IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 28, 2019, accepted December 7, 2019, date of publication December 13, 2019,

date of current version December 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2958962

A Survey on Deep Learning Empowered loT

Applications

XIAOQIANG MA™!, (Member, IEEE), TAI YAO""!, MENGLAN HU""!, YAN DONG"!, WEI LIU"",
FANGXIN WANG 2, AND JIANGCHUAN LIU "2, (Fellow, IEEE)

!School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China

2School of Computing Science, Simon Fraser University, Burnaby, BC V5A 156, Canada

Corresponding author: Fangxin Wang (fangxinw @sfu.ca)

This work was supported in part by the National Natural Science Foundation of China under Grant 91538203, Grant 61977064, Grant
61702204, Grant 61872416, Grant 61671216, Grant 61871436, Grant 61872415, and Grant 61602214, and in part by the Fundamental

Research Funds for the Central Universities of China under Grant 2019kfyXJJS017.

ABSTRACT The Internet of Things (IoT) is widely regarded as a key component of the Internet of the
future and thereby has drawn significant interests in recent years. IoT consists of billions of intelligent and
communicating “‘things”’, which further extend borders of the world with physical and virtual entities. Such
ubiquitous smart things produce massive data every day, posing urgent demands on quick data analysis
on various smart mobile devices. Fortunately, the recent breakthroughs in deep learning have enabled us
to address the problem in an elegant way. Deep models can be exported to process massive sensor data
and learn underlying features quickly and efficiently for various IoT applications on smart devices. In this
article, we survey the literature on leveraging deep learning to various IoT applications. We aim to give
insights on how deep learning tools can be applied from diverse perspectives to empower IoT applications
in four representative domains, including smart healthcare, smart home, smart transportation, and smart
industry. A main thrust is to seamlessly merge the two disciplines of deep learning and IoT, resulting
in a wide-range of new designs in IoT applications, such as health monitoring, disease analysis, indoor
localization, intelligent control, home robotics, traffic prediction, traffic monitoring, autonomous driving,
and manufacture inspection. We also discuss a set of issues, challenges, and future research directions that
leverage deep learning to empower IoT applications, which may motivate and inspire further developments

in this promising field.

INDEX TERMS Internet of Things, deep learning, smart healthcare, smart home, smart transportation.

I. INTRODUCTION

The rise of Internet-of-Things (IoT) technology has brought
prosperity to a myriad of emerging applications on various
mobile and wireless platforms including smart phones [1],
sensor networks [2], unmanned aerial vehicles (UAV) [3], [4],
cognitive smart systems [5], and so on. To develop effec-
tive IoT applications, we may typically follow a work-flow
model, which consists of five components: question for-
mulation, data collection, data analysis, visualization, and
evaluation [6]. Among them, data analysis is a critical and
computational intensive part wherein traditional technolo-
gies generally combine professional knowledge with machine
learning (e.g., logistic regression, support vector machine,
and random forest) to figure out classification or regression
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problems (e.g. the traffic condition prediction with support
vector machine (SVM) [7], car tracking with Kalman fil-
ter and ridge regression [8], delivery time estimation with
Gaussian mixture model (GMM) [9], and localization with
SVM [10]). However, as the human society steps into the
“Big Data” era, such conventional approaches are not suf-
ficiently powerful to process the massive, explosive, and
irregular data collected from ubiquitous and heterogeneous
IoT data sources. Almost all traditional systems rely on
specially designed features, and the performance heavily
depends on the prior knowledge of specific fields. Most of
learning techniques applied in such systems normally uti-
lize shallow architectures, which have very limited model-
ing and representational power. As such, a more powerful
analytical tool is highly desirable to fully unleash the poten-
tials of the invaluable raw data generated in various IoT
applications.
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The recent breakthroughs in deep learning and hardware
design have enabled researchers to train much more powerful
models, which highly empower many applications such as
crowdsourced delivery [11], network caching [12], energy
management [13] and edge computing [14]. In the following
we highlight the advantages of deep learning as compared
with traditional machine learning methods, which demon-
strates the benefits to apply deep learning in IoT applications.

o Deep learning incorporates deeper neural network archi-
tectures, which is able to extract more complex hidden
features (such as temporal and/or spatial dependencies)
and characterize more intricate problems. Different from
those traditional simple learning methodologies, deep
learning has more powerful capabilities in generalizing
the complicated relationship of massive raw data in
various [oT applications.

o Deep learning is able to fully take advantages of the mas-
sive yet invaluable data resource. The data processing
ability typically depends on the depth and the particular
architectures of learning models, such as convolutional
architectures; hence, deep learning based models can
mostly perform better on large scale data, while simple
learning models may be easily over-fitted when dealing
with the deluge of data.

o Deep learning is a kind of end-to-end learning method
that is able to automatically learn how to directly extract
effective features from the raw data without the involve-
ment of the time-consuming and laborious hand-crafted
feature specification.

While a lot of efforts have been made in the past few years,
the whole area of leveraging deep learning in IoT applications
is still at an infant stage. A few articles which survey the appli-
cations of deep learning in IoT domains have been presented
in the literature. Alsheikh et al. [15] mainly reviewed papers
in applying machine learning in wireless sensor networks
(WSN). In [16], the authors focused on the survey of applying
deep learning techniques for healthcare applications. Another
work [17] surveys state-of-the-art deep learning methods and
their applicability in the IoT applications, with an empha-
sis on big data and streaming data analytics. The authors
in [18] present a comprehensive survey of commonly used
deep learning algorithms and discuss their applications
towards making manufacturing smart. Nevertheless, all these
existing survey articles only focus on relatively partial IoT
fields. A survey that comprehensively reviews deep learning
for a variety of IoT applications is still absent. Therefore,
we believe that it is the right time to review the existing
literature and to motivate future research directions.

To this end, this article summarizes the up-to-date research
progresses and trends on leveraging deep learning tools
to empower IoT applications. We put emphasis on four
representative IoT application scenarios, including smart
healthcare, smart home, smart transportation, and smart
industry. We aim to reveal how deep leaning can be applied to
enhance IoT applications from diverse perspectives. A main
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thrust on this topic is to seamlessly merge the two disci-
plines of deep learning and IoT, resulting in a broad spec-
trum of novel designs in IoT applications, such as health
monitoring, disease analysis, indoor localization, intelligent
control, home robotics, traffic prediction, traffic monitor-
ing, autonomous driving, manufacture inspection and fault
assessment. We also discuss the issues, challenges and future
research directions for applying deep learning in IoT appli-
cations. All these insights may motivate and inspire further
developments in this promising field.

The rest of the paper is organized as follows: Section II
introduces classic deep learning models employed in
the following sections, including Restricted Boltzmann
Machines (RBMs), Autoencoder, Convolutional Neural net-
work (CNN), and Recurrent Neural Network (RNN).
Section III surveys the latest deep learning based IoT applica-
tions in four major application scenarios. Section IV outlines
challenges and opportunities for leveraging deep learning in
IoT applications. Section V concludes the article.

Il. OVERVIEW OF DEEP LEARNING METHODS

Deep learning requires powerful computation resources and
is known to be time-consuming during the model training
phase, which is one of the major challenges in the before. The
development of specialized hardware (e.g., powerful GPUs)
and efficient training algorithm makes it possible to analyze
complex problems and process data by building deep models
rather than traditional methods. Hence, deep learning has now
become a promising data processing and modeling approach
in the era of big data.

Similar to traditional machine learning, deep learning can
be divided into two scenarios: unsupervised learning (models
trained with unlabeled data) and supervised learning (models
trained with labeled data). In the following, we will briefly
introduce four deep learning models, including two unsu-
pervised learning models, restricted Boltzmann machines
(RBMs) and Autoencoder, as well as two supervised learning
models, Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs).

A. UNSUPERVISED LEARNING

The collection of unlabeled data can be carried out easily.
In order to deal with massive unlabeled data, unsupervised
learning must be applied as a supplement of conventional
learning methods. The training can be conducted with stacked
RBMs or stacked autoencoders for stable initialization, back
propagation, and global fine-tuning.

1) RESTRICTED BOLTZMANN MACHINES

Restricted Boltzmann machines (RBMs) [19] are probabilis-
tic graphical models that can be interpreted as stochastic
neural networks. RBMs consist of m visible units to represent
observable data and n hidden units to capture collections
between observed variables, providing us a stochastic repre-
sentation of the output. Fig. 1 shows a two-level RBM with m
visible variables and n hidden variables. RBMs are successful
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FIGURE 1. An RBM with m visible and n hidden variables.

in dimensionality reduction and collaborative filtering [20].
A Deep Belief Network (DBN) forms a deep learning model
by stacking RBMs [21], which is trained in a layer-by-layer
manner using a greedy learning algorithm, and the contrastive
divergence (CD) method is applied to update the weights.
Neural networks are prone to trap in the local optima of
a non-convex function, resulting in poor performance [22].
DBN incorporates both unsupervised pre-training and super-
vised fine-tuning methods to construct the models: the former
intends to learn data distributions with unlabeled data and the
latter aims to obtain an optimal solution through fine tuning
with labeled data [23].

2) AUTOENCODER

An autoencoder [24] is a neural network trained to copy
its input to its output. Compared to RBMs, an autoencoder
consists of three layers including an input layer, a hidden
layer, and an output layer. The hidden layer describes a code
used to represent the input, and its output is a reconstruction
of the input. Basically, the network consists of two major
components: an encoder function f which extracts the depen-
dencies of the input, and a decoder g function which produces
a reconstruction. Autoencoder is trained by minimizing the
error between the input and output. Fig. 2 shows a brief
architecture of an autoencoder and a concrete example. Like
RBMs, a deep model can be constituted through a stack of
autoencoders in a layer-by-layer manner. The hidden layer of
a well-trained autoencoder is fed as the input layer of another
autoencoder, and iteratively a multi-layers model is formed.
The variants of autoencoder include sparse autoencoder [25],
denoising autoencoder [26], and contractive autoencoder.

B. SUPERVISED LEARNING

Unlike unsupervised learning, a labeled training set is a part
to build the system model in supervised learning. The model
learns the relationship between the input, output, and system
parameters. The major method used in supervised learning is
the back propagation algorithm [22].

1) CONVOLUTIONAL NEURAL NETWORKS (CNNs)
CNN is a specialized kind of neural network for processing
data that has a known, grid-like topology [24]. CNNs were
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FIGURE 2. (a) The general structure of an autoencoder, and (b) a specific
autoencoder structure diagram which has 6 input data.

firstly inspired by a concept called Receptive Field which
comes from the study of cat’s visual cortex [27]. Convolu-
tion leverages three important ideas that can help improve a
machine learning system: sparse interactions, parameter shar-
ing, and equivariant representations. The basic CNN archi-
tecture is made up by one convolutional and pooling layer,
optionally followed by a fully connected layer for classifica-
tion or prediction. In contrast to traditional neural networks,
CNN efficiently decreases the number of parameters in nets
and the effect of gradient diffusion problem, which means that
we can successfully train a deep model containing more than
10 layers using CNNS.

For example, AlexNet [28] contains 9 layers, VGGNet
[29] contains 11-19 layers, InceptionNet [30] from Google
contains more than 22 layers, and ResNet [31] from Microsoft
even contains 152 layers. Fig. 3 shows a general architecture
of traditional CNNs called LeNet [32].

2) RECURRENT NEURAL NETWORKS (RNNSs)

RNN is a family of neural networks for processing sequential
data. RNNs are practical to scale much longer sequences
than networks without sequence-based specialization. Many
recurrent neural networks apply equation or a similar equa-
tion i) = f(H'~!,x?;0) to define the values of their
hidden units, illustrated in Fig. 4 [24]. From the network
structure, we can observe that RNNs can remember the pre-
vious information and utilize it to influence the output of the
subsequent nodes. However, RNNs are restricted by looking
back only a few steps, due to the gradient diffusion problem
and long-term dependencies. To solve these problems, new
approaches like LSTM (Long Short-Term Memory) [33] and
GRU (Gated Recurrent Unit) [34] have been proposed, mod-
eling the hidden state to decide what to keep in the previous
and current memory. These variants can efficiently capture
the long-term dependencies and lead to a stronger capac-
ity to understand the language. Different from CNN which
processes spatially continuous data, RNN focuses on the
connections between temporally continuous data. Therefore,
RNN is mostly employed in the natural language processing
(NLP) field [35]-[37].
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FIGURE 3. The architecture of LeNet 5. Each plane represents a feature map. The little white boxes are the keys for
convolutional neural networks, which are called kernels. From the figure we can see that, contrast to full connection
layers, the convolutional layers focus more on local relationships.
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FIGURE 4. A general structure of unfolding recurrent neural networks
without the output.

Ill. WHEN loT MEETS DEEP LEARNING

Thanks to recent breakthroughs in hardware and theories,
the application of deep learning in IoT are rapidly emerging
and developing. In this section, we provide a comprehensive
overview of the latest development in four representative
IoT areas. Our discussion starts from healthcare applica-
tions, which include health monitoring and disease analysis.
We next discuss how deep learning can be employed to pro-
cess enriching sensing signals and make our home smarter.
Third, we introduce various deep learning applications in
smart transportation, mainly in three fields: traffic prediction,
traffic monitoring and autonomous driving. Finally, smart
industry is another promising field where we focus on manu-
facturing inspection and related applications.

A. SMART HEALTHCARE

Gaining knowledge and actionable insights from com-
plex, high-dimensional, and heterogeneous biomedical data
remains a key challenge in transforming health care. Nowa-
days, IoT combined with deep learning has been employed
in providing healthcare and well-being solutions for indi-
viduals and communities, and deep learning approaches
could be the vehicle for translating big biomedical data into
improved human health [38]. We summarize some typical
deep learning-based smart healthcare applications in Table 1.

1) HEALTH MONITORING

Nowadays, sensor-equipped smartphones and wearables
customarily enable a variety of mobile APPs for health
monitoring [49], [50]. To implement such applications,
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people utilize Human Activity Recognition (HAR) to identify
human activities and analyze health conditions [16]. How-
ever, the underlying representative features hidden in the
massive raw data calls for more effective extraction model
for identification. Applying the advance of deep learning in
activity recognition opens a promising opportunity towards
this problem. Hammerla et al. [39] build CNNs and LSTM
to analyze the movement data respectively and combine the
results to make a better prediction of freezing gaits in Parkin-
son disease patients. Zhu et al. [41] apply the data from triax-
ial accelerometers and heart rate sensors to obtain promising
results in predicting Energy Expenditure (EE) with a CNN
model, which helps to relieve chronic diseases. Hannun et al.
[42] train a 34-layer convolutional neural network which
maps a sequence of ECG samples to a sequence of rhythm
classes. The performance exceeds that of board certified
cardiologists in detecting a wide range of heart arrhythmias
from electrocardiograms recorded with a single-lead wear-
able monitor. Gao et al. [40] propose a novel deep learn-
ing architecture recurrent 3D convolutional neural network
(R3D). R3D extracts effective and discriminative spatial-
temporal features for action recognition, which enables the
capturing of long-range temporal information by aggregating
the 3D convolutional network entries to serve as an input to
the LSTM architecture.

With the prevalence of wearable devices, we can monitor
our health state and standardize our way of life at any time.
It is a challenge to directly deploy deep learning modules on
low-power wearable devices due to their limited resources.
Ravi et al. [51] utilize spectral domain preprocessing before
the data are passed onto the deep learning framework so as to
optimize real-time on-node computation in resource-limited
devices. Tang et al. [52] explore two ways and successfully
integrate deep learning with low-power IoT products.

2) DISEASE ANALYSIS
Medical image classification and analysis is an important
topic in healthcare. Following the success in computer vision,
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TABLE 1. Summary of deep learning-based smart healthcare applications.

Category Application Model Remark
Human activity CNN + LSTM Compare different models using three representative datasets that
recognition (HAR) [39] contain movement data captured with wearable sensors
Human action A deep learning architecture named as recurrent 3D convolutional
o monitoring [40] 3D CNN + LSTM neural network (R3D) to extract effective and discriminative
Health Monitoring & spatial-temporal features to be used for action recognition
Energy expenditure (EE) CNN Use CNNss to automatically detect important features from data
estimation [41] collected from triaxial accelerometer and heart rate sensors
. . Develop a 34-layer deep neural network to classify 10 arrhythmias
ﬁ;g?{gggi:ﬁ&c]mn and CNN as well as sinus rhythm and noise from a single-lead ECG signal,
with high diagnostic performance similar to that of cardiologists
Knee cartilage CNN Infer a hierarchical representation of low-field knee MRI scans that
segmentation [43] fosters categorization
L . Detection of diabetic
Disease Analysis | getinopathy in retinal CNN High sensitivity and specificity
fundus photographs [44]
Smart personal health A smart personal health advisor (SPHA) for comprehensive and
art pf CNN intelligent physiological and psychological health monitoring and
advisor [45] guidance.
Pill image recognition [46] | CNN A mobile vision system for recognizing unconstrained pill images
Other Skin lesion CNN A deep CNNs-based model to predict whether a image of a skin
classification [47] lesion is either benign or malignant
Medicine recognition [48] Faster R-CNN ST—Med.—Box can assist chromlc patients in taking multiple o
medications correctly and avoiding in taking the wrong medications

deep learning has been widely used in assisting disease image
analysis [45], [53]. CNNs are used to infer a hierarchical
representation of low-field knee MRI scans to automatically
segment cartilage and predict the risk of osteoarthritis [43].
Another work [44] uses CNNs to identify diabetic retinopathy
in retinal fundus photographs, obtaining high sensitivity and
specificity over about 10, 000 test images with respect to
certified ophthalmologist annotations.

In addition to medical image recognition, deep learn-
ing has been employed in other applications. For instance,
Zeng et al. [46] present a deep-learning based pill image
recognition model which helps to identify unknown pre-
scription pills using smartphones. Lopez et al. [47] propose
a deep-learning-based approach to classify a dermotropic
image which contains a skin lesion as malignant or benign.
A ubiquitous healthcare framework called UbeHealth is pro-
posed to address the challenges in terms of network latency,
bandwidth, and reliability [54]. Chang et al. [48] propose
an intelligent medicine recognition system called ST-Med-
Box based on deep learning. ST-Med-Box can assist chronic
patients in taking multiple medications correctly and avoid-
ing in taking wrong medications; it also provides other
medication-related functionalities such as reminders to take
medications on time, medication information, and chronic
patient information management.

B. SMIART HOME

Smart home enables the innerconection of ubiquitous smart
home devices and is the technical convergence and services
through home networking to achieve a better quality of liv-
ing [55]. In the recent years, a myriad of systems has been
developed to apply deep learning techniques in various smart
home applications, as summarized in Table 2.
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1) INDOOR LOCALIZATION

With the proliferation of mobile devices, indoor localization
gradually becomes a critical research issue since it is not
viable to employ Global Positioning System (GPS) in indoor
environments. Indoor localization enables numerous services
in smart home, such as wireless intruder detection, elder mon-
itoring, and baby monitoring, yet it faces a lot of propagation
challenges like multi-path effect, fading, and delay distortion.
High accuracy and short processing time are indispensable
performance indicators while designing an indoor localiza-
tion system. Fingerprinting-based indoor localization is an
effective method to satisfy the above requirements. RSSI
(Received Signal Strength Indication) based fingerprints are
known to be unstable and inaccurate, and the more powerful
Wi-Fi Channel State Information (CSI) have become the most
widely adopted fingerprints in current systems. In addition,
traditional positioning systems are based on such methods as
K nearest neighbors (KNN) [62], Bayesian model [63], SVM
[64], and compressive sensing [65], which are not suitable for
dealing with massive data. To this end, people began to resort
to deep neural networks.

Gu et al. [56] propose a novel algorithm called Semi-
supervised Deep Extreme Learning Machine (SDELM),
which takes the advantages of semi-supervised learning,
deep learning, and extreme learning machine. This approach
achieves satisfactory performance on the localization and
reduces the calibration effort with the full use of unlabeled
data. Mohammadi et al. [S7] propose a semisupervised deep
reinforcement learning (DRL) model based on Bluetooth
low energy signal strengths. This model utilizes variational
autoencoders as the inference engine for generalizing optimal
policies. Wang et al. [58] utilize 4-layer RBMs to process
the raw CSI data to obtain the locations. Yet the proposed
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TABLE 2. Summary of deep learning-based smart home applications.

Category Application Model

Remark

Semi-supervised Wi-Fi

based localization [56] DNN

Combines semi-supervised learning, deep learning, and extreme
learning machine (ELM)

Bluetooth low energy
signal strength based DRL

Indoor Localization indoor localization [57]

A semi-supervised deep reinforcement learning model that
leverages both labeled and unlabeled data

CSl-based fingerprinting

for indoor localization [58] REM

Device-oriented, one AP

Device-free wireless
localization and activity RBM
recognition [59]

Device-free, nine APs

robotic grasping [61]

Aut-o nomous CNN Use CNN to identify markers or objects from images and videos
. navigation [60]
Home Robotics — - - - - -
Hand-eye coordination for CNN The learning algorithm is able discover unconventional and

non-obvious grasping strategies

system considers a device-oriented approach, which would
not work if people have no cell phones or they refuse to
connect their phones with APs. To this end, Wang et al. [59]
develop a device-free approach based on an observation that
APs receive different data when people stand at different
locations. They design a 4-layer RBM model to extract fea-
tures from the raw CSI data and select random forests (RF)
to classify the locations by these features. In addition, they
employ a contaminant estimation step to eliminate the error
of CSI values in a fixed place due to multi-path effect caused
by opening a window or door. Nine APs are employed to
collect data related to people’s locations, and a wavelet filter
is utilized to preprocess the raw data. With the multi-faceted
interaction, results are more robust. The system can even
recognize people’s activities like bow and walk, or gestures
like hand-clap and wave hand.

2) INTELLIGENT CONTROL
Nowadays, home appliances can connect to the Internet and
provide intelligent services. Li and Lin [66] utilize WSNs
and power line communications (PLCs) to implement a smart
home control network. To reduce the impact of wireless inter-
ference on the control network and the unnecessary energy
consumption, an isolated WSN with one coordinator, which
is integrated into the PLC transceiver, is established in each
room. The coordinator is responsible for transferring envi-
ronmental parameters obtained by WSNs to the management
station via PLCs. The control messages for home appliances
are directly transferred by PLCs rather than WSNs. The user
interface is also an important research field for better user
experience. The authors in [67] propose a gesture-based user
interface for the development of a smart home system.
Nowadays, deep learning techniques have shown great suc-
cess in digital personal assistant products such as Microsoft’s
Cortana, Apple’s Siri, Amazon Alexa, and Google Assis-
tant [68]. Such dialogue system based products would func-
tion as the next-generation smart home controller.

3) HOME ROBOTICS

With sensors, actuators and databases equipped, home
robots can perform various tasks in home environments.
In general, home service robots should have the key
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functionalities including the localization, navigation, map
building, human-robot interaction, object recognition, and
object handling [69]. Robotic navigation in GPS-denied
environments requires case-specific approaches for control-
ling a mobile robot to any desired destinations. In [60],
a new approach for autonomous navigation to identify mark-
ers or objects from images and videos is presented, using
pattern recognition and machine learning techniques such
as CNNs. Computational intelligence techniques are imple-
mented along with the robot operating system and object
positioning to navigate towards these objects and markers
by using the RGB-depth camera. Multiple potential match-
ing objects detected by the robot with deep neural network
object detectors are displayed on a screen installed on the
assisted robot to improve and evaluate Human-Robot Inter-
action (HRI). To improve the hand-eye coordination for the
object handling, Levine er al. [61] train a large convolutional
neural network to predict the probability that the task-space
motion of the gripper results in successful grasps only using
monocular camera images, independently of the camera cal-
ibration or the current robot pose.

C. SMART TRANSPORTATION

In this section, we mainly present how deep learning has been
applied in various smart transportation applications, which is
summarized in Table 3.

1) TRAFFIC FLOW PREDICTION

Traffic flow prediction is a fundamental problem in trans-
portation modeling and management as well as intelli-
gent transportation system design, which nowadays heavily
depends on the historical and real-time traffic data collected
from all kinds of sensors, including inductive loops, cam-
eras, crowd sourcing, social media and so on. To efficiently
utilize such massive heterogeneous data, classical machine
learning methods, e.g., SVM, would consume a lot of time
and power-consuming computation resources. In addition,
hand-engineered features are not enough for a satisfying
accuracy due to the limitation of related prior knowledge. The
authors in [7] propose an online-SVR method for short traffic
flow prediction in typical and atypical conditions, where
several SVM models need to be formed and consume a lot
of memory resources.
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TABLE 3. Summary of deep learning-based smart transportation applications.

Category Application Model Remark
A deep architecture that consists of two parts, a DBN at the bottom
Traffic flow prediction [70] DBN for unsupervised feature learning, and a multitask regression layer
at the top for supervised prediction
Traffic flow prediction [71] SAE goﬁa;:;etiriztoencoder (SAE) model is used to learn generic traffic
Traffic Prediction
Short-term traffic LSTM A LSTM network considers temporal-spatial correlation in traffic
prediction [72] system via a two-dimensional network
Crowd flow prediction [73] CNN A Qeep spatlo—Femporal r_es1dual network (ST-ResNet) based on
unique properties of spatio-temporal data
RPN + Faster
Real-time object R-CNN [74], Improvement on speed and detection accurac
detection [74]-[76] YOLO [75], P P Y
SSD [76]
Traffic Monitoring . . A novel CNN architecture and a structural loss function that
Object tracking [77] CNN handles multiple input cues, and a tracking-tailored SGD algorithm
Track and classify objects in complex and only
Object tracking [78], [79] RNN partially-observable, real-world scenarios from both a static sensor
as well as a moving platform
Road accident detection [80] SDAE ;e;lrlr)li )f(z?til;rtz Irliipg/esentatlon from the spatio-temporal volumes of
Real-time object d@ecuon CNN Aims at small, fast, energy efficient, and accurate models
Au Drivi for autonomous driving [81]
utomonous riving End-to-end learning for CNN Map raw pixels from a single front-facing camera to steering
Self-Driving Cars [82] commands
Learning driving from video FCN-LSTM Learn from large-scale crowd-sourced vehicle action data
datasets [83]

Recently, deep learning has drawn major attention from
both academia and industry due to its ability to extract
inherent features from data and exploit the rich amount of
traffic data. Huang et al. [70] propose a DBN model to
capture enough features from each part of road traffic net-
works. With the idea of multitask learning, these features
from related roads and stations are grouped to explore the
nature of the whole road traffic network and predict traffic
flow. Lv et al. [71] propose an SAE (Stack of Autoencoders)
model to extract features from historical data for prediction
with these features. A lot of works have focused on utilizing
deep learning for traffic and crowd flow prediction [72], [84].

2) TRAFFIC MONITORING

One of the most attractive research fields in smart transporta-
tion is the development automated traffic monitoring systems,
which play an important role in both reducing the workload of
human operators and warning drivers of dangerous situations
[89], [90]. Traffic video analytics has become an important
part of intelligent traffic monitoring systems. In the following
we present how deep learning is applied to traffic video
analytics from the three perspectives: object detection, object
tracking, and face recognition.

Object detection has been applied in a wide range of sce-
narios, such as pedestrian detection, on-road vehicle detec-
tion, and unattended object detection. Applying the deep
convolutional neural network and multi-scale strategy has
significantly improved the accuracy and speed [74]-[76].
Ren et al. [74] introduce a region proposal network (RPN)
that shares full-image convolutional features with detection
network, thus enabling nearly cost-free region proposals.
Redmon et al. [75] recognize frame object detection as a
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regression problem to spatially separate bounding boxes and
associate class probabilities. Liu et al. [76] discretize the
output space of bounding boxes into a set of default boxes
over different aspect ratios and scale per feature map location.

Object tracking is intended to locate a target in a video
sequence and give its location in the first frame, which
has been applied in surveillance systems. It is important to
automatically track suspected people or target vehicles for
safety monitoring, urban flow management, and autonomous
driving [77], [91]. Vincent et al. [91] explore an original
strategy for building deep networks based on stacking lay-
ers of denoising autoencoders, which are trained locally to
denoise corrupted versions of their inputs. Li er al. [77]
present an efficient and robust tracking algorithm by using
a single CNN for learning effective feature representations
of target object. To directly map from raw sensor input to
object tracks in sensor space without requiring any feature
engineering or system identification, the end-to-end object
tracking approach has been proposed, where recurrent neural
networks (RNN) is used [78], [79]. Singh and Mohan [80]
propose a framework for automatic detection of road acci-
dents in surveillance videos, which uses a stacked denoising
autoencoder (SDAE) to learn feature representation from the
spatio-temporal volumes of raw pixel intensity instead of tra-
ditional hand-crafted features. Face recognition and detection
techniques [92]-[94] can be used to identify and track drivers
and pedestrians.

3) AUTONOMOUS DRIVING
Autonomous driving is a crucial part of city automation.
There are two major paradigms for vision-based autonomous
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TABLE 4. Summary of deep learning-based smart industry applications.

Category Application Model Remark
Robust inspection CNN Leverage fog computing to offload the computation burden to the
system [85] fog nodes to deal with big data in real time
X Surface inteeration Troposed method has several advantages in time and cost saving
Manufacture Inspection s CNN and shows higher performance than traditional manpower

inspection [86]

inspection system

Fault Assessment

Fault diagnosis and
identification [87]

Wavelet-based CNN

Wavelet transform is used to featureless fault diagnosis

Transformer fault
diagnosis [88]

Continuous Sparse
Autoencoder (CSAE)

Gaussian stochastic unit is added into an activation function to
extract nonlinear features of the input data

driving systems, the mediated perception approaches and
behavior reflex approaches [95]. Systems based on mediated
perception approaches compute a high-dimensional world
representation. The idea of mediated perception approaches
recognizes multiple driving-relevant objects [96], [97], such
as lanes, traffic signs, traffic lights, cars, pedestrians, etc.
Mediated perception approaches gain the state-of-the-art
achievement in autonomous driving. However, most of these
systems rely on high precision instruments,and bring unnec-
essarily high complexity and cost. Currently, autonomous
driving systems focus more on real-time inference speed,
small model size, and energy efficiency [81]. These self-
driving systems are trained by the driving videos to learn a
map from input images to driving behaviors or constructs a
direct map from the sensory input to a driving action. The
authors in [82] train a convolutional neural network to map
raw pixels from a single front-facing camera directly to steer-
ing commands. Inspired by language models, The authors
in [83] put forward a learning-based approach which trains
an end-to-end FCN-LSTM network to predict multi-modal
discrete and continuous driving behaviors. The system learns
from Long-term Recurrent Convolutional Network [98] and
extracts the spatial and temporal connections of driving video.

D. SMART INDUSTRY

Industry 4.0, or in other words, the smart industry, represents
the latest trend of the manufacturing revolution. In the era of
smart industry, explosive data produced in manufacture can
be analyzed to empower the computers and manipulators with
human-like abilities [85]. In the following part, we mainly
focus on how deep learning is implemented in some specific
industrial applications, which are summarized in Table 4.

1) MANUFACTURE INSPECTION

In order to accurately inspect and assess the quality of prod-
ucts, various visual inspection approaches, many of which
are based on traditional machine learning techniques, have
been proposed to extract representative features with expert
knowledge so as to detect product defects in large scale pro-
duction [99]. Recently, deep learning has become a powerful
tool for visual inspection. The authors in [85] propose a deep-
learning-based classification model to implement a robust
inspection system. A CNN-based system is adapted to the
fog computing environment, which significantly improves
its computing efficiency. A generic CNN-based approach is
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proposed in [86] to extract patch features and predict defect
areas via thresholding and segmenting for the tasks of surface
integration inspection.

2) FAULT ASSESSMENT

In order to implement smart manufacturing, it is crucial for
a smart factory to monitor machinery conditions, identify
incipient defects, diagnose root cause of failures, and then
incorporate the information into manufacturing production
and control. In [87], a wavelet-based CNN is proposed for
automatic machinery fault diagnosis. The wavelet transform
is used to transfer one-dimensional vibration signal into a
two-dimensional one which is then fed into CNN. In [88],
a continuous sparse auto-encoder (CSAE) is presented by
adding Gaussian stochastic unit into an activation function to
extract nonlinear features of the input data. In [100], a sparse
filtering based two-layer neural network model is investigated
for unsupervised feature learning, which is used to learn
representative features from the mechanical vibration signals.

IV. CHALLENGES AND OPPORTUNITIES

In the above section we have comprehensively surveyed
the state-of-arts on applying deep learning in various IoT
domains. Nevertheless, the relevant research work is still at
an early stage while many key issues need to be addressed in
future efforts. In this section, we first identify four critical
challenges for implementing deep learning in IoT applica-
tions. We then point out two opportunities brought by com-
bining deep learning with IoT technologies.

A. CHALLENGES

As shown in the recent literature, data processing and analysis
using deep learning delivers satisfactory performance. Yet a
lot of issues have yet to be addressed when leveraging deep
learning in IoT applications.

1) DATA COLLECTION

The performance of deep learning methods relies on data
sources. Without sufficient clean data, the deep model cannot
play a role, even if the architecture of the model is well
designed. Therefore, how to implement the data collection
equipment is a critical research issue. The number of sen-
sors used and the way to deploy the sensors impact on the
quality of data collected. The information contained in the
data is actually the key to solve problems. It is necessary to
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design a data collection module for the whole IoT application
work-flow. For example, Li et al. [101] deliberately design a
picture collection module DeepCham to improve the identi-
fication accuracy of the model. Actually, it implements the
idea of crowdsourcing in the data collection module. A cost-
effective, reliable, and trustworthy data collection paradigm
plays an important role in developing practical deep learning
based IoT applications.

2) MODEL TRAINING

Training a deep network demands cumbersome tasks. As we
know, the depths determine the capacity of a deep learn-
ing network to extract key features. However, the gradi-
ent vanishment problem appears when models grow deeper,
which deteriorates the performance. To this end, Hinton et al.
[23] propose an approach to pre-train models by stacking
RBMs. In addition, the ReLU function applied as a substitute
for the sigmoid function also contributes to the mitigation
of the gradient vanishment problem. Overfitting is another
serious problem that we face in training deep models. The
key solution is to enter more data or reduce parameters
of the model. One effective method is using convolutional
kernels to reduce the number of parameters, and employing
the dropout [102] is also an alternative. Moreover, in recent
years, a major breakthrough has been made in convolutional
neural networks [28]-[31] and the number of layers of CNN
models has been increasing from 5 to more than 200. Methods
mentioned in these classical convolutional neural networks
(like implementing smaller convolutional kernels or batch
normalization) can be valid when we utilize the deep learning
algorithm to deal with problems in wireless network filed.

3) HARDWARE LIMITATION

Deep learning is a powerful tool for processing big data,
resulting in its high hardware requirements. How to imple-
ment a deep model of a resource-limited embedded device is
still a challenge. So far, there are two types of research aiming
to solve the problem. One is only to treat end devices (like a
smart phone) as data collectors. All data are transferred to
resourceful servers to be analyzed. However, in this process,
we may incur data disclosure, network failure, and other
issues. An alternative solution is to reduce the complexity of
the networks with slight performance degradation, such that
some learning tasks can be performed at end devices.

4) SYSTEM DESIGN

There emerges a trend to design a cloud-edge learning system
that spans edge devices and the cloud. A cloud-edge system
can leverage the edge to reduce latency, improve the safety
and security, and implement intelligent data retention tech-
niques [103]. Furthermore, it can leverage the cloud to share
data across edge devices, train sophisticated computation-
intensive models, and take high-quality decisions [104].
Recently, there have been some studies on the combination of
deep learning and edge computing [105]-[107]. Edge devices
can be highly heterogeneous in terms of resource capabilities
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and software platforms, which make it complicated for appli-
cation development. The update cycles of the hardware and
software to edge devices are much slower than in the cloud.
It is inconvenient to store all collected data because of the
storage capacity slowing down [104]. It is highly desirable
to address these problems and build a robust cloud-edge
learning system.

B. OPPORTUNITIES
Despite the challenges, there are still opportunities in apply-
ing deep learning to solve IoT problems:

o Deep learning liberates our thought. In the past, we may
hesitate to step into some unknown areas and encounter
difficulties when we carry out some research due to the
limitation of related professional knowledge. Now we
can achieve some guess without the worry of data analy-
sis tools. Deep learning gives us the ability to obtain and
process data information. It means that we can boldly
start more research and may promote the process of
science and technology.

« Deep architectures have a strong ability in the represen-
tation of learning. Features that describe characteristics
of input data used to be designed manually in tradi-
tional methods. Deep learning allows machines to design
features by themselves. With the powerful deep models
(RBMs, Autoencoder, CNN, and RNN), we can review
related IoT studies in a new perspective and improve the
final system performance. Furthermore, we may propose
brand new IoT applications and make a contribution to
the “smarter” society.

V. CONCLUSION

In this article, we have investigated how deep learning brings
new opportunities to the IoT. It is clear that many IoT appli-
cations have been empowered with deep learning tools. Deep
models are powerful tools to solve large-scale data analysis
problems. We have surveyed the recent research on how to
build a deep model for IoT applications by RBM, autoen-
coder, CNN or RNN. With deep learning, it is unnecessary
to take efforts on designing complex features. Deep learning
offers us a new perspective to solve traditional problems and
help us reveal new insights on the field of IoT. However, how
to design an architecture with high accuracy and low resource
consumption is still an open issue, and the exploration of this
field has not yet come to an end.
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