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ABSTRACT Random noise attenuation is one of the most essential steps in seismic signal processing.
We propose a novel approach to attenuate seismic random noise based on deep convolutional neural
network (CNN) in an unsupervised learning manner. First, normalization and patch sampling are required
to build training dataset and test dataset from raw noisy data. Instead of using synthetic noise-free data or
denoised results via conventional methods as training labels, we adopt only the training set constructed
from the raw noisy data as the input and design a robust deep CNN that just relies on the noisy input
to learn the hidden features. The cross-entropy is chosen as the error criterion for establishing the cost
function, which is minimized by the back-propagation algorithm to obtain the optimized parameters of the
network. Then, we can reconstruct all patches of the test dataset via the optimized CNN. After patching
processing and inverse normalization, the final denoised result can be obtained from reconstructed patches.
Experimental tests on synthetic and real data demonstrate the effectiveness and superiority of the proposed
method compared with state-of-the-art denoising methods.

INDEX TERMS Seismic data, noise attenuation, deep convolutional neural network, unsupervised learning.

I. INTRODUCTION
Random noise attenuation has always been a key step in
seismic data processing. Unlike coherent noise, random noise
in the seismic section does not have a fixed dominant fre-
quency and apparent velocity, and it usually mixes with sig-
nals throughout all parts of data, increasing the difficulty of
signal identification. Therefore, suppressing random noise
can effectively improve the signal-to-noise ratio of seismic
data, which is beneficial to imaging quality [1]–[3].

Effective suppression of seismic random noise is a chal-
lenging and attractive topic [4]–[7]. After decades of devel-
opment, a number of random noise suppression methods
have been proposed. According to the differences between
assumptions and characteristics, the main methods can be
roughly divided into five categories. The first type of methods
is based on the stack of seismic data along the offset direc-
tion [8]–[10], nevertheless, such methods are not suitable to
denoise the pre-stack seismic records. The second is based
on prediction filtering [11]–[15]. Since the signals behave as
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continuous reflection events, the predictability of these events
can be used to construct filters to achieve the separation of
signals and noise. The third is based on mathematical trans-
formations, which can convert raw seismic data into sparse
domains to better separate signals and noise, such as Fourier
transform [16], wavelet transform [17], [18], curvelet trans-
form [19], dreamlet transform [20] and seislet transform [21].
The fourth category is based on matrix rank-reduction, which
has developed rapidly in recent years [22]–[25]. Assuming
that the ideal noise-free seismic data can be constructed to
a low-rank matrix, additional random noise will increase the
rank of matrix. Therefore, the removal of random noise can
be regarded as a problem of low-rank matrix approxima-
tion. As the last branch, dictionary learning has achieved
fruitful results in random noise attenuation [26]–[30]. It can
realize the separation of signals and noise by constructing
an over-complete dictionary with adaptive learning ability
to sparsely decompose the noisy data and solve the optimal
sparse expression [31]. The fidelity of the signals has always
been the focus of the above methods, that is, it is hoped that
the noise is completely suppressed while the damage of the
signals is small. It is necessary to further explore newmethods
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to generate the denoised results with high fidelity and high
signal-to-noise ratio.

In recent years, deep learning has injected new vitality
into the field of geophysics and has made breakthroughs
in seismic data processing, inversion and interpreta-
tion [32]–[40]. It can construct abstract high-level rep-
resentation by combining low-level features to discover
the hidden features of complex data [41]–[43]. For seis-
mic random noise attenuation algorithms based on deep
learning [44]–[49], the well-known convolutional neural
network (CNN) is adopted to learn the hidden features of
the training dataset. The CNN is a multi-layered learning
algorithm that can mimic the mechanism of the human
brain and construct a neural network to analyze complex
data, for instance, seismic dataset, which has its own unique
characteristics and can be seen as a collection of many time
series containing a wealth of waveform information. The
tremendous potential of deep learning based on CNN makes
it possible to address the problem of seismic random noise
suppression. Such research has just begun, but it is of great
value to the development of geophysics.

Taking the same strategy as [45] and [46], [47] employed
synthetic noise-free records as labels for training a residual
learning network [50] to attenuate seismic random noise, but
the applications of this method on real data are not good
enough. Additionally, [44], [48] and [49] selected denoised
data with high SNR by conventional denoising method as
labels to train CNN. Note that these existing research results
based on CNN are all in a supervised manner, that is, using
high-signal-to-noise ratio data (denoised results of existing
methods or clean synthetic records) as training labels to
construct the neural network. It is very critical to select the
training labels for supervised learning, because it is related
to whether the learned features are reliable. Although such a
supervised strategy can effectively suppress the random noise
of the synthetic data when the synthetic noise-free data are
given, there is a problem in processing real data. The real
seismic data do not have the corresponding noise-free data,
and thus we cannot obtain the real training labels. On the one
hand, if only the features obtained by training synthetic data
are used to denoise the real data, the data from the training set
and the test set do not match, and therefore the features cannot
be perfectly inherited by the test set. In addition, blindly
and extensively selecting synthetic seismic data as training
samples will increase the redundancy of training work. On the
other hand, if the denoised results of the conventional method
are used as labels to train network, the denoised results recon-
structed by the network may be difficult to greatly exceed that
of the original labels.

In order to solve above problems, we adopt the manner
of unsupervised learning [51], [52] to construct deep CNN
that can effectively attenuate random noise. Instead of select-
ing denoised results of conventional methods or synthetic
noise-free data as additional training labels, we directly uti-
lize the training set built with raw noisy data as the input of
network to build the cost function, and design a robust CNN

that just relies on the noisy input to attenuate seismic random
noise. The advantage of this idea is that we can always
quickly build an available input dataset from raw noisy data
to train the neural network. Therefore, we do not have the
trouble of seeking relatively clean data as training labels.
In addition, we design several special preprocessing steps
to construct training dataset and test dataset using raw data.
The back-propagation algorithm is utilized to optimize the
cost function. The optimized parameters of network can be
obtained after a stable optimization. Then, we can reconstruct
the denoised patches via the optimized CNN. After patching
processing and inverse normalization, the denoised patches
turn into the final denoised result. We evaluate the proposed
method on synthetic and real seismic data and compare it with
state-of-the-art denoising algorithms.

II. METHODOLOGY
From the most basic point of view, the noisy data can be
regarded as the sum of the signal and the noise, expressed
as:

y = s+ n, (1)

where s denotes the unknown signal, n denotes the additional
noise term and y denotes the noisy data recorded from the
field. Note that the signal s is not correlated with the noise n.
Since this paper focuses on the random noise attenuation,
we assume that the noise term n is Gaussian noise, and each
example ni ∈ N (0, σ ) is drawn from a zero-mean normal
distribution with variance σ .

Our seismic random denoising method is based on a
deep CNN to reconstruct the unknown s from the given y.
Before building the deep CNN model, we first describe the
pre-processing steps designed for constructing the training
dataset and the test dataset.

A. PREPARATION OF TRAINING SET AND TEST SET
Given the raw seismic dataset y with noise, we first perform
normalization to make the dataset better adapt to the neural
network via

y∗ = (y− min) / (max − min) , (2)

where y∗ means the normalized dataset, the max and min
values denote the maximum and minimum values of the raw
data, respectively,.

After normalization, the training set xtraining and the test
set xtest can then be built by introducing the randomly patch
sampling operator P1 and the regularly patch sampling oper-
ator P2. Therefore, we have

xtraining = P1y∗, (3)

xtest = P2y∗, (4)

where the operatorP1 randomly divides the input into patches
of sizeN1×N2 and the operatorP2 regularly divides the input
into patches of size N1 × N2. Training set and test set do not
necessarily have the same number of patches, but each patch
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FIGURE 1. Architecture of the deep convolutional neural network we build for seismic denoising.

in the training set has the same dimensions as that in the test
set. Additionally, the operator P2 ensures that all points of
raw data are involved in the test step.

B. OUR CNN ARCHITECTURE FOR SEISMIC DENOISING
The training step of our CNN model is based on the
encoder-decoder manner [53], which means that the input
patch is first compressed to a lower-dimensional space to
extract the hidden features and then expanded to reconstruct
the original patch. A basic autoencoder (AE) [54], a three-
layer neural network, first maps an input x ∈ Rd to the latent
representation h = F(Wx+b), and then reconstruct the initial
data by the inverse mapping y = F(Ŵh + b̂), where W
and Ŵ denote weights, b and b̂ denote bias, F is a nonlin-
ear activation function. The parameters can be optimized by
minimizing the cost function over the training set. Note that
reconstructing data using low-dimensional features learned
by AE is an unsupervised learning process.

However, the AE ignores the 2D structure of the input
because the training set is extended to a 1D tensor as an
input. This also introduces parameters redundancy, forcing
weights are shared. Therefore, it is difficult for the con-
ventional AE to learn meaningful features of seismic data
with spatial continuity [55], [56]. To achieve better perfor-
mance, convolution can be introduced into the basic AE
to form a convolutional AE, which can effectively extract
meaningful features for representing the noise-free data.
The convolutional AE architecture is intuitively similar to
the AE except that the parameters in hidden layer are
global.

The latent representation of the k-th feature map with
convolution layers can be expressed as [56]

hk =

{
F(x ⊗Wk + bk ), k = 1
F(hk−1 ⊗Wk + bk ), k ∈ (2, . . . ,M)

(5)

where ⊗ denotes the convolution operator, M is the number
of convolutional layers, Wk are convolutional filters, bk are
the biases. In the convolution process, the input feature map
expands the dimension by zero-padding to ensure that the size

of the output feature map is the same as that of the original
input feature map. The rectified linear units (ReLu) F(s) =
max(0, s) and the Sigmoid F(s) = (1 + e−s)−1 are chosen
as the activation function to increase the nonlinearity of the
neural network.

For CNN, max-pooling layers are often introduced to
obtain translation-invariant representations and dimension-
ality reduction, with the advantages of speeding up the
calculation and preventing over-fitting. Therefore, we add
a max-pooling layer after each convolutional layer in the
encoder step. The max-pooling layer reduces the size of the
hidden feature map

hN1×N1
k = max

(
hM1×M1
k U (l1, l2)

)
(6)

from M1 × M1 to N1 × N1 by applying a window function
U(l1, l2) to the input feature map (output of the previous
convolutional layer) and saving the maximum in the neigh-
borhood, where l1 and l2 denote the window length and the
stride. When the stride is smaller than the window length,
the windows will overlap.

Conversely, the dimensions of the hidden features are
expanded in the decoder step to reconstruct the result with
the same size as the original input. An effective way to
achieve this is using upsampling processing based on the
nearest-neighbor interpolation, which is similar to the inverse
of the max-pooling. The upsampling layer expands the size of
the hidden feature map

hN2×N2
k = upsampling

(
hM2×M2
k U (l1, l2)

)
(7)

from M2 × M2 to N2 × N2 by applying a win-
dow function U(l1, l2) to the input feature map (out-
put of the previous layer) and extending the value to
neighborhood.

After introducing the calculation principles of each kind
of network layer, we clarify the overall network architec-
ture shown as Fig. 1. In the convolutional encoder step,
three pairs of alternately performed convolutional layers and
max-pooling layers are involved. After the last max-pooling
process (MP3), the latent feature map with the smallest
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dimension of the entire network is generated and set as input
to the convolutional decoder step. The convolutional decoder
consists of three upsampling layers and four convolutional
layers. Based on CNN, the corresponding reconstruction can
be expressed as

y = Net (x;2) , (8)

where Net denotes our CNN architecture consisting of seven
convolutional layers, three max-pooling layers and three
upsampling layers. 2 = {W , b} denote the network param-
eters including the weight W and bias b. Then, we uti-
lize cross-entropy [57] as the error criteria to construct cost
function:

C(2) = −
1
n

n∑
i=1

[xilnyi + (1− xi)ln(1− yi)] , (9)

where n stands for the sample number of x and y. By mini-
mizing the cost function over the training set, parameters 2
are optimized to reconstruct the test set.

C. OPTIMIZATION AND RECONSTRUCTION
We employ the adaptive moment estimation approach [58] as
a back propagation algorithm to minimize the cost function
C(2), and briefly introduce some principles. At time step t
of the back propagation, the gradients g2t of parameters 2
should be first updated as

g2t = ∇2C(2)t−1. (10)

Then, the biased first moment estimatem2 and the biased sec-
ond raw moment estimate v2 of parameters 2 are updated
as

m2t = β1 · m
2
t−1 + (1− β1) · g2t , (11)

v2t = β2 · v
2
t−1 + (1− β2) ·

(
g2t
)2
, (12)

where, β1 and β2 are constants. For parameters 2,
bias-corrected first moment estimate m̂2t and second raw
moment estimate v̂2t can be computed as

m̂2t = m2t /(1− β
t
1), (13)

v̂2t = v2t /(1− β
t
2). (14)

At last, parameters 2 are updated as [58]

2t = 2t−1 − α · m̂2t /
(√̂

v2t + ε
)
, (15)

where α is the learning rate. Normally, the default parameters
are m20 = 0, v20 = 0, β1 = 0.9, β2 = 0.999 and ε = 10−8.
The completion of the parameter optimization means that the
training process of the network is over.

Then we introduce the test process. With the learned
parameters 2̂ =

{
Ŵ , b̂

}
, we can reconstruct the test set using

the optimized feature expression as

x̂test = Net
(
xtest ; 2̂

)
, (16)

where x̂test means the denoised test set. Note that the form of
x̂test is a set of patches, and thus the denoised patches need to

be rebuilt to the data with the same dimensions as the original
data y. We define an un-patching operator P3 to rearrange the
patches via

y∗denoised = P3xtest , (17)

where the operator P3 averages the overlapping regions of
adjacent patches. Finally, we revert the amplitude back to the
original order of magnitude by

ydenoised = y∗denoised ∗ (max − min)+ min, (18)

where ydenoised denotes the final denoised result. To sum
up, we utilize latent features learned by the deep CNN in
an unsupervised manner to reconstruct noisy input so as to
achieve noise attenuation.

III. NUMERICAL RESULTS
We test the denoising performance of the proposed method
on synthetic and real seismic data, and three baseline
methods are used for comparative experiments, i.e., f -x
deconvolution (FXDECON) [12], [59], multichannel sin-
gular spectrum analysis (MSSA) [22], and deep learning
based on autoencoder (AE) [52]. In order to qualitatively
measure the quality of the denoised results, the signal-to-
noise ratio is chosen as a criterion, which is expressed
as

SNR = 10log10
||D||22
||D− d ||22

, (19)

where D and d stand for the clean and denoised data, respec-
tively. The unit of SNR is decibel (dB). The greater the SNR
value, the better the denoised result. However, for real seis-
mic data without noise-free data and pure noise, SNR-based
evaluation does not work. Therefore, we calculate the local
similarity [60] that can roughly evaluate the signal leakage
of denoised data as a second choice for evaluating denoising
performance.

A. EXPERIMENTS WITH SYNTHETIC DATA
We first evaluate the denoising performance of three methods
on synthetic data. The clean seismic data with 120 traces
are part of a single-shot record obtained from the forward
modeling, and each trace has 500 time sampling points.
There are both strong amplitude signals and weak signals
in the data, and the distribution of events is complicated,
as illustrated in Fig. 2a. We add incoherent noise to the
raw data and obtain the noisy data shown in Fig. 2b with
a SNR of 1.90 dB. Many of events are blurred under noise
pollution, and weak signals are almost indistinguishable.
We first utilize both FXDECON and MSSA methods to
denoise the noisy data, and obtain the denoised results dis-
played in Figs. 3a and 3b, respectively. It can be observed
that a large amount of random noise is suppressed. Most
of strong signals are clear, but some weak signals are still
blurred. Figs. 3d and 3e demonstrate the corresponding noise
removed by the two methods, where some coherent signals
can be seen faintly. Then we test the denoising performance

VOLUME 7, 2019 179813



M. Zhang et al.: Unsupervised Seismic Random Noise Attenuation Based on Deep CNN

FIGURE 2. Synthetic example. (a) Clean dataset. (b) Noisy dataset
(SNR = 1.90 dB).

of the proposedmethod. Due to the complexity of the network
structure, the proposed method has more controllable param-
eters than the previous two algorithms. Therefore, before
determining the final denoised result, we analyze the impact
of some important relevant parameters in the constructed
network to maximize the denoising performance of the
network.

We mainly test the effect of the patch size, the size of the
convolution filter, and the number of filters in each convo-
lutional layer. Firstly, for the size of the patch, we test the
denoising performances of 20×20, 40×40, 60×60, 80×80
four scales, where the two dimensions are the number of
traces and the number of time sampling points. The SNRs
of the denoised results are 20.85, 20.91, 20.88, 20.85 dB,
respectively. It can be seen that for our deep CNN model,
the size of the input patch has little effect on the denoised
result. However, for a fixed-size seismic profile, the larger
the size of patch, the larger the range covered by randomly
extracting the same number of patches, and themore adequate
the training. Based on the evaluation of the test results, we set
the size of the patch to 40×40. Then, for the convolution filter,
we test the effects of 2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6 five
scales, and the SNRs of the denoised results are 17.43, 21.41,
21.63, 21.51, 19.83 dB, respectively, as illustrated in Table 1.
We can see that the size of the convolution filter has a signif-
icant influence on the denoising ability of the network, and
the ability to extract features of the network corresponding
to the size is too small or too large is not optimal. Based
on the test results, we select the best performing 4 × 4 as
the filter size. Finally, we test the effect of the number of
convolution filters. The designed network has symmetry in
the encoding dimension and the de-encoding dimension, that
is, C1 and C6, C2 and C5, C3 and C4 all have the same
dimension and number of feature maps, and the number of
additional C7 is 1 so that the output patch has the same
size as the input patch. We test 10 different configurations
and calculate the SNR of the corresponding denoised results,
as shown in Table 2. Through test experiments, we can
observe that the denoising ability of the proposed framework

FIGURE 3. Denoising comparison of synthetic seismic data. Denoised
result using (a) FXDECON (SNR = 14.20 dB), (b) MSSA (SNR = 9.74 dB),
and (c) the proposed method (SNR = 16.59 dB). Removed noise using
(d) FXDECON, (e) MSSA, and (f) the proposed method.

TABLE 1. Influence of the filter size of convolutional layers on denoising
performance.

increases with the number of feature maps within a certain
range, and then decreases after reaching an ideal parameter.
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TABLE 2. Influence of the number of filters in convolutional layers on
denoising performance.

Therefore, we choose a convolutional layer configura-
tion of 48-32-16-16-32-48-1 to get a satisfactory denoised
result.

The selected density of our test parameters is not very high,
but it is enough to determine a relatively stable CNN. Before
training the network, the noisy data in Fig. 2b are randomly
divided into 3000 patches with the patch size of 40 × 40 to
build the training data and are regularly cut into 2436 patches
to construct the test set, which guarantees that all data points
are covered by the test set. The remaining parameters are
selected based on the above discussion results about network
training to reconstruct the final denoising data. We totally use
seven convolutional layers, and the size of convolution filter
in each layer is 4 × 4. The number of convolution filters in
these seven layers is 48, 32, 16, 16, 32, 48, 1, respectively.
The three max-pooling layers compress the size of the input
patch from 40 × 40 to 20 × 20 and then to 10 × 10. On the
other hand, the three upsampling layers expand the size of the
input patch from 10× 10 to 20× 20 and then to 40× 40. The
learning rate is a typical value 0.001 [58]. After 30 epochs
(an epoch means completing one forward calculation and
one back propagation for the entire training set), we obtain
the learned network to reconstruct the test set, and then gain
the final denoised result after patch processing and inverse
normalization.

The denoised result of the proposed method is illustrated
in Fig. 3c, where almost no interference of incoherent noise
can be observed. In addition, there are no obvious coherent
signals in the corresponding residual profile (Fig. 3f), which
proves that the signal error is small. After denoising, the SNR
by the proposed method is 16.59 dB, higher than 9.74 dB and
14.20 dB by MSSA and FXDECON. Although the network
parameters we select are not necessarily optimal, the denoised
results reach better results than other two denoising methods
in the industry. Therefore, the comparison of test results
confirms the effectiveness of the proposed method. Further,
we demonstrate the denoising performance of three methods
on data with ten different levels of random noise. Fig. 4
shows the SNR comparison of three approaches with respect
to the noise level of data. The blue line represents the SNR
of the noisy data, and the green, black, and red line represent

FIGURE 4. The SNR comparison of three methods with regard to the
noise level.

FIGURE 5. The first real seismic data.

the SNR values of denoised results via FXDECON, MSSA,
and the proposed method, respectively. For each method,
the greater the noise level of the data, the lower the signal-
to-noise ratio of the denoised result. It can be seen that the
denoised results of the proposed method at different noise
levels have higher SNR than those of other two methods,
which proves the remarkable denoising performance of the
proposed method.

B. EXPERIMENTS WITH REAL DATA
In this section, we assess the practicality of the proposed
method on real seismic data. The first real dataset displayed
in Fig. 5 consists of 256 traces with 512 time samples.
Before training the network, the seismic data are randomly
divided into 12000 patches with the patch size of 40 × 40 to
build the training set, and the seismic data are regularly cut
into 10665 patches to construct the test set. There are seven
convolution layers in the whole network, and the size of
convolution filter in each layer is 3 × 3. The other network
parameters are consistent with those of the synthetic example.
After 30 epochs, we obtain the optimized neural network to
reconstruct the test dataset, and then rebuild the final denoised
result.
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FIGURE 6. Denoising comparison of the first real seismic data. Denoised result using (a) FXDECON, (b) MSSA and (c) the proposed method.
Removed noise using (d) FXDECON, (e) MSSA, and (f) the proposed method.

Figs. 6a, 6b and 6c display the denoised results of
FXDECON, MSSA and the proposed method, respectively.
There is more residual noise in the denoised result of FXDE-
CON than that of other methods. Although there is no signif-
icant residual noise in the denoised result of MSSA, some
details of the signals are missing, which means that the
fidelity of the result is low. In the corresponding error sections
shown in Figs. 6d, 6e and 6f, we can hardly find obvi-
ous continuous reflection signals except for some unusual
amplitude points, which indicates that the signals are not
seriously damaged during the denoising process of three
methods. But from the zoomed graphs displayed in Fig. 7,
some small differences between denoised results and origi-
nal data can be observed. As can be seen from the marked
position in the Fig. 7d, the proposed method does not
cause serious damage to the fine structure when thorough
noise attenuation is performed. Further, we can calculate the

local similarity maps to assess the extent of signal leak-
age. Figs. 8a, 8b and 8c show the local similarity between
the denoised result and removed noise using FXDECON,
MSSA and the proposed method, respectively. Some high
similarity anomalies indicate that the denoised results have
signal leakage in the corresponding location. Note that the
proposed method has less signal leakage than FXDECON
and MSSA, indicating that the proposed method can ade-
quately preserve the signals and effectively attenuate the
noise.

We further explore the denoising performance on more
complex real data for a more reliable evaluation. The second
real dataset displayed in Fig. 9 consist of 400 CMPs, each
of which has 800 time sampling points. Although some of
the strongly reflected signals are continuous, the data are
still contaminated by a large amount of incoherent back-
ground noise, causing some weak signals to be blurred.
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FIGURE 7. Zoomed denoised results tested on the first real data. (a) The first raw real data. (b) Denoised result using
FXDECON. (c) Denoised result using MSSA. (d) Denoised result using the proposed method.

FIGURE 8. Local similarity comparison of three different methods for the first real data. Local similarity map of (a) FXDECON, (b) MSSA, and (c) the
proposed method.

Before training the network, the second real data are ran-
domly divided into 15000 patches with the patch size

of 40 × 40 to build the training set and are regularly sam-
pled into 8736 patches to construct the test set. All network
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FIGURE 9. The second real seismic data.

parameters are consistent with those of the first real example.
After 30 epochs, the optimized CNN is used to reconstruct
the test set, and then the final denoised result is obtained.
Figs. 10a, 10b, 10c and 10d display the denoised results of
the second real example using FXDECON, MSSA, AE and
the proposed method, respectively. We can observe that four
methods can effectively suppress random noise. Although
there is no significant residual noise in the denoised results,
some details of the signals are missing, which means that the
fidelity of denoised results is affected. In the corresponding
noise sections shown in Figs. 10e, 10f, 10g and 10h, we can
observe some obvious continuous reflection signals except
for random noise, demonstrating that the signals are damaged
during the denoising process of four methods. Compared to
the proposed method, FXDECON and MSSA are more dam-
aging to the effective signal. Additionally, both AE and the
proposed method reconstruct the denoised result based on the
hidden features obtained by deep learning. However, the pro-
posed method keeps the spatial correlation features better due
to the participation of convolution operations, thus making
reconstruction of signals more accurate, as shown in Figs 10g
and 10h. Therefore, compared with the two traditional meth-
ods and a deep-learning method, the proposed method can
effectively attenuate the noise and fully protect the effective
signals.

IV. DISCUSSION
Although the denoising effect of the proposed method is
good, the computational time is relatively long. We roughly
test the efficiency of the proposed algorithm on a laptop with
a 1.8 GHz Intel Core i7 processor and 8 GB of memory. The
computational time of the proposed method is mainly spent
on learning the training set. Therefore, the computational
time depends mainly on the size of the training set and the
structure of CNN. The larger the training set, the longer it
takes to train the network. In addition, increasing the size
or number of convolution kernels also increases the training
time. Under the premise of ensuring that the denoising effect

is not seriously affected, reducing the size of the training set
can effectively reduce the training time. One approach is to
build a small training set via the patch sampling of a portion
of the target noisy data. Another approach is to randomly
sample the entire data but reduce the number of patches to
build a small training set. To this end, we discuss the effect of
two different strategies for narrowing the training set on the
denoised results, as shown in Fig. 11. By comparing Fig. 11a
and Fig. 11d, we can see that the denoised result of the train-
ing set constructed with partial data has large signal errors,
which also indicates that the CNN trained by using synthetic
data or other data is unstable on the target real data. By learn-
ing the training set constructed by sampling the whole data,
the learned hidden features are adequate and reliable, and
thus the denoised result is good. When sampling the whole
data, reducing the number of patches has less impact on the
denoised result within a certain range. Therefore, it is a more
reasonable choice to build a small training set by reducing
the number of patches sampled on the entire data. In detail,
we show the training time corresponding to the training
set with different numbers of patches in Table 3. For each
additional 3000 patches in the training set, the training time
required for each epoch increases by about 11 seconds. Since
we have a high tolerance for computational time, the training
set with 15000 patches is chosen for the final denoising to
ensure a good denoising effect. In fact, the user can make a
trade-off between the amount of computational time and the
denoising effect to determine the corresponding size of the
training set. Compared with the other two methods that only
take a few seconds, AE and the proposed method cost more
processing time, which is a common problem of the current
deep-learning-based method. Therefore, some scholars have
improved the sampling strategy of patches [61], [62], which
can increase the processing efficiency to some extent. How
to shorten the computational time of the denoising method
based on learning algorithm is worth further research and
improvement.

For noise attenuation using a supervised learning algo-
rithm, an accurate noise-free seismic data set is required as
a label. Nevertheless, the actual data does not have corre-
sponding noise-free data, resulting in the inability to obtain
accurate labels. Therefore, we have not adopted a supervised
approach. Although we have not yet implemented a viable
supervised noise suppression method, we do not deny the
feasibility of supervised learning algorithms. Currently, there
are few seismic random noise suppression algorithms based
on supervised and unsupervised deep learning, and the pub-
lished researches are not deep enough. The denoised data
obtained by the proposed method can indeed be employed
as training labels for supervised learning methods and is
more accurate than the other three methods. However, even
if we set unsupervised denoised results as labels for super-
vised learning algorithm, we also doubt whether the final
denoising effect will exceed the effect of the labels. After
all, the labels are not the noise-free data that the real data
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FIGURE 10. Denoising comparison of the second real seismic data. Denoised result using (a) FXDECON, (b) MSSA, (c) AE, and (d) proposed method.
Removed noise using (e) FXDECON, (f) MSSA, (g) AE, and (h) the proposed method.

correspond to. In this paper, we implement an unsupervised
learning method to suppress seismic random noise. The con-
tribution and innovation of our work is to show how to solve
the seismic denoising as an inverse problem based on CNN
with only the target noisy seismic data. The unsupervised
mode of the proposed method avoids preparing synthetic
noise-free data or denoised results via conventional methods

as training labels, and can directly construct a training set
for feature learning by using known noisy data. The final
denoising effect reaches our expectations, and we confirm
that unsupervised learning is feasible to suppress seismic
randomnoise. In the field of seismic noise suppression, super-
vised and unsupervised learning algorithms need to be further
explored.
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FIGURE 11. Further discussion on different strategies of constructing a small training set to narrow down the computational time. Removed noise
via the proposed method by learning the training set with (a) 6000 patches sampled on a quarter of the raw data, (b) 9000 patches sampled on half
of the raw data, (c) 12000 patches sampled on three-quarters of the raw data, (d) 6000 patches sampled on the whole raw data, (e) 9000 patches
sampled on the whole raw data, (f) 12000 patches sampled on the whole raw data. The final denoising in Fig. 10 uses the training set with
15000 patches sampled on the whole raw data.

TABLE 3. The relationship between the training time per epoch and the
number of patches in the training set.

V. CONCLUSION
We have proposed a novel denoising framework for seis-
mic data based on deep convolutional neural network in an
unsupervised manner. The proposed method is a kind of
data-driven method by constructing training set only based
on the raw target noisy data, which makes it reasonable to use
CNN for seismic noise attenuation in practical applications.
The strategy for building training dataset and test dataset is
convenient and efficient to achieve our goals. The dimensions
of the network in the unsupervised manner are gradually
compressed into the middle to extract the hidden features of

seismic data. Denoised patches can be reconstructed using the
weights and biases of the optimized network. After patching
processing and inverse normalization, the denoised patches
turn into the final denoised result. The designed network
with convolutional layers, max-pooling layers and upsam-
pling layers can effectively attenuate the random noise in
seismic data. Experiments with synthetic and real seismic
data confirm that the proposed method performs superior
to other state-of-the-art denoising algorithms. The proposed
method has the least damage to the signals while effectively
suppressing random noise. Our proposed method provides
a new insight for the development of unsupervised deep
learning in seismic signal processing, and its greater potential
deserves further exploration.
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