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ABSTRACT Among various sensors used to recognize obstacles in marine environments, vision sensors
are the most basic. Vision sensors are significantly affected by the surrounding environment and cannot
recognize distant objects. However, despite these drawbacks, they can detect objects that radars cannot
detect in nearby regions. They can also recognize small obstacles such as boats that are not equipped
with an automatic identification system (AIS) or buoys. Thus, vision sensors and radar can be used in a
complementary manner. This paper proposes a vision sensor-based model, called Skip-ENet, for recognizing
obstacles in real time. Compared with ENet, the amount of computation is not significantly higher. Further,
Skip-ENet can segment complex marine obstacles effectively by increasing the values for the class accuracy
and mean Intersection of Union (mIoU). Moreover, this model enables even low-cost embedded systems
to compute 10 or more frames per second (fps). The superiority of the proposed model was verified
by comparing its performance with that of the conventional segmentation models, MobileNet, ENet, and
DeeplabV3+.

INDEX TERMS Autonomous surface vehicle, computer vision, deep learning, obstacle segmentation, ship
navigation.

I. INTRODUCTION
In recent years, major shipbuilding companies such as Rolls-
Royce and Kongsberg have announced their roadmaps for
developing autonomous surface vehicles, and are presently
actively engaged in the associated research and development.
In order to autonomize surface vehicles just as in autonomous
vehicles, a combination of various sensors, such as radar and
LiDAR (Light Detection And Ranging) sensor, is necessary.
A drawback for radar is that there are areas known as radar
shadows, where radar is not effective. Conversely, in marine
environments, LiDAR has the disadvantage of having more
noise than in road environments owing to diffused reflection
from water. Hence, most researchers use a vision sensor
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as the fundamental sensor to overcome the drawbacks of
other sensors. Vision sensors have the disadvantages of being
significantly affected by the surroundings in a marine envi-
ronment and inability to recognize distant objects. However,
they can detect objects in nearby areas that radars cannot
discover. Objects equipped with an automatic identification
system (AIS) can be easily recognized as obstacles. However,
even without the AIS, the vision sensor can recognize a
buoy or small ship as an obstacle. Many researchers have
proposed a variety of algorithms using vision sensors. So we
developed a special device to collect vision data. This device
can collect data simultaneously including GPS, IMU as well
as vision sensor. It is made of waterproof material that can
be used by the boat, and it is also possible to record for
a long time. Using the device, we collected data from a
variety of marine environments. This data includes diverse

179420 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-4871-7911
https://orcid.org/0000-0002-3603-6086
https://orcid.org/0000-0002-3034-1231
https://orcid.org/0000-0002-3804-1022
https://orcid.org/0000-0002-4767-8359
https://orcid.org/0000-0002-5799-2026
https://orcid.org/0000-0001-7490-0800
https://orcid.org/0000-0002-2434-0849


H. Kim et al.: Vision-Based Real-Time Obstacle Segmentation Algorithm for Autonomous Surface Vehicle

seasons and includes both daytime and nighttime data. It has
been collected since February 2017 and has collected a total
of 2.5 million data. Of these data, we segmented the image
into 5 classes and completed about 4000 images for training
data. In this paper, we propose a system that recognizes obsta-
cles using a real-time image segmentation algorithm based
on deep learning. Unlike other obstacle detection/recognition
algorithms, the proposed algorithm can classify obstacles in
a relatively high-resolution input image at the pixel level.
Further, this algorithm can robustly estimate obstacles even
when sea clutters or sun glinting from the ocean surface
are present in the input images. We propose an improved
architecture called Skip-ENet with ENet [21] as a baseline.
Skip-ENet has a good performance for recognizing small
objects even when using a simple architecture. In addition,
Skip-ENet can be operated at speeds of 10 fps or higher on
NVIDIA TX2 embedded board, so it can be installed in the
unmanned surface vehicle and used in real time. In summary,
our contributions are as follows:

• Various marine environmental data were collected. This
data spans over diverse seasons and also daytimes and
nighttimes.

• We designed a special equipment for data collection.
With the device, color image, IR image, GPS coordi-
nates, and IMU data can be saved at the same time.

• We designed a novel network architecture for image seg-
mentation. We proposed an improved ENet architecture
called Skip-ENet.

• The proposed network is implemented on the embedded
board for actual operation of an unmanned surface vehi-
cle. It runs at speeds of 10 fps or more on the TX2 board.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 describes the data
collection device and the collected data used to study the
system; it also outlines the proposed system. Section 4 com-
pares the performance and computation speed of the proposed
algorithm with those of other segmentation models. Finally,
Section 5 presents concluding remarks and outlines future
research and development plans.

II. RELATED WORK
Roads for cars have rules that can be recognized visually,
such as lanes and traffic lights. In contrast, there are no such
rules in marine environments. Vision sensor-based obstacle
recognition has to be performed in such open spaces with-
out any rules. Therefore, studies have been conducted on
limiting the detection area in order to improve performance
while maintaining a certain computation level. For example,
Wang et al. located the horizon by connecting the points
that had the largest changes in gradient based on a uniform
grid and excluded the sky from the computation. Afterward,
the obstacles were detected using saliency values [1], [2].
Furthermore, Wang et al. extended a single vision sensor
into a stereo vision sensor to enhance the obstacle detection
performance [3] and adopted an HD high-resolution vision

sensor so that obstacles more than 200 m away could be
recognized [4], [5]. Likewise, Oren used the canny edge
detection method to find the horizon in order to reduce the
amount of computation and detected interest points of obsta-
cles through the thinning computation of areas where the
pixel values changed [6]. However, the methods cited above
could not detect obstacles above the horizon. In addition,
the solutions lacked robustness because they could not be
utilized when it was difficult to locate the horizon owing
to the camera installation angle or the marine environment.
Kristan et al. solved this problem by adopting an obstacle
image map based on the Gaussian mixture model, catego-
rizing what used to be separated into two areas (sky and
sea) by the horizon into three regions (sky, terrain, sea), and
applying the Markov random field technique to segment the
obstacles [7]. Bovcon et al. fused the algorithm proposed by
Kristan et al.with the positional information of the unmanned
surface vehicle, which is measured by an inertial measure-
ment unit (IMU), to improve the segmentation of the obstacle
imagemap [8]. In addition, there are algorithms to remove sea
clutters or sun glints from the sea surface [9]. Kim et al. [10]
and Koo et al. [11] used a vision sensor in an UAV to recog-
nize jellyfish in themarine environment and developed a deep
learning based algorithm to accurately recognize jellyfish.
In the case of marine environment, synthetic data generation
method is sometimes used to overcome the problem of lack
of real image data [12].

Neural networks are used in various fields, such as in
pixel grouping or object tracking. Rota et al. used a multi-
layer perceptron (MLP) for grouping particles [14]. Likewise,
Ullah et al. used a combination of HMM and deep features
for multi-target tracking [15]. In these two cases, feature
extraction proceeds individually and neural networks were
used for classification. Unlike this method, Numerous studies
have been conducted on deep learning-based segmentation,
beginning with fully convolutional networks (FCNs) [16].
Very small objects can be recognized based on the predicted
heat map from the network using FCNs [13]. Currently,
the encoder-decoder combination architecture provides the
best performance, with examples such as the Pyramid Scene
Parsing Network (PSPNet) [17] and DeepLabV3+ [18].
These algorithms can segment even small objects accurately
using multi-scale input images. However, these network
models are all based on the residual network (ResNet; thus,
they cannot perform real-time computations [19]. To rectify
this issue, Zhao et al. proposed a cascade architecture-based
ICNet [20]. However, although their solution can process
high-resolution images in real time, it still cannot be used in
embedded systems such as NVIDIA Jetson. A network archi-
tecture for mobile application processor (AP) has also been
proposed. Paszke et al. proposed ENet, which is now one of
the most widely used network architectures [21]. ENet signif-
icantly reduces the input images at the early stage to enhance
computation speed. Further, ENet adopts an architecture
similar to that of ResNet in order tomaintain the performance.
Compared with SegNet [22], ENet exhibits similar
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FIGURE 1. Prototype of the marine data collection device. Data such as
visible light, infrared radiation (IR), inertial measurement unit (IMU), and
GPS are saved simultaneously.

performance and significantly faster computation speed.
Howard et al. also proposed MobileNet [23], which utilizes
the depthwise separable convolution method to significantly
reduce the amount of computation of the convolution layer
without much degradation in performance.

Among various network models that can be used from a
mobile AP, the ENet architecture was used as the basis for this
study. Further, the network architecture wasmodified, and the
features of SkipNet added [24] to enhance the performance
even more. Similar to the features of ResNet, SkipNet is
designed such that a layer can be skipped depending on the
complexity of the object being classified. Hence, loss of
data due to the encoder is minimized without significantly
increasing the amount of computation, and the Intersection
over Union (IoU) value can be improved efficiently. The
performance and computation speed of the proposed network
model, called Skip-ENet (or simply, Skip-ENet), were eval-
uated by comparing them with those of MobileNet, which
utilizes the U-Net architecture [25], as well as with ENet and
DeeplabV3+.

III. METHODS
A. DATA COLLECTION AND MANAGEMENT
In order to design an image-based obstacle recognition algo-
rithm, we first fabricated the marine data collection device
shown in Figure 1. The data collection device was designed
such that images can be recorded both in the daytime and
nighttime and high-resolution visible light and infrared radi-
ation (IR) images can be saved simultaneously. Further, both
the location where the image was collected and the six
degrees of freedom positional information of the image are
saved at the same time. Since February 2017, data have
been collected along the western and southern coasts of the
Republic of Korea, where islands and aquafarms are predom-
inantly distributed. To date, approximately 2.5 million valid
images with position and orientation information have been

FIGURE 2. Examples of the images collected primarily from the coastal
areas of the western and southern seas of the Republic of Korea. Only
valid images containing various environmental information were used for
learning.

obtained. A valid image is one in which there are variations
in the information owing to environmental changes—such
as changing from day to night or from sunny to rain—or a
change in information, such as when a boat or buoy moves in
the same place. Examples of collected valid images are shown
in Figure 2.

Image labeling and augmentation needed to be performed
to segment the collected images. We categorized the images
into the classes shown in Table 1, so that they could be used
for obstacle recognition and other applications. As explained
in Table 1, information that is not needed for navigating
the unmanned surface vehicle, such as the sky, birds, and
airplanes, was not included in the learning process. Further,
a separate class was provided for better segmentation of
small obstacles. The results of the labeling task are shown
in Figure 3. Augmentation of the images used for learning can
be very effective even with a small number of images. Unlike
cars, vessels can move, while being at the same location,
in three dimensions and six degrees of freedom because of
waves or tidal current. Hence, data that reflect the Affine
transformation effect of the images can be obtained. In addi-
tion, we were able to double the amount of data, by reversing
the labeled images along the y-axis, and utilized them for
learning.

B. SKIP-ENET
When Paszke et al. proposed the ENet architecture, they
applied various techniques to increase the computation speed
while maintaining the performance. We analyzed the initial
block and encoder-decoder bottleneck techniques proposed,
and modified the architecture such that obstacles can be well
segmented in the marine environment with the following
characteristics:

1) COUNTERMEASURES FOR THE BLUR EFFECT DUE TO
‘‘HAEMOO’’ (SEA FOG)
‘‘Haemoo’’ is a type of sea fog that occurs when the sur-
rounding air is cooled as the air over a meteorologically warm
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TABLE 1. Classification of marine obstacles.

FIGURE 3. Results of the labeling task according to Table 1. Only the
objects needed for autonomous navigation were labeled.

surface of the sea moves over a cold sea surface. Sea fogs
often occur between April and October in all the seas of
Korea. Images collected during this period are blurry, as if
a blur effect had been applied to them. Hence, additional
computation is needed to deblur the image before it is fed into
the convolution layer, so that the encoder block can robustly
segment the characteristics. We added a layer that performs
whitening transformation [26] to the initial block; thus, this
layer along with the max pooling layer produce a deblur
effect.

2) METHOD FOR SEGMENTING SMALL OBSTACLES SUCH
AS BUOY AND SIMPLE STRUCTURES
The probability of objects, such as fishing nets or marine
structures that can cause accidents, existing underneath
buoys or simple structures floating on the sea is high. Hence,
these objects must be recognized in advance and avoided
when navigating vessels. In order to segment small objects
without increasing the amount of computation, we adjusted
the size of the receptive field in the dilated convolution com-
putation [27]. With a large receptive field of dilated convolu-
tion, compression of the feature can proceed quickly, even if
it is not a very deep network. Also, we adopted the SkipNet
architecture. The SkipNet architecture was applied to the
ENet architecture because, as mentioned previously, the loss
of information due to the encoder can be reduced without
increasing the computational amount significantly, thereby
increasing the IoU value. Furthermore, the shape information

FIGURE 4. Architecture of the proposed Skip-ENet. The whitening layer is
added to the initial block to remove the blur caused by sea fog. Further,
the gate structure of SkipNet is adopted for segmentation of small
obstacles, so the inference performance is improved without increasing
the amount of computation significantly.

lost can be supplemented by restoring the size of the results
using the upsampling computation at the decoder block.
For ENet, the encoder-decoder structure is not symmetric,
so they were connected using gates, as shown in Figure 4.
Unlike SkipNet, the gates were constructed to perform only
the resizing computation, so the increase in the amount of
computation is minimized.When one looks at the proportions
of the objects defined in Table 1 in the images of marine
environments, the proportions of the sea surface and the
sky are high. Therefore, during the learning process, small
obstacles that have relatively small proportions are given
additional arbitrary weight when calculating the class weight,
and the errors are updated. The formula for calculating the
class weight is as follows:

wn =
1

ln(cn + pn)
. (1)

This method is different from that used by ENet in that the
hyper parameter c can be assigned to each class. The value
of the wn has the range [1–50] and n means class ID. The cn
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FIGURE 5. Comparison results. Segmented images from ENet, MobileNet, Deeplab V3+, and Skip-ENet compared to the ground truth for two input images.

is a constant value of each class and the pn is obtained by
calculating the average number of pixels each class occupies
in the input image.

3) NETWORK DETAILS
Encoder block is composed of three sub blocks. The first is a
regular block consisting of a basic residual architecture. This
block compresses the feature using a normal convolution.
The second is an asymmetric block. Using two convolution
filters asymmetrically, n × n convolution can be factorized
into n× 1 and 1× n convolution filters. This block increases
the computational efficiency of the network. The third is a
dilated block. It spreads the compressed information in the
feature map. Each encoder exploits three blocks sequentially
and repeatedly. The decoder is similar to a regular encoder
block except that the upsampling process is added. A spatial
dropout is applied between all blocks to prevent divergence

that can occur when learning. Because, when using Adam
optimizer, the network can converge to local optima, the spa-
tial dropout also has the effect of preventing convergence to
local optima.

IV. EXPERIMENTS
We compared the segmentation performance and computa-
tion amount of the proposed Skip-ENet to those of ENet,
MobileNet (which uses U-Net as the base network), and
the DeeplabV3+ algorithms. Of all the images collected in-
house, 4000 images were used to learn all the networks,
and 500 were used for evaluation. All the learning networks
utilized the Adam optimization algorithm [28], and the loss
function was defined using proposed Equation (1) as follows:

−

Mclass∑
n=1

wnyn log(y′n). (2)
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FIGURE 6. Skip-ENet results and ground truths comparison according to input images.

where M is the class value, y is the value of the true
label, and y′ is the label obtained by inference. Equation 2
is a cross-entropy loss function that reflects wn. Learning,

performance evaluation, and measurement of the computa-
tion amount for all the models were conducted using the
TensorFlow [29] library, which supports CUDA. The average
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TABLE 2. Results of computation time and amount of operations.

class accuracy and IoU were used as the evaluation indices.
AnNVIDIAGTX 1070was used to evaluate and compare the
performance between DeeplabV3+ and the proposed model.
Further, embedded usability was assessed by comparing the
Giga floating point operations per seconds (GFLOPS) needed
for each model.

A. ANALYSIS OF THE AMOUNT OF COMPUTATION
The resolution of the input image used for learning and
performance evaluation was 600× 336. The NVIDIA Jetson
TX2 ran at 10 frames per second (FPS) using Skip-ENet.
It was installed in a small unmanned surface vehicle and was
set to a minimum resolution, so small obstacles of BLANK
could be recognized. The evaluation results of the computa-
tion speed and computation amount using the evaluation data
are shown in Table 2. The table shows that the amount of com-
putation for Skip-ENet rose by about 13% compared to ENet,
but the actual computation speed increased by around 2 ms,
implying that Skip-ENet could be used in embedded sys-
tems. For MobileNet, a significant gain could not be verified
because learning was performed based on U-Net; however,
if the target frame rate (FPS) could be lowered, MobileNet
could be run on an embedded system. DeeplabV3+ required
a very large GFLOPs and could not run on the NVIDIA
GTX 1070 at 10 FPS. In order to run DeeplabV3+ on the
NVIDIA GTX 1070, either a high-performance GPU needs
to be used, or optimization is required.

B. PERFORMANCE EVALUATION
Similar to the analysis of the computational amount, the aver-
age class accuracy and IoU were calculated for the 500 eval-
uation images. The results are presented in Table 3. The
results in Table 3 show that the average class accuracy and
mIoU value for Skip-ENet increased by 1.89% and 2.03%,
respectively, when compared to ENet. These values are better
than those for MobileNet, which is based on the U-Net, and
they are close to the values for DeeplabV3+. The mIoU value
is lower than the average class accuracy for all the evaluated
models. This phenomenon occurs because the sea surface
and terrain objects are very diverse and their shapes are very
complex. This makes it difficult to label the pixel-level shape
information using the ground truth data, which results in a

TABLE 3. Results of average class accuracy and mean Intersection of
Union (mIoU) evaluation.

certain level of error being included. Therefore, considering
that we are working with marine data, these results can be
viewed as good. The segmentation results of each algorithm
that can be compared is shown in Figure 5. The ground truth
labeling and segmentation results of each input image for the
proposed Skip-ENet are shown in Figure 6.

V. CONCLUSION
In this paper, we proposed the vision sensor-based Skip-ENet
model to recognize marine obstacles effectively. Skip-ENet’s
architecture is geared towards marine environments and their
associated types of obstacles. Further, the amount of com-
putation is not significantly increased compared with the
ENet. In addition, the class accuracy and mIoU value showed
increases, indicating that the performance of Skip-ENet is
close to that of DeeplabV3+, which currently has one of the
best performing architectures. Hence, complex marine obsta-
cles can be segmented effectively, and computation of over
10 FPS can be performed on a low-cost embedded system.
Thus, a low-cost vision sensor-based obstacle recognition
system can be developed. In the future, the proposed model
will be improved for commercialization. Further, an image
enhancement technique will be incorporated to pre-process
images so that the model can be used both day and night
in all weather conditions. The model will also be enhanced
such that the distances to obstacles can be estimated to track
and avoid them. In addition, various technologies will be
developed to increase the power ratio and efficiency of the
obstacle recognition system.
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