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ABSTRACT Images captured underwater usually suffer from color distortion, detail blurring, low contrast,
and a bluish or greenish tone due to light scattering and absorption in the underwater medium, which in turn
the visibility is adversely affected by these factors seriously. Over the last decades, various image restoration
and enhancement methods have been developed by many researchers to improve the quality (visibility
and highlight richer details) of underwater images. This paper introduces the overview of state-of-the-art
underwater image restoration and enhancement techniques and classifies the approaches in two categories:
image restoration (physical-based model) and image enhancement (nonphysical-based model). Furthermore,
the classification of these two methods is elaborated. Then, the typical underwater image restoration and
enhancement methods are discussed in detail, as well as a comprehensive study and fair evaluation of the
methods is carried out from both qualitative and quantitative perspectives. Finally, the research process of
underwater image restoration and enhancement is summarized and the suggestions for future research are
prospected.

INDEX TERMS Underwater image degradation, underwater image restoration, underwater image enhance-
ment, underwater image quality evaluation, transmission map estimation.

I. INTRODUCTION
The exploitation and utilization of rich mineral resources in
the marine environment is beneficial to national defense secu-
rity and economic construction. Researchers often use under-
water videos or images to obtain valuable information when
studying underwater environments. However, the environ-
ment of underwater optical imaging (UOI) is more complex
than the atmospheric because the scattering and absorption
of underwater medium often results in degradation of the
quality of underwater videos or images. In general, these
complex underwater environments seriously affect the quality FIGURE 1. ComParison of 3D color spaces and R(.:.B tricolor histograms
A i for underwater image and underwater enhanced image.

of underwater videos or images. However, clear underwa-
ter images are widely used in the fields of UOI [1]-[3],
underwater detection [4]-[7], underwater target tracking [8],
marine biology research [9], marine surveillance [10], and
underwater environmental protection [11].

A clear image is a crucial prerequisite for understanding
real-world scenarios in the turbid underwater environment.

For example, Fig. 1 shows the 3D color space diagrams and
RGB tricolor histograms of underwater image and enhanced
underwater image, respectively. It can be observed from
the first row of Fig. 1 that the underwater degraded image
seriously affects the perceptions and recognition abilities of
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dynamic range distribution of RGB tricolor gray value is
narrow, as well as the histogram distribution is concentrated,
respectively. Likewise, it can be found from the second row
of Fig. 1 that the underwater image enhanced by Ancuti’s
method [12] provides the advantages of having a superior
visual quality and more clear details, providing a more exten-
sive 3D color distribution, and acquiring a more homoge-
neous distribution of RGB tricolor histogram. As a result,
the method of underwater image restoration or enhancement
has significant research implications and application value for
improving the visibility of underwater images.

1) UOI cannot obtain satisfactory results due to scattering
and absorption process of the light during the propagation of
underwater medium. Scattering can easily result in fogging
and detail blurring of underwater images [13], [14]. Absorp-
tion easily results in color distortion, contrast and brightness
reduction of underwater images [15], [16]. According to the
imaging model of Jaffe-McGlamey [17] shown in Fig. 2,
where the direct component and the forward scattering com-
ponent are derived from reflected light of the object in the
underwater media, and the back-scattering component is
formed by the interaction between underwater ambient light
and underwater suspended particles.
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FIGURE 2. Underwater optical imaging model from [73].

2) Recent studies have shown that the light of different
wavelengths with different attenuation rates during the prop-
agation of underwater medium, which will lead to blurring
and color distortion of underwater images [18], [19]. The
absorption of light by water is shown in Fig. 3, where red light
with longer wavelength and lower frequency is preferentially

FIGURE 3. Absorption of light water from [50].

182260

absorbed by water, followed by orange, yellow, green and
blue. As a result of this uneven absorption by water most
captured underwater images will take on a cyan coloration.

3) Usually, artificial light sources are often used as
auxiliary light sources to extend the range of underwater
imaging [20], [21]. However, the nonuniform artificial illu-
mination result in bright spots in the center of the captured
underwater image and the brightness of the entire image is
nonuniform.

At present, underwater image sharpening technology is
divided into the method based on physical model and
the method based on image enhancement. On the basis
of [22]-[25], we have mainly reviewed the latest advances,
current challenges and applications of underwater image
restoration and enhancement. We summarize the major con-
tributions include three aspects.

1) This paper provides a comprehensive summary of recent
advances in underwater image restoration and enhancement.
We describe in detail the types of underwater image degrada-
tion, such as scattering, absorption, color distortion and the
effects of artificial light sources.

2) We outline the state-of-the-art methods and select rep-
resentative methods for discussion, and we also compare and
analyze these methods from both qualitative and quantitative
perspective.

3) We analyze the application of underwater image in var-
ious fields, such as underwater autonomous navigation and
underwater target tracking. Finally, we summarize applica-
tion of underwater video and super-resolution of underwater
image.

The rest of the paper is organized as follows. Section II
introduces the underwater image restoration method based
on physical model. Section III describes the underwater
image enhancement method based on image enhancement.
Section IV compares and analyzes these state-of-the-art
methods qualitatively and quantitatively. Section V presents
the application of underwater images. Finally, in section VI
we summarize the research process and future development
direction of underwater image sharpening technology.

Il. UNDERWATER IMAGE RESTORATION METHODS

In this section, we focus on the underwater image restora-
tion method based on physical model. The kind of method
builds an appropriate physical model by studying the physical
mechanism of underwater image degradation. The effects
of illumination and fog on underwater images are offset or
removed after understanding the reasons for the impact of
underwater complex environments on image quality.

A. UNDERWATER OPTICAL IMAGING-BASED METHODS

The UOI model can obtain optimal estimation of clear and
natural underwater image by establishing an approximate
optical imaging model and inverting the degradation pro-
cess [26]. According to the physical characteristics of light
transmission in underwater environment, the UOI model can
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TABLE 1. Overview of underwater optical imaging methods.

Method Advantages Disadvantages
[27 Automatically optimizes the estimated parameter values Excessive optimization parameters increase the computation complexity
[28 Point spread function is introduced into underwater image restoration Necessary to estimate the illumination scattering parameters

color images
Improve the perception of underwater images or video frames
Effectively correct color and remove haze

A standard smoothing inverse method is applied to degraded underwater

Cannot improve the image contrast significantly

Poor adaptability and flexibility
Ignorance of artificial lighting source

be expressed as:

I(xa)’)=J(xay)f(an)+A(1—f(x,)’)) (1)

where I (x, y) is the underwater image captured by the cam-
era, J (x, y) is the scene residual at point (x, y), f (x, y) is the
medium transmittance, and A is the background light coef-
ficient, J (x,y) ¢t (x,y) and A (1 — ¢ (x,y)) are direct com-
ponent and back scattering component, and ¢ (x,y) is the
transmittance, respectively.

Trucco and Antillon [27] presented a self-tuning under-
water image restoration method based on simplified
Jaffe-McGlamery UOI model [17], [26]. It was based on
two ideal assumptions that the underwater image was sub-
ject to homogeneous illumination and affected by forward
scattering. Despite the method could reduce the effect of
light scattering on underwater images, its wide application
was limited due to the assumed conditions were vulnerable
to the impact of the external environment. Hou et al. [28]
combined UOI with a traditional image restoration method,
they assumed that the blurring of underwater images was
caused due to scattering of water bodies and suspended
particles. The method restores the underwater image by
deconvolution method based on estimating the light scat-
tering parameters. Boffety et al. [29] described the effects
of spectral discretization on underwater color image and
restored color on the basis of underwater optical imaging
model. Wen et al. [30] proposed a new underwater optical
imaging model and estimated the scattering rate and back-
ground light. Zhao et al. [31] founded that degraded under-
water images related to the optical characteristics of water.
The optical characteristics of the underwater transmission
medium obtained by the background color of underwater
images, and then a clear underwater image obtained by the
inversion process. Ahn et al. [32] applied underwater optical
imaging to autonomous underwater vehicles, which improved
the accuracy of underwater target detection.

Table 1 summarizes the advantages and disadvantages of
the above underwater-optical-imaging-based methods. The
analysis results show that although these methods are enabled
to recover images close to actual scene, it is necessary to
consider the effect of underwater scattering and the distance
from the underwater light source to the shooting camera on
the imaging distance.

B. POLARIZATION CHARACTERISTICS-BASED METHODS
The polarization characteristics of light are stable and pre-
dictable in the underwater environment [33]. Polarization
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imaging has become an important technology for underwater
image restoration due to its advantages of avoiding scattering
and absorption of light. Based on the atmospheric scattering
model [35], Treibitzr and Schechnerl [36] used a homo-
geneous turbid medium of active illumination to form the
physical model of underwater imaging. The radiation image
received by the detector can be expressed as:

I(x,y)=D(x.,y) +B(x.y) @

where D (x, y) is derived from the irradiance of the target sig-
nal, which is attenuated due to the absorption and scattering
of the turbid medium. B (x, y) is backscatter, which comes
from light scattered onto the detector by scattered particles in
water. Therefore D (x, y) and B (x, y) can be defined as:

Dx,y) =Lx,y)t(x,y) 3)
B(x,y) = Ax[l — 1 (x,y)] “)

where L (x, y) is the irradiance of the object without attenu-
ation, A 1s the backscatter value of the infinite distance in
the water. ¢ (x, y) is the medium transmittance, which can be
defined as:

r(x,y) = e PPy 5)

where 8 (x, y) is the attenuation coefficient, and p (x, y) is the
underwater part of the optical path between the object and the
detector. From (2), (3), and (4), L (x, y) can be redefined as
follows:

Ty — Asll =1 (x, )]

t(x,) '

It is generally considered that the objects are highly depo-

larized and that the degree of polarization of the object can

be ignored [34], [39]. In general, Dl (x,y) = Dt (x,y) =
D (x,y)/2. In this case,

L(x,y)

(6)

In(x’y)zwﬂgu( =
D
ey =282 4By )

where I (x, y) and I+ (x, y) correspond to the two orthogonal
directions of the polarization filter obtained by the camera.
Thereby the degree of polarization of the backscatter can be
defined as:

Bl (,y) =B x,y) _ AB(x.y)

= . 8
Bl (x,y) + Bt (x,y)  B(x,y) ®

Pyeqr (x,y) =
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TABLE 2. Overview of underwater polarization methods.

Method Advantages Disadvantages
[36] Enhancement visibility and estimation distance in scattering media Enhanced image appears blurry in multi-scatter conditions
[37] Without using multi-directional lighting to estimate the 3D scene structure Non-uniform backscatter is not considered.

Remove artificial light interference and region-varied changes in the ambient light are

Red artifacts and overexposure

No experiments are conducted in real-life conditions
No effectively remove noise and no application to

underwater color images
Difficulty in solving spatial distribution of 4, and P,

scat

High time complexity and red artifacts

[38] taken into consideration

[40] Backscatter is suppressed and extracting accurate edges

[41] Enhancement visibility and the computation is less time consuming

[42] DOP and intensity of backscatter are considered simultaneously

[43] Bio-inspired optimization metaheuristics introduced to estimates the model parameters

[44] Enhancing contrast of objects with different materials and different imaging distances in  Amplifies noise and no application to underwater color

turbid water

images

Finally, from (2) and (6), ¢ (x, ¥) can be redefined as follows:
AB (x,y) AL (x,y)
=1- ©)

PscatAoo PSCG[AOO .
where the object irradiance L (x, y) is obtained by formula
(4). Pscqr and A can be constants, or the optimal spatial
distribution of Ps.,; and A can be estimated according to
the solution method of [43] to obtain the best transmission
estimate 7 (x, y).

Over the recent years, polarization-based methods
have been widely applied to underwater image restora-
tion [35]-[44]. Schechner and Karpel [35] proposed that the
degradation of underwater images was related to light polar-
ization. Treibitz and Schechner [36] estimated the degree of
polarization of the background light from two or more images
of the same scene taken by adjusting an artificial light source
or polarizer. Although this method could restore the image
and the 3D information of the scene, it was more complicated
to collect images. Treibitz et al. [37] pointed out that the
effects of uneven illumination and natural light in multiple
directions could cause local contrast reduction of underwater
images, where the images were acquired by changing the
position of the light source, and then using a fusion rule to
obtain a clear underwater image. Chen et al. [38] proposed to
divide an underwater image into artificial illumination areas
and non-artificial illumination areas for nonuniform illumina-
tion issues, which compensated the artificial illumination area
to remove the interference of artificial light. Han ef al. [40]
dealt with backscatter by adjusting the light source and
to obtain two images under orthogonal polarization. They
introduced a point spread estimation method and the restored
image with a nice property of edge-preserving. Hu et al. [41]
proposed an underwater image restoration method based on
transmittance correction by changing the transmittance of
low polarization. The method could effectively improve the
quality of underwater images, whether it was a high depolar-
ization object or a low depolarization object. Hu et al. [42]
proposed an underwater image restoration method for esti-
mating the degree of polarization and backscatter intensity
of different positions of underwater image based on the
consideration of non-uniform illumination. Ferreira et al. [43]
presented a restoration method that estimates the parameters

tx,y)=1-
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of the restoration model by bio-inspired optimization meta-
heuristics, where a no-reference image quality metric as a cost
function. The method has a good applicability to the restora-
tion of underwater images, but the solution of cost function is
complicated. Yang et al. [44] presented an underwater image
enhancement method using active unpolarized illumination.
Compared with traditional polarization imaging, the use of
non-polarized illumination can ensure that the polarization
effect of the signal light is neglected.

Table 2 summarizes the advantages and disadvantages of
the above polarization-characteristics-based methods. The
analysis results show that although the methods can effec-
tively improve the quality of underwater images, they need to
obtain two or more images of different degrees of polariza-
tion by specialized hardware. Unfortunately, these complex
hardware systems are very expensive and consume a lot of
energy.

C. PRIOR KNOWLEDGE-BASED METHODS
He et al. [45] proposed that the dark channel prior (DCP)
applied to fog-degraded image restoration [46], [47]. They
pointed out that for each local area of a fog-free image there
will be at least one-color channel with some pixel values close
to zero. For any input image J, the dark channel is defined as:
min ( min JC(y)) ~ 0

Jdark(x) — (10)

Celr,g,b} \yeQ(x)
where J€ is the C* channel of the image J, Q(x) is the
window centered on x, and J9"* is the dark channel of the
image J. Then, the minimum value operation on both sides
of the equation (1):
c c

. . N . . JEW) .
=t —)+1—1(x).

s B0 A =IO B (I, Tac
(1)

From equation (10) and (11), the transmission image 7(x) can
be obtained as:

- . 1)
t(x)=1— min ( min ). (12)

Celr,g.b} yeQ(x) AC
Since the wunderwater imaging environment is

similar to the foggy environment, thereby the DCP
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TABLE 3. Overview of underwater prior knowledge methods.

Method Advantages Disadvantages
[48] Not require any specialized hardware or prior of the scene May produces an ove'rly-.brlght l?ackground and ignorance of
artificial lighting source
[49] Wavelength compensation and image dehazing Accuracy decreases at high-salinity and turbid scenes
[52] Trilateral filter introduced to overcome the gradient reversal artifacts issues Ignorance of artificial lighting, no quantitative evaluation
[53] Handles gracefully artificially illuminated areas Requires more additional information
[54] Statistical priors can restore the visibility of the images Lacking in terms of reliability and robustness

[55] Not require complex information about the underwater scenes and user interaction.

Red artifacts are easy to be introduced for blue-green strong
degraded underwater images.

[56] Use both image blurriness and light absorption to estimate depth Estimates of depth scenarios are complex
[57] Introduced intensity attenuation difference prior Poor quality of the restored in non-uniformly lighting
[58 Reduces to several DCP variants, suitable for a variety of scene images Not applicable to images with multiple illumination sources

Exhibit the characteristics of the color-line prior

]
[59] Recover more complex 3D scenes, collected a new dataset of underwater images
]

Estimation of the transmission map is complex
Introduction of too many optimization parameters

gradually applied to underwater image restoration [48]-[60].
Carlevaris-Bianco et al. [48] proposed a difference between
the maximum value of the R, G and B channels, which is
not the minimum value directly selected in the DCP. The
method achieved an excellent performance when R chan-
nel is strongly attenuated. Chiang et al. [49] proposed an
underwater image restoration method based on wavelength
compensation and DCP. Lu et al. [51] addressed the problem
of light scattering and color correction of underwater images
via employing a guided trigonometric bilateral filter method
and a color correction method. Serikawa and Lu [52] com-
pensated for the illumination based on Lu et al. [51], and
proposed a DCP underwater image dehazing method with
trilateral filter. The method improved exposedness of the dark
regions and global contrast. Galdran et al. [53] proposed an
automatic red-channel underwater image restoration method,
which reduced the attenuation of the red channel and the
influence of the artificial light source on the transmittance
estimation. Drews et al. [54] proposed that the R channel
attenuation of underwater images is serious; thereby the
method only considers G and B channels. Compared with
DCP [45] and MDCP [50], this method with a better recov-
ery performance. However, its reliability and robustness are
insufficient to the limitations of the assumptions. Li et al. [55]
applied the classical DCP to a color corrected underwa-
ter image. Peng and Cosman [56] proposed an underwater
image restoration method based on image blurriness and
light absorption, which could estimate the depth of under-
water scene more accurately. Zhang and Peng [57] proposed
a new underwater image formation model, which intro-
duced intensity attenuation difference prior based on UDCP.
Peng et al. [58] proposed a single image restoration method
based on generalization of the DCP, where the ambient light
was estimated using the depth-dependent color change, and
then the scene transmission was estimated by calculating the
difference between the observed intensity and the ambient
light. Berman et al. [59] reduced the underwater image
restoration problem to a single image dehazing by estimating
the attenuation ratios of the blue-red and blue-green color
channels. Zhou et al. [60] presented an underwater image
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restoration method using color-line model, which could pro-
duce high-quality underwater image with relatively genuine
colors and natural appearance.

Table 3 summarizes the advantages and disadvantages
of the above prior-knowledge-based methods. The analysis
results show that although the methods effectively improve
the quality of underwater images, they need to use dark
channel prior, haze-line or color-line. Unfortunately, the prior
knowledge directly determines the result of recovery; thereby
the acquisition of prior knowledge is the crucial for these
underwater image methods based on prior knowledge.

Ill. UNDERWATER IMAGE ENHANCEMENT METHODS

In this section, we mainly introduce the underwater image
enhancement methods. This kind of method does not con-
sider the actual physical process of image degradation in
complex underwater environment, but rather on the degraded
image. The enhanced image with higher contrast, richer
detail information, and better visual effects by enhanced
processing.

A. FREQUENCY DOMAIN-BASED METHODS

In the field of underwater image enhancement, the frequency-
domain method processes underwater images by convo-
lution or spatial transformation to achieve enhancement.
It mainly includes quaternion [61], low-pass filter [62], high-
pass filter [63], homomorphic filter [64], and wavelet trans-
form [65], [66].

Quaternion [61] compressed and transformed the image
color space and used the optical attenuation characteris-
tics to achieve color correction and contrast enhancement.
Low-pass filtering is used to remove noise by suppressing
high-frequency information. High-pass filtering is used to
preserve details by suppressing low-frequency information.
Homomorphic filtering is based on the illumination compo-
nent i (x, y) and the reflection component r (x, y). It designed
corresponding high and low pass filters according to different
requirements, and it’s expressed as follows:

fy) =itx,y)rx,y) (13)
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TABLE 4. Overview of frequency-domain methods.

Method Advantages Disadvantages

Improve underwater image contrast and better separation between objects The saturation decreases of the water and produces an overly-

[61] .
(foreground) and the water (background) bright background
[62] Effectively recovery underwater images while eliminating the influence of Artificial light source and red channel attenuation are not
absorption and scattering considered

[63] Effectively remove underwater backscatter noise Experimental environment is not real enough.
[64] Improved global contrast, detail and visibility Introducing too many processing methods
[65] Effectively denoise and improve contrast No experiment on underwater color images
[66] Using an adaptive retinal mechanism and not require the specialized prior  Parameters solution of adaptive neural mechanisms are complicated

where i (x,y) and r (x, y) represent low-frequency compo-
nents and high-frequency components, respectively. Then,
the logarithm of both sides of the equation (13) can be
obtained:

2,y =In(f (x,y) =InG@x,y)+In(xy) (14)

Homomorphic filter [64] achieved the fusion of high-
frequency components and low-frequency components by
logarithmic transformation. Wavelet transform [65], [66] was
employed to decompose images to obtain images of different
scales or unequal amounts of information.

Petit et al. [61] proposed a quaternion attenuation coeffi-
cient inversion method to restore underwater images, which
could improve the contrast of the object, but there was color
distortion. Cheng et al. [62] designed a simple and effective
low-pass filter method to enhancement the degraded under-
water image by analyzing the physical characters of the point
spread function of underwater images. However, the effects of
artificial light source and red channel attenuation on under-
water images are not considered. Sun ef al. [63] proposed
an underwater image denoising method based on wavelet
decomposition and high-pass filter, it removed underwater
backscatter noise. Ghani et al. [64] combined a homomorphic
filter method; a recursive-overlapped contrast limited adap-
tive histogram equalization (CLAHE) method and a dual-
image wavelet fusion role to achieve the enhanced visibility
of deep underwater images. Firstly, in order to uniform the
illumination of the entire image by homomorphic filter, and
then the recursive-overlapped CLAHE to separate and stretch
the overlapped blocks and adjacent overlapped blocks of
the image channel. Finally, the two images after stretching
were fused by wavelet transform. Priyadharsini et al. [65]
proposed a contrast underwater acoustic image enhancement
method based on wavelet transform. Li ez al. [66] proposed an
underwater image enhancement method via adaptive retinal
mechanisms. The method to correct the nonuniform color cast
by the feedback from color-sensitive horizontal cells to cones
and red channel compensation.

Table 4 summarizes the advantages and disadvantages of
the above frequency-domain-based methods. The analysis
results show that the frequency-domain method effectively
remove noise, but the contrast enhancement and color correc-
tion of underwater images cannot achieve better results. As a
result, these methods are slowly progressing and less studied.

182264

B. SPATIAL DOMAIN-BASED METHODS

The spatial-domain method is based on grayscale mapping,
which can enhance the contrast and detail information of
images by changing the dynamic range of image grayscale.
In other words, the process of spatial-domain enhancement
is histogram equalization [67]. Since it performs a same
processing for all pixels, thereby local features are ignored
usually. To handle this issue, CLAHE [68] first saved the
details of the original image before implementing histogram
equalization, and then these details are added to the histogram
equalization process. Finally, the equalization equation is
defined as:

T (x(i, ) +k(x(, j)
—m(i, )))
T (x (.)))

where m (i, j) is the mean value centered on x (i, j), T is the
transform function applied to x (i, j). As can be seen from
the above equation, the role of T is to adjust the dynamic
range of the histogram. k (x (i,j) — m (i, )) is equivalent to
a high-pass filter that introduces high-frequency noise while
enhancing detail. It is known from k (x (i,j) — m (i, j)) that
the choice of k value is crucial to enhancing detail and avoid-
ing the increase of the high-frequency noise.

The spatial-domain method has achieved productive devel-
opment in the field of image enhancement [67], [68].
Recently, it has gradually applied to underwater image
enhancement [69]—-[77]. Igbal et al. [69] proposed a method
based on slide stretching, which first using a contrast stretch-
ing method to equalize the contrast of the image, and then
the saturation and intensity stretching of HIS to increase the
true color. Igbal et al. [70] proposed an unsupervised color
correction method based on [69]. In order to correct the color,
the method stretches the red histogram to the right to improve
red and stretches the blue histogram to the left to restrain the
blue. Hitam et al. [71] proposed a Mixture CLAHE method
that conducted CLAHE processing on RGB and HSV color
models and employed Euclidean norm to fusion both results.
Ahmad et al. [72] proposed a dual-image Rayleigh-stretched
CLAHE method, which not only enhanced image contrast but
also enhanced image detail by considering global and local
contrast correction. Li et al. [73] proposed a method of under-
water image enhancement with minimum information loss
and histogram distribution prior, which improved the contrast

0 <x(i,j) <255 (15)
other

N WES
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TABLE 5. Overview of spatial-domain methods.

Method Advantages Disadvantages
[69] Low computational complexity and equalize colour contrast No quantitative evaluation and red over-enhanced
[70] Efficiently removes the bluish color cast and improves the low red colour No quantitative evaluation and red artifacts
[71] Improves the visual quality, as well as reduce noise and artifacts Poor performance in low-light conditions
[72] Improve image contrast and reduce image noise Exhibit color image distortion when an image has a low color percentage
[73] Achieves better visual quality and more accurate color restoration Poor performance in low-light conditions, cannot totally remove noise

[74] Considers overlapped and column-wise modification of image histogram

[75] Improve contrast and color, reduce artifacts, low complexity
[76] Improved global contrast, introduced percentile methodologies
[77] Introduced YIQ and HIS color spaces

Introduction of recursive adaptive histogram modification increases the
complexity of the algorithm
Red artifacts and noise are easy to be introduced for red and blue severely
degraded underwater images
Lost details, cannot effectively remove noise
High complexity, cannot effectively remove noise

and brightness of underwater images. Ahmad et al. [74] pro-
posed a recursive adaptive histogram method based on [72],
which improved the contrast and color of underwater images.
Fu et al. [75] proposed a two-step underwater enhancement
method for color correction and contrast enhancement of
underwater images. Garg et al. [76] proposed a method
of blending CLAHE and percentile to enhance underwa-
ter images, which improved the visual effect of the image.
Ma et al. [77] proposed a fusion method based on CLAHE
for different color spaces. Firstly, the original image was
converted to YIQ and HIS color spaces, and the YIQ and HIS
color spaces were enhanced by CLAHE, respectively. Then
the enhanced images were converted back to RGB space.
Finally, the YIQ-RGB and HSI-RGB images were fused into
the final enhanced image by self-adaptive weight selection
nonlinear image enhancement via a 4-direction Sobel edge
detector.

Table 5 summarizes the advantages and disadvantages
of the above spatial-domain-based methods. The analysis
results show that the image enhancement method based on
spatial-domain is mature and simple to implement. The kind
of method can effectively improve the contrast of the image
when it is directly applied to underwater image enhancement.
However, since the color cast is not considered and the noise
cannot be suppressed well, which will result in red artifacts
and noise amplification in the enhanced image. Therefore,
such methods often require a combination of color correction
or noise reduction methods to achieve better enhancement.

C. COLOR CONSTANCY-BASED METHODS

Color constancy mainly includes white balance and Retinex.
White balance is mainly to solve the problem of color casts
of objects under different lighting conditions. Retinex is an
automatic application based on the theory of color constancy
allows humans to perceive the world under different lighting
conditions.

White balance includes Gray Edge [78], Shades of
Gray [79], Max RGB [80], Gray World [81], Weighted
Grey Edge [82], Ancuti et al. [12] and Ancuti et al. [83].
Fig. 4 shows the color correction effect of seven white balance
methods by experiments, and the light of the original image

VOLUME 7, 2019

gradually decreases from top to bottom. Gray Edge, Shades
of Gray, Max RGB, Gray World, and Weighted Grey Edge
improve the visual quality of the image when the light is suf-
ficient, but worse than Ancuti et al. [12] and Ancuti et al. [83].
With the light fades, the balance results of Gray Edge, Shades
of Gray, Max RGB, Gray World, and Weighted Grey Edge are
getting worse, while Ancuti et al. [12] and Ancuti et al. [83]
still with better results. Regardless of whether the lighting
is sufficient, Shades of Gray and Gray World have color
casts and Gray World is serious. Ancuti et al. [83] intro-
duced the compensation of red and blue channels on basis
of Ancuti et al. [12], which makes the balanced image have
better color fidelity and clarity.

Retinex’s basic idea is that the human eyes perceive the
color and brightness of a certain point not only depends on
the absolute light that the point enters the human eyes, but
also on the color and brightness around it. Jobson et al. [84]
proposed a single-scale Retinex method by introducing a
Gaussian kernel function based on Retinex. The observed
image is divided into luminance and reflection components,
as shown in equation (16):

log (S(x, y)) = log (L(x, y)) + log (R(x, y)) (16)

where S (x, y) is the observed image, L (x, y) and R (x, y) are
luminance and reflection components, respectively. In order
to preserve color and details well, Rahman et al. [85] used
Gaussian kernels with three different scales to convolution
S (x,y) to extract finer features to estimate the luminance
components, as shown in equation (17):

N
MSR(x,y) = ) waflog(S(x, )
n=1
—log(Gu(x, y) * S(x, y)} an
Gulr. ) = 75 exp
— ((x — )c_centerw)2 + - y_centerw)z)
207

where MSR(x, y) is the enhanced image, N is the number of
the scales, wj, is the weight, and o is the coefficient of the
Gaussian function. In order to solve the problem of MSR with
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Original Gray Edge Shades of Gray Max RGB

Weighted Grey
Edge

Gray World Ancuti et al. Ancuti et al.

FIGURE 4. Comparison of results of different white balance methods. From left to right: 1. The original underwater images; 2. Gray Edge [78]; 3. Shades
of Gray [79]; 4. Max RGB [80]; 5. Gray World [81]; 6. Weighted Grey Edge [82]; 7. Ancuti et al. [12]; 8. Ancuti et al. [83].

insufficient edge sharpening and local detail color distortion,
Rahman et al. [86] proposed a MSRCR method (Multiple-
scale Retinex color restore, MSRCR) by introducing a color
recovery factor to compensate for color distortion, as shown
in equation (18) :

MSRCR(x,y)= Y (Ci x MSRi(x,))

ie{r,g,b}
Si(x, y)

> Sty

Jjelr.g.b}

C; = Blog(a x (18)

where C; is the color recovery factor of each channel, 8 is
the gain constant, and « is the control nonlinear intensity
coefficient.

Early Retinex was mainly applied in image defog-
ging [92] and image enhancement [87]. In recent years,
Retinex-based methods have gradually applied to underwater
image enhancement [88]—[93]. Joshi et al. [88] analyzed the
main causes of color distortion for haze and the underwater
degraded image and applied Retinex to achieve enhancement.
Despite the underwater image visual effects were improved,
the enhancement effect was limited. Fu ez al. [89] proposed
application of Retinex to underwater image enhancement by
analyzing three imaging problems of underwater image color
distortion, insufficient illumination and visual fuzz. Although
the enhanced underwater image had better visual effects and
more accurate color recovery, it requires 4-6 iterations with
a higher time complexity. Zhang et al. [90] converted the
degraded underwater image from RGB color space to LAB
color space, and then the L channel was enhanced by the MSR
of bilateral filter, and the A and B channels were enhanced
by the MSR of trilateral filter. Finally, the enhanced LAB
color space was fused and converted into RGB color space to
obtain the final enhanced image. Wang et al. [91] converted
the degraded underwater image from RGB color space to
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HSV color space, and then used Retinex to decompose the
V-channel into illumination layer and detail layer, and used
different methods to enhance them. Finally, the enhanced
V, H and S channels were converted into RGB color space to
obtain the final enhanced image. Zhang et al. [92] proposed
MSRCR image defogging method based on multi-channel
convolution and successfully applied to underwater image
enhancement. Tang et al. [93] presented a Retinex-based
underwater image and video enhancement method, which
was suitable for underwater images of various scenes, but the
processing process and filtering techniques were inefficient.

Table 6 summarizes the advantages and disadvantages
of the above color-constancy-based methods. The analysis
shows that the use of Retinex alone has limited improvement
in the quality of underwater images. Therefore, the RGB
color space needs to be converted to LAB or HSV color
space, and enhance the underwater image by contrast stretch-
ing, histogram equalization, color correction, and other
methods.

D. FUSION-BASED METHODS

Fusion methods are mainly from color correction, detail
enhancement, contrast stretching, color balance and other
aspects of consideration. The fusion rules are mainly based on
Gaussian Pyramid or Laplacian Pyramid [12], [83]. Recently,
a fusion method for underwater image and video enhance-
ment was proposed by Ancuti er al. [12]. First, a color
corrected image and a contrast enhanced image obtained
from the original underwater image, and the two images
were used as fusion components. Then, four fusion weight
maps were obtained from a degraded underwater image.
Finally, the multi-scale fusion method was performed with
four different weight components and fusion components to
reconstruct the final enhanced image. Recently, Lu et al. [94]
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TABLE 6. Overview of underwater color constancy methods.

Method Advantages Disadvantages
[88] Balance between the human vision and machine vision system Low contrast and color distortion
[89] Improve contrast and color, enhance edges and details High time complexity
[90] Reduce image noise, details and edges are enhanced significantly Cannot enhance the image contrast app arently, t.h © MSR of trilateral filter
with high time consumption
[91] Improve image quality and balance color High time complexity and introduced noise

[92] . .
preserving and denoising well
[93] Intensity channel is introduced in multi-scale Retinex

Multi-Channel Convolution is introduced into Retinex and with edge-

Enhanced underwater images may be overexposed

Processing process and filtering techniques are inefficient

TABLE 7. Overview of underwater fusion methods.

Method Advantages Disadvantages
[12] Introduced write balance and fusion rule Ignorance of artificial lighting source
[83] Introduced red-green color compensation, can recover important faded features and edges Selective compensation cannot be implemented
[97] Reduce image noise, details and edges are enhanced significantly Cannot enhance the image contrast apparently

conducted descattering and color correction on underwater
images to improve the contrast of underwater images, and it
had been well applied in [95]. They first denoised the original
underwater image by the descattering method [94], then the
high-resolution image of the denoised and descattered images
obtained by the self-exemplars super-resolution method [96],
and finally the two high-resolution images were fused by a
fusion strategy. The fusion was designed to preserve the edges
and detailed information of the high-resolution image without
affecting the color rendering of [94]. Ancuti et al. [83] pro-
vided an alternative to [95], which first obtained the gamma
corrected image and the white balanced image from the
original underwater image, then defined the weight maps
associated with the fused image, and finally used a fusion
method to fusion the two versions of the underwater image.
It could effectively improve the brightness of the dark area,
global contrast and edge detail, and improves the accuracy of
image segmentation and points matching. Pan et al. [97] first
obtained a defogged image and a color corrected image from
the original underwater image, where the defogged image
was acquired by Dehazenet and the color corrected image
was obtained by white balance. It was fused by the fusion
strategy of the Laplacian pyramid, and the final fused image
was denoised and enhanced edge by hybrid wavelets and
directional filter banks domain.

Table 7 summarizes the advantages and disadvantages of
the above fusion-based methods. The analysis results show
that the fusion method can effectively improve the quality of
underwater images, reduce noise and recover edge. However,
these methods need to obtain multiple fusion images and
fusion weights; thereby their acquisition is the difficulty and
focus of the fusion method.

E. DEEP LEARNING-BASED METHODS

Deep learning method has better feature extraction ability
due to deep network structure. Therefore, it is widely used
in the field of image segmentation [98], target detection [99],
and image defogging [100]. In recent years, deep learning
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has been gradually applied to underwater image enhance-
ment [101]-[107]. Wang et al. [101] proposed an underwa-
ter image enhancement method based on the Convolutional
Neural Network (CNN), which improves the brightness and
contrast of the underwater image, but the red over-enhanced.
Fabbri et al. [102] proposed an underwater image enhance-
ment model based on Generative Adversarial Networks,
which improved the visual effect and contrast of underwater
images as well as the accuracy of underwater diver track-
ing. Anwar et al. [103] proposed a CNN-based underwa-
ter image enhancement model (UWCNN). UWCNN used
an end-to-end automatic data-driven training mechanism to
reconstruct clear underwater images. Li et al. [104] pre-
sented a correction method based on weakly supervised
color transfer, which designed a multi-term loss function
including adversarial loss, cycle consistency loss, and struc-
tural similarity index measure loss. Li et al. [105] first pro-
posed a comprehensive analysis and research on underwater
image enhancement using degraded images in large-scale real
world and constructed an underwater image enhancement
benchmark dataset. In addition, they built a deep underwater
image enhancement network based on benchmark dataset.
Pritish ef al. [106] proposed to use adversarially learning
the features of the underwater images by disentangling the
unwanted nuisances corresponding to water types, so as to
solve the different types of water on the impact of enhanced
results. Li et al. [107] designed a deep underwater image
convolutional neural network method based on underwater
scene prior, it is well used in different underwater scenes
and easily extended to underwater videos for frame-by-frame
enhancement.

Table 8 summarizes the advantages and disadvantages of
the above deep-learning-based methods. The analysis results
show that the enhanced images by early deep learning have
low contrast and color distortion, and these problems have
been better solved with the continuous development of deep
learning. However, these methods have higher requirements
on hardware devices and training dataset.
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TABLE 8. Overview of underwater deep learning methods.

Method Advantages Disadvantages
[101] UlT-net is trained with color correction and haze removal Red over- enhancement
[102] Generate more visually appealing images, and provide increased accuracy for a Limited training dataset, cannot effectively remove noise

diver tracking method

[103] Improve the visual effect of the image without changing the color cast
A cross domain mapping function introduced between underwater images and air
[104] ;
images
[105] Constructed an underwater image enhancement benchmark dataset
[106] Nicely Handles the diversity of water during the enhancement
[107] Generalizes well to different underwater scenes

Higher requirements for training dataset
Difficulty solving the loss function

Quantitative evaluation is not best, both network architectures
and task-related loss functions need improvement
Construction of Loss function is difficult and highly dependent
on training data
UWCNN cannot realize the prediction of single model

IV. EVALUATION RESULTS OF TYPICAL METHODS

In this section, we evaluate and compare typical underwater
image restoration and enhancement methods. The evaluation
method of underwater image quality is divided into qualita-
tive and quantitative. The qualitative evaluation is mainly to
observe an image by the tester and make qualitative eval-
uation and analysis on the quality of the image. Strictly
speaking, the qualitative evaluation method is that multiple
testers perform repeated observation experiments for images.
Quantitative evaluation method uses mathematical methods
to calculate the evaluation results of image quality.

A. QUALITATIVE EVALUATION METHODS
At present, there is no uniform evaluation standard for
different underwater image restoration and enhancement
methods. Researchers usually use qualitative evaluation
methods or quantitative evaluation methods for ordinary
images [108]-[112]. Because the underwater environment is
more complex than the rain, fog and natural environment,
it is difficult to evaluate the quality of underwater images.
Therefore, the traditional method of quantitative evaluation
of images is not suitable for underwater images. Shechner
et al. [36] used global contrast to quantitatively evaluate the
quality of underwater images, but the evaluation results are
not satisfactory. In recent years, qualitative evaluation meth-
ods for underwater images had been proposed [113]-[116].
In terms of quantitative evaluation, we compare and ana-
lyze the experimental results of different methods from
five quantitative evaluation metrics of full-reference met-
rics: average gradient (AG) [92] and information entropy
(IE) [92], and non-reference metrics: patch-based contrast
quality index (PCQI) [112], underwater image quality mea-
sure (UIQM) [115] and underwater color image quality
evaluation (UCIQE) [116].

1) AG mainly represents the rate of change in the tiny
details of the image, which can be used to represent the
sharpness of the image. It is expressed as:

M—-1N-1

1
C=wm-nw-n Z 2

i=1 j=1

O G2 (TyF G2 (19)
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where VxF (i,j) and VyF (i, ) are the difference of F (i, j)
toward the x and y directions, M and N denote the width and
height of the image, respectively.

2) IE mainly represents the amount of average information
that can be used to describe the richness of the image color,
it can be defined as:

255

IE = =} _pli)log, p(i)

i=0

(20)

where i is the pixel value, p(i) is the probability of the occur-
rence of pixels with a pixel value of i in the image.

3) PCQI is mainly used to predict the perceived distortion
of the human eyes for the contrast of image, it can be defined
as:

1 M
PCOI (x,y) = += % 14i (5ir i) de (5, ) - gs (3o i) (21)

i=1

where M is the total number of patches in the image, ¢;, .,
and g, are the three comparison functions. The higher the
value of the PCQI represents the better the contrast of the
image.

4) UIQM uses underwater image colorfulness measure
(UICM), underwater image sharpness measure (UISM), and
underwater image contrast measure (UIConM) as the basis
for evaluating the quality of underwater images for the degra-
dation mechanism and optical imaging characteristics of
underwater images. The method is similar to the traditional
non-reference image quality evaluation method, which uses
the measuring component or feature of the image to represent
the visual quality of the image. Finally, the underwater image
quality evaluation method is expressed as a linear combina-
tion of the above three measurement components:

UIOM = ¢| X UICM +c> x UISM +c3 x UIConM  (22)

And, c¢; = 0.0282, ¢ = 0.2953 and ¢3 = 3.5753 in [115].
5) UCIQE is a linear combination of chroma, saturation
and contrast. It converts underwater images from RGB color
space to CLELAB color space that is closer to the visual
perception of the human eyes. Based on the calculation of
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Initial images He et al. Galdran et al. Drew et al.

Lietal. Peng et al. Peng et al. Berman et al.

FIGURE 5. Comparison of the above underwater image restoration methods on DataA. From left to right are input images, the enhanced
underwater images obtained by He et al. [45], Galdran et al. [53], Drew et al. [54], Li et al. [55], Peng et al. [56], Peng et al. [58], and
Berman et al. [59], respectively.

each measurement component of the underwater image qual-
ity, UCIQE can be defined as:

UCIQE = c¢| X 0.4 ¢y x con; + ¢c3 X g (23)

where o, is the standard deviation of chroma, con; is the
contrast of luminance, and p; is the average of saturation.
And, ¢; = 0.4859, ¢p = 0.2745 and ¢3 = 0.2576 in [116].

B. QUALITATIVE EVALUATIONS

In this section, we used two read-world underwater image
datasets DataA and DataB to qualitatively evaluate typical
underwater image restoration and enhancement methods.
DataA provided by [12], [83] and downloaded from the
Internet, which includes 53 degraded underwater images.
DataB provided by [105], which includes 890 underwa-
ter image enhancement benchmark dataset. Typical under-
water image restoration methods include: He er al. [45],
Galdran ef al. [53], Drew et al. [54], Li et al. [55], Peng and
Cosman [56], Peng et al. [58], and Berman et al. [59]. Typi-
cal underwater image enhancement methods mainly include:
Ancuti et al. [12], Igbal et al. [70], Li et al. [73], Fu et al. [75],
Fu et al. [89], Zhang et al. [92] and Pan et al. [97]. Due to the
limited space, we only show parts of experimental results of
DataA and DataB.

1) QUALITATIVE EVALUATION OF REAL-WORLD
UNDERWATER IMAGE DataA

Fig. 5 presents the results of seven classic underwater image
restoration methods for DataA. The traditional image restora-
tion method He et al. [45] can improve the contrast, but
it is not able to restore the color and improve the contrast
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significantly due to the degradation mechanism of the
underwater image is not fully considered. Compared with
some specialized underwater image restoration methods
Drew et al. [54], Li et al. [55], Peng et al. [56] and
Peng et al. [58] considering the effects of scattering and
absorption on degraded underwater images. These methods
improve contrast and highlight detail, but without consid-
ering color compensation. However, these methods intro-
duce red artifacts for some challenging underwater images.
Berman et al. [59] fully considered the effects of different
types of water bodies on light scattering and absorption,
which can restore image color well, improve contrast and
enhance details. Nevertheless, the method does not fully con-
sider the color compensation caused some images to appear
red artifacts. Galdran ef al. [53] considered that the compen-
sation of red channel can restore the color well, but did not
consider the effect of different types of water bodies on under-
water degraded images, so that the details of a few images
aren’t highlighted. It can be seen that the restoration results
based on the physical model method are directly related
to the tested images and different types of water bodies.
At present, the underwater recovery model established by
restoration methods is quite ideal, so that the adaptive ability
and robustness of such methods are insufficient.

Fig. 6 presents the results of seven classic underwa-
ter image enhancement methods for DataB. The traditional
image enhancement method Igbal et al. [70] could improve
the contrast, but the red artifact was introduced due to
the magnified noise. In contrast, the specialized underwater
image enhancement methods Li er al. [73], Fu et al. [75]
and Fu et al. [89] not only improved the visual effect of
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Initial images Igbal et al. Ancuti et al. Lietal

Fuet al. Fuetal. Pan et al. Zhang et al.

FIGURE 6. Comparison the above underwater image enhancement methods on DataA. From left to right are input images, the enhanced underwater
images obtained by Iqbal et al. [70], Ancuti et al. [12], Li et al. [73], Fu et al. [75], Fu et al. [89], Pan et al. [97], and Zhang et al. [92], respectively.

underwater images and highlighted the details of images,
but also introduced fewer artifacts and noises. However,
Ancuti et al. [12] and Pan et al. [97] proposed underwater
image enhancement methods based on fusion to remove noise
and highlight image details. Zhang ez al. [92] improves con-
trast and corrects color, but the enhanced image overexpo-
sure. Despite this kind of method can effectively remove noise
while improving the contrast and restoring color of underwa-
ter images, but they do not adequately consider the physical
imaging model of underwater images, therefore there are
over-enhanced and under-saturated areas in some enhanced
underwater images. In conclusion, the fusion methods have
superior performance in terms of improving contrast, recov-
ering color and removing noise, but the capability of depth
scene enhancement is less than that of the physical model-
based restoration methods.

2) QUALITATIVE EVALUATION OF REAL-WORLD
UNDERWATER IMAGE DataB

Fig. 7 further presents the recovery performance of these
restoration methods on underwater image enhancement
benchmark dataset. He ef al. [45] and Peng et al. [58] have
poor performance in contrast enhancement and color correc-
tion. Although Galdran er al. [53] and Drew et al. [54] are
superior to He et al. [45] and Peng et al. [58] in terms of
improving contrast and correcting color, the visual effect of
restored images is not ideal. Peng ef al. [56] can output an
image with good visual effect, but the details of the image
are blurred. Li et al. [55] and Berman et al. [59] are superior
to them in improving contrast and correcting color, but red
artifacts still exist for some challenging scenes. The problems
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with these restoration methods in DataA are still evident
in DataB. It can be seen that not all restoration methods
are universally applicable to underwater images of different
challenge scenes.

Fig. 8 further demonstrates the enhanced performance
of these enhancement methods on the underwater image
enhancement benchmark dataset. By comparing the results
of these enhancements on DataA and DataB, we found that
that their advantages and disadvantages in DataA still exist in
DataB and follow the rules in DataA.

C. QUANTITATIVE EVALUATIONS

In this section, we used five quantitative evaluation meth-
ods named AG, IE, PCQI, UIQM and UCIQE to evaluate
the results of the typical methods in Fig. 5-8. Table 9 and
Table 10 show the mean quantitative evaluation of each typ-
ical underwater image restoration and enhancement method
for DataA and DataB.

1) QUANTITATIVE EVALUATION OF REAL-WORLD
UNDERWATER IMAGE DataA

For the underwater image restoration method in Table 9: He
et al. [45] has the lowest AG, UIQM, and UCIQE metrics,
which demonstrate that the method shows the worst recovery
results. Peng et al. [56] has the minimum IE metric, which
indicates that the method recovers less color information
of underwater images. Berman er al. [59] has the lowest
PCQI metric, which indicates that the method has a poor
result in improving contrast. Li et al. [55] has the highest
IE and PCQI metrics, which demonstrates that the method
has superior performance in restoring color and improving
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He et al. Galdran et al. Drew et al.

Initial images

Lietal. Peng et al. Peng et al. Berman et al.

FIGURE 7. Comparison of the above underwater image restoration methods on DataB. From left to right are input images, the restorated
underwater images obtained by He et al. [45], Galdran et al. [53], Drew et al. [54], Li et al. [55], Peng et al. [56], Peng et al. [58], and
Berman et al. [59], respectively.

Iqbal et al. Ancuti et al. Li et al.

Initial images

Fuetal. Fuetal. Pan et al. Zhang et al.

FIGURE 8. Comparison the above underwater image enhancement methods on DataB. From left to right are input images, the enhanced underwater
images are obtained by Iqbal et al. [70], Ancuti et al. [12], Li et al. [73], Fu et al. [75], Fu et al. [89], Pan et al. [97], and Zhang et al. [92], respectively.

contrast. Berman et al. [59] can obtain the highest AG, UIQM
and UCIQE metrics, which shows that the method can bal-
ances hue, saturation and contrast well. As shown in Fig. 5,
although Berman et al. [59] has the highest AG, UIQM and
UCIQE values, the restored image does not provide the best
visual effect with a small amount of green block effect in the
underwater image recovered by Berman et al. For the average
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evaluation metric, the quantitative metrics of Li et al. [55] are
higher than the average, which indicates that Li er al. [55]
not only improves the subjective visual results, but also has a
better quantitative evaluation.

For the underwater image enhancement method in Table 9:
Zhang et al. [92] has the lowest PCQI and UCIQE metrics,
it shows that the method has poor performance in terms of
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TABLE 9. The average values of the evaluation metrics of AG, IE, PCQIl, UIQM and UCIQE of the restoration methods on DataA.

Quality evaluation metrics of underwater images

Compared methods

AG IE PCQI UIQM UCIQE

He et al. 1.8301  7.3423 1.0161  1.6880 0.4924

Galdran et al. 2.1231  7.3650 1.0551  3.4706 0.5492

_ Drew et al. 22757  7.0841 0.9611  3.3282 0.5220

Underwater image Li et al. 2.8599  7.6023  1.0819 3.2273 0.5716
Restoration methods

Peng et al. 2.5422  6.6732  1.0099  2.6485 0.5619

Peng et al. 2.8300  7.3542  1.0401  3.0996 0.5442

Berman et al. 3.2299 73071 0.9229  4.6692 0.6500

Average 25272 7.2468  1.0124 3.1616 0.5559

Igbal et al. 2.3893  7.5548  1.0210  3.4424 0.5642

Ancuti et al. 4.5962  7.8658 1.2398  4.0223 0.6337

. Li et al. 3.5861  7.3248 1.1512  4.1893 0.6688

Rg;‘ier;vtvizfrngﬁfzs Fu et al. 3.4859  7.7452 1.0816  4.3136 0.5791

Fu et al. 3.1641  7.2424  1.1320  4.1225 0.5122

Pan et al. 45613  7.8568 1.1057  4.0722 0.6330

Zhang et al. 3.7693  7.5114 0.8092  3.3174 0.6338

Average 3.6304  7.5983 1.1218  4.0270 0.5985

TABLE 10. The average values of the evaluation metrics of AG, IE, PCQI, UIQM and UCIQE of the enhancement methods on DataB.

Quality evaluation metrics of underwater images

Compared methods

AG IE PCQI UIQM UCIQE

He et al. 5.4007 7.2990 1.0027 2.3604 0.5091

Galdran et al. 5.7887 7.2999 1.0622 3.7036 0.5454

. Drew et al. 6.4375 7.1366 0.9756 4.0392 0.5890

Underwater image Lietal. 7.6025  7.6158  1.1589  3.6351 0.5982
Restoration methods

Peng et al. 7.4481 7.3427 1.1865 3.1515 0.5558

Peng et al. 8.2718 7.2190 1.1082 3.5265 0.5505

Berman et al. 9.8269 7.4320 1.0780 4.0898 0.6664

Average 7.2537 7.3350 1.0817 3.5008 0.5734

Igbal et al. 5.4468 7.3960 1.0289 2.8302 0.5154

Ancuti et al. 10.9255 7.8249 1.2870 4.1237 0.6236

Underwater image Liet al. 9.7037 7.3251 1.1990 4.5200 0.6664

Restoration methods Fu et al. 8.3022 7.7365 1.0698 4.9288 0.6011

Fu et al. 7.1839 7.3035 1.1331 4.2492 0.5150

Pan et al. 8.2951 7.7357 0.8939 4.8020 0.6017

Zhang et al. 9.5510 7.4166 0.8658 3.5808 0.6143

Average 8.4868 7.5340 1.0682 4.1478 0.5910

colorfulness, sharpness and contrast. Igbal et al. [70] has
the lowest AG value, which indicates that the method has
the worst performance in improving contrast. The IE and
UCIQE values of Fu et al. [89] are the lowest, which indi-
cates that the enhanced underwater image of the method
has less color information and does not balance the chroma,
saturation and contrast well. The AG, IE and PCQI metrics
of Ancuti et al. [12] are the highest, which demonstrates
that the underwater image enhanced by the method has bet-
ter performance in terms of sharpness, color and contrast.
Li et al. [73] can obtain the highest UIQM and UCIQE
values, which indicates that this method can balances hue,
saturation and contrast well. Fu et al. [75] can obtain the
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highest UIQM value, which indicates that this method can
improve the colorfulness, sharpness and contrast well. For
the average evaluation metric, the quantitative metrics of
Ancuti et al. [12] and Pan et al. [97] are both higher than the
average scores, which indicates that they not only improve
the subjective visual results, but also have better quantitative
evaluation.

The analysis results found that the underwater image
restoration method has better performance in depth scene
estimation and denoising. The underwater image enhance-
ment method has good performance in improving contrast
and restoring color. Despite some methods have the highest
quantitative metrics, they do not necessarily have the best
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FIGURE 9. Compared with the transmission map estimation obtained by the classical underwater image restoration methods applied to DataA. From left
to right are input images, the transmission estimation map based on DCP applied on the input images but also from versions obtained by several typical
underwater restoration methods (He et al. [45], Galdran et al. [53], Drew et al. [54], Li et al. [55], Peng et al. [56], Peng et al. [58], and Berman et al. [59]).
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visual effects. Therefore, the quantitative metric of underwa-
ter images needs to be further improved.

2) QUANTITATIVE EVALUATION OF REAL-WORLD
UNDERWATER IMAGE DataB

For underwater image restoration methods in Table 10: The
minimum values of AG, UIQM and UCIQE in Table 10 still
follow the rules in Table 9. However, the lowest values of IE
and PCQI in Table 10 are obtained by Drew et al. [54]. The
highest values of AG, IE, UIQM and UCIQE in Table 10 still
follow the rules in Table 9. However, the highest value of
PCQI in Table 10 is obtained by Li ef al. [55].

For underwater image enhancement methods in Table 10:
The lowest and highest values of each metric in Table 10 still
follow the rules in Table 9. However, the UIQM value of
Ancuti et al. [12] is lower than the average value of the
evaluation metric, and the PCQI value of Pan et al. [97] is
also lower than the average value of the evaluation metric.

It is found that the same method has some differences in
quantitative and quantitative evaluation of underwater images
applied to different scenes. Compared with underwater image
restoration methods, underwater image enhancement meth-
ods have higher robustness for underwater images of different
scenes.

D. TRANSMISSION MAP ESTIMATION
In this section, we use DCP-based transmission map esti-
mation to evaluate the performance of the above selected

classical methods for deep scene estimation on DataA and
DataB.
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1) TRANSMISSION MAP ESTIMATION ON REAL-WORLD
UNDERWATER IMAGE DataA

Fig. 9 shows the DCP-based transmission map estimation cor-
responding to the seven underwater image restoration meth-
ods to verify the accuracy of the transmission map estimation.
The accuracy of the transmission map estimation obtained
by Drew et al. [54], Peng et al. [56], and Peng et al. [58]
is poor and the information of depth scene cannot be well
estimated. The estimation performance of the transmission
map of He ez al. [46] is slightly better than that of the original
image. Galdran et al. [53], Li et al. [55] and Berman et al. [59]
have good estimation performance and clear deep scene con-
tour. In summary, it was found that the better the recovery
performance of underwater image restoration method (the
better qualitative and quantitative evaluations), the better the
estimated transmission map.

Fig. 10 shows the DCP-based transmission estimation
maps corresponding to the seven underwater image enhance-
ment methods to verify the accuracy of the transmission map
estimation. The accuracy of the transmission map estimation
obtained by Igbal et al. [70], Fu et al. [75], Fu et al. [89]
and Zhang et al. [92] is poor and the information of depth
scene cannot be well estimated. Li et al. [73] has depth
scene estimation performance, but some details of the deep
scene are lost. Ancuti ef al. [12] and Pan er al. [97] have
good estimation performance and clear contour of deep scene.
In summary, the better the enhancement performance of the
underwater image enhancement method (the better qualita-
tive and quantitative evaluations), the better the estimated
transmission map.
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FIGURE 10. Compared with the transmission map estimation obtained by the classical underwater image enhancement methods applied to DataA. From
left to right are input images, the transmission estimation map based on DCP applied on the input images but also from versions obtained by several
typical underwater enhancement methods (Iqbal et al. [70], Ancuti et al. [12], Li et al. [73], Fu et al. [75], Fu et al. [89], Pan et al. [97], and Zhang et al. [92]).

2) TRANSMISSION MAP ESTIMATION ON REAL-WORLD
UNDERWATER IMAGE DataB
Fig. 11 presents the DCP-based transmission map estimation
obtained by seven underwater image restoration methods
applied to the DataB and verifies the accuracy of the transmis-
sion map estimation. The accuracy of most transmission map
estimation and the completeness of deep scene estimation fol-
low the rule presented in Fig. 9. The transmission estimation
maps obtained by Li et al. [55] and Drew et al. [54] applied
to DataB are different from the results presented in DataA.
Fig. 12 presents the DCP-based transmission map esti-
mation obtained by seven underwater image enhancement
methods applied to the DataB and verifies the accuracy of
the transmission map estimation. The accuracy of most trans-
mission map estimation and the completeness of deep scene
estimation follow the rule presented in Fig. 10. The analysis
found that the subjective and objective results of enhancement
or restoration methods determine the quality of the transfer
map estimation, which has a good visual evaluation of the
effect of deep scene restoration.

V. APPLICATION OF UNDERWATER IMAGE CLARITY

In this section, we describe the research significance of under-
water images or underwater video with high-quality in the
field of underwater autonomous navigation and underwater
target tracking.

A. UNDERWATER AUTONOMOUS NAVIGATION

Underwater autonomous navigation is an important means
for human beings to explore the ocean word. People pay
more and more attention to its development and application,
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especially its underwater vision part has become the focus of
research in the field of science.

Autonomous underwater vehicle is an intelligent multi-
functional integrated system, and it has been widely
used in marine resource exploration, underwater facility
inspection, marine rescue and underwater communication
construction [117]-[119]. At present, the research of under-
water vehicles mainly focuses on underwater data acquisition
and underwater vehicle navigation [120], [121]. Underwater
enhanced images play an important role in implementing
path planning and obstacle avoidance functions. In this pro-
cess, visual navigation is the core technology for underwa-
ter vehicles to sail autonomously on the seabed. It requires
automatic generation of high-quality underwater images as a
true representation of the underwater scene [122]. Enhanced
underwater images are helpful for underwater vehicle to draw
real-world scenes [123], [124]. Building clear underwater
videos or images faces huge challenges due to the complexity
of the underwater environment. Therefore, there is an urgent
need for highly accurate and clear underwater videos or
images for underwater autonomous navigation services.

B. UNDERWATER TARGET TRACKING
Underwater target tracking is to extract target information
from complex background and realize target tracking by a
series of image sequences. As aresearch hotspot in the field of
computer vision, underwater target tracking is widely used in
the fields of visual surveillance, human-computer interaction
and robot navigation [125]-[127].

The two main challenges of underwater target tracking
are the uncertainty of underwater target and the uncer-
tainty of measurement. In view of these problems, tracking
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FIGURE 11. Compared with the transmission map estimation obtained by the classical underwater image restoration methods applied to DataB. From left

to right are input images, the transmission estimation map based on DCP applied on the input images but also from versions obtained by several typical
underwater restoration methods (He et al. [45], Galdran et al. [53], Drew et al. [54], Li et al. [55], Peng et al. [56], Peng et al. [58], and Berman et al. [59]).
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FIGURE 12. Compared with the transmission map estimation obtained by the classical underwater image enhancement methods applied to DataB. From
left to right are input images, the transmission estimation map based on DCP applied on the input images but also from versions obtained by several
typical underwater enhancement methods (Iqbal et al. [70], Ancuti et al. [12], Li et al. [73], Fu et al. [75], Fu et al. [89], Pan et al. [97], and Zhang et al. [92] ).

methods [128], [129] based on data association, tracking
methods [130], [131] based on probability hypothesis density
and tracking methods based deep learning have been pro-
posed [132]-[134]. However, these methods are difficult to
extract target features in complex underwater environments,
which will lead to the accuracy of tracking method is reduced.
Therefore, it is of great significance to study the clear method
of underwater image or video to improve the accuracy of
underwater target tracking. In practical applications, these
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methods should have the advantages of low consumption, low
complexity and ease application.

VI. CONCLUSION

In this survey, we mainly introduce the research advances
of underwater image restoration and enhancement methods.
This paper points out the main reasons for the degradation
of underwater images, discusses the classification of existing
methods and summarizes the advantages and disadvantages.
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In addition, we also introduce the current evaluation system
of underwater image quality and point out the shortcom-
ings of the evaluation system. Finally, the performance and
characteristics of typical methods are evaluated qualitatively
and quantitatively. In summary, underwater image restoration
and enhancement researchers should focus on the following
aspects in the future:

1) Improve the stability and applicability of the method.
Existing methods aren’t suitable for all images or tasks, and
parameter optimization is complex, thereby the actual appli-
cation cannot be satisfied. The ideal method can be applied
to degraded images in different scenes and achieve the need
of underwater image sharpening.

2) The complexity of the algorithm and the quality of
the underwater enhanced image still need to be improved.
In particular, the method based on physical model generally
has high time complexity. The ideal method can improve the
quality of underwater images and has lower time and space
complexity.

3) The quantitative evaluation system of underwater image
quality needs to be improved, and there is less research
on the underwater image enhancement reference dataset.
Although Li et al. [105] have constructed an underwater
image enhancement benchmark dataset, the number and
scene of the dataset are limited. Therefore, the establishment
of a standard quantitative evaluation system and an under-
water image enhancement benchmark dataset is the focus of
future research.

4) At present, researchers are mainly focusing on single
underwater image, but underwater video and super-resolution
of underwater image should be pay more attention. Although
Ancuti et al. [12] and Lu et al. [95] have studied on underwa-
ter video and super-resolution of underwater image, respec-
tively, its development is relatively slow. Therefore, how
to effectively address the problem of underwater video and
super-resolution of underwater image needs to pay more
efforts.
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