
of the last round of outage. We still suppose r as the nearest
AC solution outage round. The LODF solutions refer to the
PF results where LODF model is continuously adapted from
the (r+1)th round to the (i−1)th round. The feature extracted
from ea refers to λ3 designed as follows.
The inaccurate Fi−1 in (12) leads to the nonzero ea.

Notably, this accumulated error is a zero vector if AC model
analyzes the last round of outage. Due to the linear approx-
imation property of LODF model, the accumulated error
increases when this model is successively used. If AC model
analyzes arbitrary round of outage (before the round i), the
accumulated error is reduced or even eliminated. This situa-
tion is considered in the paper. Similarly, with round r(r < i)
given, we expand Fi−1 into Taylor series at the nearest AC
solution θ r

Fi−1=Fr+h′ (θ r ) (θ i−1 − θ r )

+
1
2!
h′′ (θ r ) (θ i−1 − θ r )2 + · · · (18)

whereFr is the accurate PF solution calculated by ACmodel.
The accumulated error is the truncation error of finite series
presented as (19).

ea=
1
2!
h′′ (θ r ) (θ i−1−θ r )2 +

1
3!
h′′′ (θ r ) (θ i−1−θ r )3 + · · ·

(19)

As the influence of the second-order term usually far out-
weighs that of the sum of other higher-order terms, we only
consider the Hessian matrix h′′(θ r ). Because LODF model
cannot directly acquire the voltage angle information, h′′(θ r )
is replaced by h′′(Ḟr ) considering the strong correlation
between θ and Ḟ. Theoretically, h′′(Ḟr ) represents the second
derivative of PF when last (i− r) outages coincide. Applying
the perturbation method, we approximate it to the difference
of the sensitivity between the (i−1)th round and the r th round
of outage. The F-norm of h′′(Ḟr ) is taken as feature λ3.

λ3 =
∥∥ζ i−1 − ζ r∥∥F (20)

In summary, the extracted features consist of λ1, λ2,
and λ3.

D. CLASSIFICATION LEARNING
Besides high-quality features and adequate training samples,
the efficiency of the classifier also depends on smart classifi-
cation learning. Machine learning algorithms can be applied
to build the relationship between the outputs and inputs, such
as logistic regressions, decision trees, and neural networks.

Since classification learning is not the main contribution of
this paper, SVM is directly applied. Explicitly, we set C-SVM

as the mathematical model and radial basis function (RBF) as
its kernel function. For the sake of maximizing the classifi-
cation accuracy, the gridding method is adopted to optimize
the penalty parameters and the kernel function parameters.
Without loss of generality, the k-fold cross-validation crite-
rion is employed to overcome the overly optimistic estimation
of training errors and improve the robustness of the classifier.
Here, we take k as 5. For the classifier training offline, this
paper applies the above settings to the library for support
vector machines (LIBSVM) software package [29].

SVM maps the relationship between features and pat-
terns. Therefore, accuracies and speeds of the classifier-
based method can be controlled and adjusted by tuning the
parameters of the classifier. Generally, when the proportion of
‘‘feasible patterns’’ increases, the accuracy deteriorates while
the speed accelerates. This proportion is determined by the
cost sensitivity of SVM, which is substantially related to the
user-defined threshold of potential error in the user interface
(UI). With the speed or accuracy requirement given by the
ISOs, the desired results can be achieved.

IV. PERFORMANCE EVALUATION
Accuracy, speed, and robustness are three major concerns for
evaluating the performance of the proposed method.

A. ACCURACY
Accurate results of the proposed method rely on precise
classification results. Therefore, accuracy indicators should
include classifier accuracy and PF accuracy of the method.

As for the accuracy of the classifier, a confusion matrix
is applied. With a given classifier and an instance, four out-
comes are formulated in a 2× 2 matrix, as shown in Table 2.
Common indicators include the true positive rate (TPR) and
the false positive rate (FPR). TPR is the percentage of the TP
in all actual feasible cases, and FPR is the percentage of the
FP in all actual infeasible cases.

TABLE 2. Confusion matrix of classifier.

The analyses of feasible cases with AC model (the FN
cases) result in an enormous waste of computations with
little improvement of accuracy. Such unnecessary AC model
analyses could be avoided by identifying the FN cases accu-
rately. Otherwise, the misclassification will lead to low TPR
and increase redundant computations. On the other hand, the
misjudgments of actual infeasible cases (the FP cases) cause
high FPR and incur potential SSA risks and inappropriate
adjudgments when these infeasible results are applied.

Based on TPR and FPR, two accuracy measures are
described as follows.
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The receiver operating characteristic (ROC) curve
describes TPRs and FPRs with various threshold settings and
indicates the diagnostic ability of a binary classifier [30].
A point in the ROC space corresponds to a classifier, and one
is better than another if it is northwest to the other (higher
TPR and lower FPR). Notably, the point (0, 1) represents
perfect classification. The diagonal line connecting the point
(0, 0) and the point (1, 1) represents the strategy of random
guesses. As both TPR and FPR are independent of category
distribution, the ROC curve can be applied to evaluate the
performance of unbalanced classification.

The area under the ROC curve (AUC) refers to the area
of the curve in the normalized unit [30]. It equals to the
probability that a classifier will rank a randomly choice of
feasible case higher than that of infeasible one. The value is
between 0 and 1. In particular, it is a random classifier when
the AUC equals 0.5, whereas a perfect one when the AUC
reaches 1.

Generally, in an accurate classifier, the ROC curve appears
in the northwest corner of ROC space, and the value of AUC
is close to 1.

As for the PF accuracy, several indicators should be
applied. Single error ε is the relative error calculated as (21),
where f l and f l,AC are the active PF solution on branch l of
the proposedmethod andACmodel, respectively, and f l,lim is
theMW limit of branch l. The value of L’ equals to the sum of
branches involved. Because the relative errors of low-power
branches may submerge that of other branches, we rule out
the branches of which the power is less than 10% of f l,lim for
better verification.

ε =
1
L ′

∑
f l,AC>10%f l,im

∣∣∣∣ f l − f l,ACf l,AC

∣∣∣∣× 100% (21)

Based on ε, the following definitions are in Table 3. As can
be expected, a high-precision method should be of small
values of ε, E , σn, and εmax.

TABLE 3. Symbols of accuracy indicators.

B. SPEED
To achieve computational gain, we need to compare the total
computation amount of the classifier-based method with that
of the saved AC model calculations. If and only if the former
one is less than the latter one, the application of the classifier
is proved to be beneficial. Notably, the calculations of the
classifier include the features and the trained SVM classifier.

However, the total calculation time of the classifier is not
intuitive for the PF calculation of cascading outages. For
better description purposes, the computational time of the
classifier-based method and the proportion of cases with AC
model analyses are provided instead. The total computational
time of the method should be less than that of employing AC
model alone. The speed indicators are listed in Table 4.

TABLE 4. Symbols of speed indicators.

A fast method is usually with a small value of T . Besides,
the proportion NAC is employed to replace T when samples
with different numbers of cases are compared. For the same
testing cases, the method is of smaller calculation amount
when we take smaller NAC.

C. ROBUSTNESS
For robustness concerns, case studies of the classifier and the
proposed method should be evaluated in multiple simulation
systems and operating conditions. Besides, the portion of
training cases in the whole dataset should be limited, as an
extremely large portion could hardly indicate the real per-
formance of the classifier in industrial power systems [28].
In other words, the total number of testing cases should be
much more than that of training cases.

V. CASE STUDIES
The effectiveness of the classifier and the flexibility of the
proposed method are verified in the IEEE 57-bus system. For
robustness verification, accuracies and speeds of the proposed
method, AC model and LODF model are compared in the
IEEE 30-bus, 57-bus, 118-bus, and Texas 2000-bus systems.
The total number of testing cases are much more than that of
training cases, for the sake of demonstrating the robustness
of the proposed method. Both training and test cases are
randomly sampled from the contingency set by the Monte
Carlo method. All system data are provided in MATPOWER
7.0 [31].

A. EFFECTIVENESS OF THE CLASSIFIER
A case study is conducted at the standard operating condition
in the IEEE 57-bus system. A total of 15,000 contingencies,
ranging from one-line to six-line outages, are selected by
the Monte Carlo method and forms the contingency set as
described in Table 5. The PF solutions of the last round of
the cascading failures are studied here when the proposed
classifier is applied. To verify the effectiveness of the pro-
posed classifier, we randomly apply ACmodel to an arbitrary
round of cascading chains to prove that the classifier is of high
generalization capability even if AC model is inappropriately
applied.
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TABLE 5. Descriptions of the contingency set.

TABLE 6. Classifiers with different values of Vε .

FIGURE 4. ROCs of the proposed classifier with different values of Vε .

The proportion of feasible cases in the training set is deter-
mined by the user-defined threshold Vε and increases with the
growth of Vε. The negative effect of an imbalanced dataset on
classifier performance is considered in this part, and different
values of Vε are given as listed in Table 6. Besides, once Vε is
determined, the cost (parameter c) and gamma (parameter g)
in the SVM classifier are settled by k-fold cross-validation.
As indicated in Table 6, no evident regularities are found
in parameter when Vε varies. Considering that parameter
tuning of SVM is not the main contribution of this paper,
the classifier parameters in part B and C of this section will
not be discussed in detail.

Fig. 4 illustrates the ROC curves andAUCs of the proposed
classifier when Vε varies. As the figure indicated, all of the
ROC curves appear in the northwest corner of the plane, and
all of their corresponding AUCs exceed 0.85 under the listed
balanced or imbalanced scenarios. Admittedly, the AUC of
the proposed classifier is not as outstanding as that of the
pure data-driven classifier with an advanced classification
learning algorithm. It should be noted that the total number
of test samples is quadruple of that of training samples in our
method, whereas the two usually take the opposite role in the

pure data-driven classifiers. With the increasing proportion of
training samples, AUC of the proposed classifier will increase
to an excellent level. Besides, as our primary purpose is to
acquire accurate PF solutions rather than the perfect AUC,
the classification learning algorithm is not the contribution
in this paper, and our goal can be reached by adjusting Vε.
Therefore, the proposed classifier remains high accuracy and
ensures high generalization capability even in highly imbal-
anced situations.

B. FLEXIBILITY OF THE METHOD
For industrial applications, the proposed method should be
flexible so that the performance can be determined according
to the computational resources and the accuracy requirements
of ISOs. We randomly sample 12000 N − 1 − 1 − 1 − 1
cascading chains in the IEEE 57-bus systems. The standard,
maximum, and minimum operating conditions are all consid-
ered in the samples. The minimum and maximum operating
conditions are defined as 50% and 200% of their standard
conditions in load and generation, respectively. For flexibility
validation purposes, Table 7 indicates the accuracies and
speeds of the proposed method with varying values of Vε in
both training and testing sets.

TABLE 7. Performance of the training and testing sets.

As for the speed description, the proportion NAC is
employed instead concerning the different numbers of train-
ing samples and testing samples. Though the comparison of
T between training and testing sets makes no sense, the value
of NAC is comparable and helpful to predict the total com-
putational time. For example, when we take Vε = 0.5%,
T = 34s. Seeing that the number of the testing samples is
five times that of the training samples, the predicted time
of the testing samples should be 170s. As indicated in the
simulation results, the actual time is the same as predicted.
The values of E , σ2, and NAC between the training set and
the testing set are very similar. Consequently, once the value
of Vε is determined, ISOs may predict the accuracy and speed
of the proposed method.

Fig. 5 further reveals the influence of Vε on each round
of cascading outages. As for the cases of the same i, when
the value of Vε increases, the values of E and σ2 increase,
whereas NAC decreases. As for the cases of the same
Vε, the values of σ2 and NAC generally increase with the
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FIGURE 5. Influence of Vε on each round of cascading failures.

increasing values of i. Therefore, it is feasible to control the
accuracy of each round i by adjusting Vε of the corresponding
round.

Three requirements on E , σ2, andNAC are listed in Table 8.
Specifically, accuracies are required in Scenario A and B,
whereas speeds are required in Scenario C. The values of Vε
in each round of outage is determined, according to Fig. 5.
Consider the Scenario A and i = 2. The values of E are
0.29%, 0.75% and 1.02% when we take Vε as 1.0%, 1.5%,
and 2.0%, respectively. The value of Vε is thereby set as
1.5% to guarantee E ≤ 1.0%. The relationship between
Vε and the performance of each round of outage can be
learned offline so that requirements can be met by tuning the
user-defined Vε.

TABLE 8. Performance of test sets under three requirements.

C. ROBUSTNESS OF THE METHOD
The robustness of the proposed method is evaluated at the
standard operating condition in the IEEE 30-bus, 57-bus,
and 118-bus systems, respectively. In each IEEE system, all
N − 1 − 1 − 1 contingencies are sampled, while 10% of
randomly selected as the training set.

TABLE 9. Accuracies and speeds of all N − 1 − 1 − 1 chains.

Table 9 compares the accuracies and speeds of differ-
ent methods in diverse systems. One method usually indi-
cates different performances in different systems, thereby
the comparisons between different systems make no sense.
Instead, the performances of methods are compared in each
system only. Outstanding accuracy and speed enhancements
are observed in Table 9. Compared with LODF model, accu-
racies are remarkably enhanced by the proposed method.
Particularly, the values of σ5 are nearly decreased by two
orders of magnitude. Specifically, the values of σ5 in 30-,
57-, 118-bus systems are dropped from 2.07%, 6.55% and
0.19% to 0.05%, 0.06% and 0%, respectively. Compared
with AC model, at least one order of magnitude is reduced
in computation amount with satisfying accuracies when the
proposed method is applied.

The robustness of the classifier-based method is further
validated in the 2000-bus Texas system, which contains 3026
branches. Since the total number of N − 1 − 1 − 1 chains
approximately reaches 33 billion, it is infeasible to list and
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analyze every contingency as above. Here, 12000N−1−1−
1 − 1 cascading chains are randomly sampled by the Monte
Carlo method, where 2000 chains are for training, and the
remaining 10000 chains are for testing.

TABLE 10. Accuracies and speeds of random N − 1 − 1 − 1 − 1 chains.

The speeds and accuracies of different methods are com-
pared in Table 10. Considering that the large branch num-
ber may lead to the relatively small values of ε, only σ0.1
and σ0.8 are discussed here to indicate the proportion of
cases with large errors. The application of the classifier-based
method acquires accurate PF solutions with satisfying speed.
Outstanding improvement in precision is observed as the
values of σ0.8 is reduced by two orders of magnitude, and the
value of E is decreased from 0.19% to 0.02%. Meanwhile,
the speed of the proposed method is over five times that of
AC model. To summarize, comparing with the traditional
AC model, the proposed method not only notably accelerate
cascading outage analyses with satisfying accuracy, but also
is proved to be a method with good robustness.

VI. CONCLUSION AND FUTURE WORK
Blackouts urge the accurate and fast PF calculations for mas-
sive cascading outages. This paper proposes the classifier-
based method coordinating LODF model and AC model.
Rather than an empirical designation, the classifier pre-
evaluates the potential error of LODF model by considering
the high order and non-simultaneousness properties. The fea-
sibility of LODFmodel is systematically analyzed by the pro-
posed classifier. To guarantee the accuracy, rapid, and robust
classification, causal inference and statistical paradigm are
deeply integrated during the designing process of the clas-
sifier. As is indicated in multiple simulation systems, the
proportion of cases with large errors could be decreased
by two orders of magnitude, while the speed is improved
by ten times. As accuracies and speeds of the method are
predictable, the PF solutions with expected accuracy or speed
can be obtained for industrial practice by tuning the parame-
ters of the classifier offline. Afterward, ISOs are can analyze
the static security or decide system adjudgments.

Admittedly, the proposed method cannot offer voltage
magnitude and MVAR information when cases are applied
with LODF model. It is worth trying other PF models
for approximate calculations of voltage and reactive power.
Apart from enhancing PF methods, other future research
interests in cascading outages include fourfold. First, since
protective relays are involved in 75% of major disturbances,
modeling the protection devices in a more accurate man-
ner is promising. Second, as many power system networks
are already stability limited, analyzing cascading outages

from a transient or mid-term view is very important. Third,
identifying remedial actions or special protection schemes
is necessary to determine the investments in new facilities.
Fourth, improving the speed of computations is beneficial to
enhance the analysis efficiency [32].

APPENDIX
A. THE DEFINITION OF HADAMARD PRODUCT
In matrix theory, the Hadamard product is an elementwise
product of the two matrices of the same dimensions. If bothA
= {aij} andB= {bij} arem×nmatrices, then their Hadamard
product is given by

A ◦ B = {aijbij} (A-1)

B. CALCULATIONS OF THE MENTIONED NORMS
A vector norm is a function that assigns a strictly positive
length or size to each vector in a vector space. A matrix norm
is a vector norm in a vector space whose elements (vectors)
are matrices (of given dimensions).

If X = {xi} is a n× 1 vector, the 1-norm of X is given by

|X |1 =
∑n

i=1
|xi| (B-1)

If A = {aij} is an m × n matrix, the Frobenius norm
(F-norm) of A is given by

|A| =
(∑m

i=1

∑n

j=1

)1/2
(B-2)
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