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ABSTRACT Distributed learning across coalitions is becoming popular for multi-centric implementation of
deep learning models. However, the level of trust between the members of a coalition can vary and requires
different security architectures. Privacy of the training data has been largely described in distributed learning.
In this paper, we present a scalable security architecture providing additional features such as validation on
the sources quality, confidentiality on the model within a trusted coalition or confidentiality among untrusted
partners inside the coalition. More specifically, we propose solutions that guarantee preservation not only
of data privacy but also of data quality, enforce a trustworthy sequence of iterative learning, and that lead to
equitable sharing of the learnedmodel among the coalition’s members.We give an example of its deployment
in the case of the distributed optimization of a deep learning convolutional neural network trained on medical
images.

INDEX TERMS Distributed learning, blockchain, convolutional neural network, federated byzantine
agreement.

I. INTRODUCTION
Deep learning algorithms, such as the deep Convolutional
Neural Network (CNN) [1], constitute outstanding predic-
tive models that help to extract relevant information from
large datasets potentially sensitive. In medicine, practitioners
routinely use CNN to identify various pathologies [2], con-
tour organs at risk [3], [4], or optimize treatment plans [5].
However, the quality and size of the datasets used for the
training phase have a major impact on performances. Still it is
often difficult for a single organization such as a single health
center to gather enough data on their own and multi-center
studies are often hampered to check legal or ethical issues [6].

As a result, distributed learning [7] has been suggested for
multiple applications, including in the medical field [8], [9].
This approach facilitates cooperation through coalitions in
which each member retains control and responsibility over

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

its own data, including accountability for privacy and consent
of the data owners, such as patients. Batches of data are pro-
cessed iteratively to feed a shared model locally. Parameters
generated at each step are then sent to the other organizations
to be validated as an acceptable global iteration for adjusting
the model parameters. Thus, partners of the coalition will
optimize a shared model by dividing the learning set into
batches corresponding to blocks of data provided by the
coalition members.

The naive use of a CNN in a distributed environment
exposes it to a risk of corruption, whether intentional or not,
during the training phase. This is because of the lack of mon-
itoring of the training increments and difficulty of checking
the quality of the training datasets. One solution could be to
have the distributed learning monitored by a centralized cer-
tification authority that would oversee the validation of each
iteration of the learning process. Alternatively, a blockchain
could be used to store auditable records of each transaction on
an immutable decentralized ledger. This approach has been
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suggested in [10], where it is advocated that blockchains can
be used to store signatures of patient records. In our con-
text, blockchains would provide a more robust and equitable
distributed learning process for the stakeholders involved
in the learning process since all of them would also be
involved in the certification process of each iteration of the
model.

Weng et al. [11] proposed DeepChain as an algorithm
based on blockchain for privacy-preserving deep learning
training. It allows massive local training and secure aggre-
gation of intermediate gradients among distrustful owners.
Two types of user interact in DeepChain, namely, parties
and workers. After signing the trading contract, parties will
train the model on their own data to generate intermediate
gradients. Those gradients are considered transactions and
are collected according to the trading contract. Before being
merged with the previous version of the weights, the collected
gradients will be validated by the workers according to the
processing contract. Parties are rewarded for their contribu-
tions to the training process when they provide increments,
while workers are rewarded according to their contribution
to the validation of these increments. Because DeepChain
maintains the payoff maximization of parties and workers,
a healthy, win-win environment is created. At the end of the
process, Deepchain provides the auditability and confiden-
tiality to train gradients for each participant locally while
employing economic incentives to promote honest behavior.
Nevertheless, it does not prevent data exposure through a
malicious partner. Thus this model does not protect the shared
model against degradation or divulgation.

The contribution of this paper is to derive a new model of
coalitions with a high degree of reliability that respects data
privacy and incentives participation in the coalition without a
central authority. In order to implement this model, we pro-
pose novel scalable security architectures, called Trusted
Coalitions for distributed Learning (TCLearn), based on
either public - to be open to a large amount of partici-
pants - or permissioned blockchains to provide distributed
deep learning with increasing levels of security and privacy
preservation.

In our approach, a CNN model is shared among the mem-
bers of the coalition and optimized in an iterative sequence,
with each member of the coalition updating it sequentially
with new batches of local data. Each iteration of the shared
model is validated by a process involving the members of the
coalition and then stored in the blockchain. Each step of the
evolution of the model can be retrieved from the immutable
ledger provided by the certified blockchain.

While early implementations of blockchains, such as
Bitcoin, initially relied on a proof-of-work [12] consensus
mechanism, other architectures such as proof-of-stake [13]
have been suggested since. Our approach has a different
goal: to provide an iterative certification process for each
learning step of the shared model, all of them being registered
in the underlying ledger. We therefore suggest a new con-
sensus mechanism based on a custom Federated Byzantine

Agreement (FBA) integrating performance evaluation into
the block validation step.

In this article, the model designates a (deep-)CNN with
its associated weights (parameters). The gradients represent
the evolution of the model weights after a training step. The
supervisor is an entity handling the storage of the model and
controlling its access.

II. THREATS AND SECURITY GOALS
In this section, we discuss threat scenarios where the data or
model is attacked by disruptive parties. In comparison with
DeepChain, we do not have trust issues with the encryption
process because it is done by a trusted entity: the supervi-
sor. This role is strictly restricted to ensure secure channels
between the members of the coalition. For this reason we
focus on threats applied to the data and the model.

A. THREAT 1: KEEP CONTROL OVER THE DATA
The leakage of data is an important threat to address, specially
in the case of medical data. New regulations (e.g., the GDPR
in EU) are making access to personal data more restrictive in
order to respect their owners’ privacy and consent of use.

1) SECURITY GOAL 1: PRIVACY OF THE TRAINING DATASET
This threat refers to two different elements: a) disclosure
of the private data brought by each partner to perform a
training step and b) the possibility of reconstructing part of
the training set from the generated gradients, which is known
as the long-term memory effect [14].

The use of distributed learning protects the training data.
It makes it possible to improve a shared model with new data
without their leaving the local environment.

To avoid any leaks from the gradients, differential privacy
has been proposed in the literature. A computation is consid-
ered to be differentially private if the probability of producing
a given output does not depend very much on whether a
particular data point is included in the input dataset [15]. For
any of two datasets D and D’ differing by a single item, also
called adjacent databases, and any output O of function f,

Pr{f (D) ∈ O} ≤ expε Pr{f (D′) ∈ O} (1)

The parameter ε controls the trade-off between the accuracy
of the differential privacy f and how much information it
leaks.

In our use case, as evoked by Shokri et al. [16], participants
may reveal some information about the training datasets indi-
rectly via public updates to a fraction of the CNN parameters
during training.

Several approaches have been proposed in the literature to
mitigate this effect. As an example, the use of Homomorphic
Encryption (HE) techniques has been considered in [17].
In their article Shokriet al. [16] suggest sharing a small pro-
portion of their gradients randomly and perturbing them by
adding some noise. This approach reduces the performances
of the model while improving privacy.
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B. THREAT 2: KEEP CONTROL OVER THE MODEL
This threat refers to two different elements: a) the model is
exposed to a risk of corruption or degradation during the
training phase. For instance, a partner could attempt to train
the model on corrupted data or a different pathology from the
one studied. b) The blockchain keeps track of each and every
modification to the model, but does not prevent unauthorized
use of the shared model outside the coalition. If the learned
model has to be confidential, an extra level of protection must
be added to prevent any potential deliberate or accidental leak
outside the consortium.

1) SECURITY GOAL 2A: PROTECTION OF THE MODEL
AGAINST DEGRADATION BY TRAINING
ON INADEQUATE DATA
The evolution of the model must be resilient to malicious
or clumsy actions that would decrease the performances of
the model. The proposed approach must detect this kind of
misuse and reject the resulting increment. Traceability of
every operation involving the model must be ensured to deter
any malicious event.

2) SECURITY GOAL 2B: CONFIDENTIALITY AND
TRACEABILITY OF THE MODEL
The disclosure of a trained model defined as confidential by
the consortium leads to a leak of intellectual property. This
threat depends on the confidentiality level required by the
consortium.

III. A SCALABLE SECURITY ARCHITECTURE
FOR TRUSTED COALITIONS
The trade-off between security and cost [18] is a well-known
issue. In this section, we will develop three different methods
corresponding to three distinct trust levels depending on the
shared rules in the coalition:
• Method TCLearn-A: The learned model is public but
each member of the coalition is accountable for the
privacy protection of its own data.

• Method TCLearn-B: The learned model is private
(shared only within the coalition) and the members of
the coalition trust each other.

• Method TCLearn-C: The members of the coalition
do not trust each other and want to prevent any unfair
behavior by any of them, such as unauthorized use or
leaking of the model outside the coalition.

These three methods address the previously described
security issues at different levels (see Table 1), offering an
inherent trade-off between security needs and costs.

A. ARCHITECTURE OF TCLEARN-A
Type of coalition: coalition sharing a public model built using
private datasets. The integrity of the increments is ensured
through the use of a new federated Byzantine agreement
protocol.

Solution to Threat 1 (Privacy of the training dataset)
A partner willing to improve a model with its new data has to:

TABLE 1. Summary of the features for the three TCLearn methods.

1) fetch the current version of the weightsWi and apply it
to the known architecture.

2) trains themodel locally with its own dataset, generating
new gradients Gi+1.

3) uploads the resulting gradients Gi+1.
This way, the dataset used for training never leaves the part-

ner’s infrastructure, ensuring its privacy and excluding any
leakage of the processed data. Because access to the previous
datasets is forbidden, this training step builds epochs only
from the new dataset provided by the user. After this training,
the generated gradients Gi+1 are uploaded and applied to the
previous weights (Wi), leading to new parameters (Wi+1) and
a candidate model, noted tmp(Mi+1).

To protect against any leaks coming from the gradients,
it is possible to share a small proportion of the gradients and
add some noise as suggested by Shokri et al. [16] in order
to improve differential privacy. The parameter ε, controlling
the trade-off between the accuracy and privacy, should be
determined by the user.

Solution to Threat 2a (Protection of the model against
degradation by training on inadequate data)
Our approach relies on a blockchain to carry only unalterable
cryptographic hashes of the successive training steps of a
model built in a distributed environment that ensures the val-
idation of the successive iterations. The iteratively optimized
model is made public. Each block represents an iteration step
achieved locally by a specific member of the coalition and
validated by the whole coalition. First, the model and the
genesis block are initialized, setting the architecture (lay-
ers, activation functions, loss function, etc.) and the weights
according to a normal distribution. The weights of the model
are updated iteratively by the batches of data provided by the
members of the coalition.

In our approach, we use a blockchain relying on a federated
Byzantine agreement to prevent corrupted increments caused
by inadequate training from being added to the model. The
candidate increment has to be validated by multiple valida-
tors. Since the blockchain and the deep learning model are
strongly linked in TCLearn, the FBA has two goals:
• control the quality of the updated CNN model, through
a ‘‘peer review’’ system and

• control the integrity of the new block (hash, index, times-
tamp, etc.) and concatenate it to the chain.

The FBA process starts with the random selection of
validators within the consortium. All the members can be
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FIGURE 1. Federated Byzantine agreement and candidate model checking
process. Two datasets are used: a global one (G) similar for all the
partners that is used to control the model’s integrity and a local one (L),
different for all the partners that is used for performance evaluation.
After a majority vote, the candidate model is accepted or not.

selected but the probability depends on the size of the con-
sortium and the proportion of data brought by each member
as follows (Equation 2),

Si = 1/N + Di/D (2)

where Si is the strength of the partner i, N the total number
of partners in the consortium, D the total amount of samples
used for the model and Di the amount of samples supplied
by the partner i. Initially, this strength is the same for each
of the partners and evolves with each contribution. The main
role of the validators is to check the candidate model Mi+1
incremented fromMi proposed by a partner. The modelMi+1
must show an improvement over the previous one. The test on
the validity of the increment should protect the model against
corrupted data in the training set.

Two types of test databases are used to assess the perfor-
mances of each increment of the model (Fig. 1) and to avoid
the introduction of invalid or inadequate training sets:
• A global test database (G), common for every block
creation and for all the partners. This database is created
by experts to be representative of the pathology.

• A local test database (L), different for each partner in
the consortium. To avoid overfitting on the global test
dataset (G), a small percentage of the input signals is
put aside locally for each contribution. It is used later by
each validator as a local test set to evaluate the proposed
model individually.

Both datasets are used for the testing phase. First, results
obtained using the common, global dataset are compared
between validators to ensure that the candidate model is
functional and identical. Then, those ‘‘global’’ results are

merged with those obtained using the individual, local
datasets. To be accepted, the candidate model must have
higher performances than the previous model within a spe-
cific threshold λ (∈ [0, 1]) (Equation 3).

Block creation IF λ× perf (Mi) ≤ perf (Mi+1) (3)

Once the model is accepted, a new block can be cre-
ated. First, the block creation requires that a ‘‘general’’ (or
‘‘speaker’’) be selected from among the validators. The ‘‘gen-
eral’’ will be the creator of a new block containing the refer-
ence to the validated model Mi+1 and the ID of the partner
who proposed it. All the validators then check the integrity of
this candidate block.

This block is analyzed in the frame of a dele-
gated Byzantine fault tolerance system also suggested by
Damaskinos et al. in [19]. Each validator broadcasts its opin-
ion (acceptance or rejection) of this block to the other valida-
tors. If at least two-thirds of the validators agree, the FBA
process can stop, leading to the acceptance or rejection
of the block. If not, the role of ‘‘general’’ is switched to
another randomly selected validator and the block creation
process can restart. If the block is accepted by the validators,
the ‘‘general’’ can append it to the blockchain and broadcasts
this update to the whole consortium, requesting synchroniza-
tion of the blockchains.

The overall scheme of TCLearn-A is represented in Fig. 2.

FIGURE 2. Scheme of the TCLearn-A procedure. Partner trains a
model (Mi ) on its data (Di+1). The candidate model tmp(Mi+1) is
validated by a federated Byzantine agreement.

Each block includes:

• block index
• timestamp
• previous block hash
• hash of the model’s parameters
• user ID: identification of the contributor
• users’ strength: level of contribution of each member to
the FBA

• block hash
The pseudo code for this approach is the following:
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Algorithm 1 TCLearn Concept
Input: A blockchain bc and a training set Di

1 modelTrain(bc,Di):
2 wi = loadWeights(bc);
3 Mi = initializeModel(wi);
4 tmp(Mi+1) = training(Di,Mi);
5 tmp(bloc) = blocCreation(bc, tmp(Mi+1), Di);
6 federatedByzantineAgreement(bc, tmp(bloc)):
7 controlPerformances(bc, tmp(Mi+1));
8 if λ× perf (Mi) ≤ perf (Mi+1) then
9 if integrity of bc == TRUE then
10 blockCreation(bc, tmp(bloc));
11 end
12 end

Audit & Traceability of the Training Data: The evaluation
of performances may not be enough to avoid duplicate input
signals during training. For this reason, anonymous IDs can
be attached to each input signal and stored in the blockchain.
This process also enforces the auditability and the traceability
of the input signals. This can be implemented as an additional
field stored in each block, such as an anonymized data ID,
therefore avoiding training on duplicate input signals.

B. ARCHITECTURE OF TCLEARN-B
Type of coalition: coalition sharing a private model built
using private datasets in a restricted consortium of trusted
partners. The integrity of the increments is ensured through
the use of the FBA protocol. In this situation, the model has
to be protected during transfers between partners and for its
storage.

Solution to Threat 1 & 2a
As this approach is based on TCLearn-A, the data privacy of
the inputs is preserved and the model iterations are validated
by members of the coalition.

Solution to Threat 2b (confidentiality and traceability of
the model)
With TCLearn-A, the evolutions of the model are certified by
the blockchain. However, this scheme does not guarantee the
confidentiality of themodel during its distribution to partners.
This situation is not acceptable in some situations where
the privacy of the model must be preserved (for example,
if the members of the coalition want to avoid any leakage of
the model).

To solve this issue, the storage, transfer, and upgrades
through gradient computations of the model have to be pro-
tected by encryption, where the private keys are stored by
some trusted entities. In this work, we propose to isolate all
iterations of the model in an external, off-chain encrypted
storage facility (‘‘vault’’) and control its access by each
partner.

We also suggest the use of secure transport (e.g., TLS or
S/MIME) for transferring the model. Moreover, the model
could be stored by using an efficient encryption method

and implementing access control and auditing mechanisms.
Only authorized users should be able to download a given
version of the model weights, and each access should be
logged in an audit trail.

In order to (1) ensure that only authorized participants are
granted access to the models and (2) minimize the risks of
leakage, we propose to store the actual models (including
the associated weights) in an external and secure ‘‘off-chain
storage vault’’. In this approach, the blockchain provides only
‘‘links’’ to the corresponding version of the model’s weights.

This introduces a single point of failure (the secure,
off-chain storage and its associated access control infras-
tructure), but offers three major advantages. First, it greatly
reduces the size of the blockchain while increasing its scal-
ability, so that each participant needs to synchronize fewer
data. Second, this approach makes it possible to imple-
ment active access control over all of the stored information
(e.g., who is allowed to access which kind of data, when
and how). Finally, each of the requests to access the secure,
off-chain storage vault could be recorded in a journal, offering
the ability to audit all accesses to any record. This audit
could be used to gather statistics about the actual accesses
of each individual user to models. This in turn could be used
to restrain future accesses (e.g., allowing users to access a
certain number of models depending on their level of con-
tribution to the models). Therefore, a moderated level of
traceability is offered: if a given version of a model is leaked,
it will be possible to audit all of the requests related to this
specific version predating the leak in order to establish the
list of partners that actually downloaded this version and
potentially leaked it.

The blockchain/offline storage approach requires that an
entity (the ‘‘supervisor’’) manages the access control and the
secure storage of the model. An overview of this approach is
presented in Fig. 3.

If we look again at the pseudocode (cf. Algorithm 12),
we can add a line of encryption between line 5 and 9, and
one of decryption between lines 6 and 7.
Secure Authentication and Transport of the Model: The

secure authentication and transport of the model could be per-
formed in two ways: either online (requiring direct, interac-
tive communication between the partner and the supervisor)
or offline (allowing for delayed communication, e.g., using
periodic batches of file transfers or e-mail).

In the former case, we strongly recommend using an
industry-standard protocol such as TLS (Transport Layer
Security) v.1.3 (RFC 8446), which is used, for instance,
in HTTPS. Unlike network-level encryption (such as IPsec
VPNs), TLS offers end-to-end encryption that guarantees the
confidentiality of the model and gradients, including between
the secure gateway (e.g., VPN concentrator) and the machine
performing the machine learning. The server (the supervi-
sor) must be authenticated by validating its X.509 certifi-
cation chain. The identity of the client could also option-
ally be requested (using a X.509 certificate chain) in order
to provide a stronger authentication mechanism. Once the
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FIGURE 3. Scheme of the TCLearn-B & C procedure. The partner trains a
model (Mi ) on their data (Di+1) leading to new gradients (Gi+1). The
model is successively encrypted and decrypted, e.g., using a public (K+)
and a private key (K−), respectively. The candidate model (tmp(Mi+1)) is
validated by federated Byzantine agreement. The two methods are
principally differentiated by the training process in or out of the
encryption domain.

TLS handshake and authentication successfully performed,
the model and its gradients can be exchanged safely using
strong encryption (such as AES-256).

In the latter case, we suggest using an industry-standard
protocol such as S/MIME (RFC 5751). Both the supervisor
and the partner need to possess X.509 certificates, which
could be used to both authenticate (digital signatures of the
partner’s request and the supervisor’s reply) and encrypt the
data (using the partner’s public key so that only this partner
can decrypt it). In this scenario, the partner could send a
request, signing it digitally using its X.509 private key; the
supervisor ensures the authenticity of the request by veri-
fying the provided digital signature (decrypts it using the
partner’s public key). Once the partner (and the correspond-
ing request) are authenticated, the supervisor will be able
to send the encrypted model and gradients. This operation
could be performed by the supervisor, for example, by first

generating a random session key that could be used as a
symmetric key with a symmetric encryption system such as
AES. This random session key is then encrypted using the
partner’s public key (so that only the partner could decrypt
it using its private key) and sent along with the encrypted
model and gradients to the partner. The partner then simply
needs to decrypt the symmetric session key using its private
key and then use this (decrypted) session key to decrypt the
message. This scheme (illustrated in Fig. 3) requires each
party to possess an X.509 certificate and the associated pri-
vate key in order to decrypt information provided by other
parties.

C. ARCHITECTURE OF TCLEARN-C
Type of coalition: coalition sharing a private model built
using private datasets in a restricted consortium of untrusting
partners. The integrity of the increments is ensured through
the use of an FBA protocol. To protect the model in this
situation, it is necessary to secure the exchanges and the
storage even at the partners’ facilities.

Solution to Threat 1 & 2a
As this approach is based on TCLearn-A, the data privacy

of the inputs is preserved and the model iterations are vali-
dated by members of the coalition.

Solution to Threat 2b (confidentiality and traceability of
the model)

In this scenario, our objective is to identify the partner
responsible leaking a model. Such identification could be
performed by adding some unique, hidden information to the
model provided to each partner, e.g., by altering the weights
by introducing a moderate noise following a specific, hidden
pattern (constituting a watermark) every time the model is
requested by a partner. The date of the access, identity of
the partner, and associated hidden pattern (the watermark)
could then all be stored in an audit trail allowing to uniquely
identify the partner associated with a leaked model. Unfortu-
nately, CNNs are quite robust to a slight alterations of the
weights, which means that an adverse party might try to
alter those (watermarked) weights, jeopardizing the recov-
ery of the watermark while keeping the model usable. This
adverse party could even perform a subsequent training of
the model on new datasets, further compromising the water-
mark’s recoverability.

Another option could be to send to each partner a model
encrypted with a specific key, allowing them to manipulate
(use and even train) it without being able to decrypt it. Some
crypto algorithms (such as the ElGamal scheme [20]) allow
operations to be performed directly on the encrypted data
without knowing the associated private key. For instance,
the ElGamal scheme offers an encrypted product opera-
tor allowing one to compute the product E(m1 · m2) =
HM (E(m1),E(m2)) of two encrypted messages E(m1) and
E(m2). An operator offering such a property constitutes a
homomorphic operator. An encryption algorithm offering
both homomorphic product and homomorphic addition, such
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as the Brakerski-Gentry-Vaikuntanathan scheme [21], consti-
tutes a fully homomorphic encryption scheme.

Homomorphic encryption brings a new level of protection
to the model (since actually only the supervisor is able to
decrypt it), but also a considerable drawback: in order to
perform prediction, the encrypted result must be sent by the
partner to the supervisor to be decrypted and the final result
sent back to the partner. This reduces the partners’ autonomy
(they depend on the supervisor to perform any prediction
using the model) and potentially introduces a single point of
failure.

Similarly to TCLearn-B, the confidentiality and the dis-
tribution control over the models is ensured by off-chain
storage of themodels and gradients. However, since themem-
bers of the consortium do not trust each other, no member
should have access to unencrypted models or gradients. This
is ensured by the use of the aforementioned homomorphic
encryption technique. In order to use the model (prediction),
the input signals must first be encrypted using the same tech-
nique and the same homomorphic public key (which must be
sent together with the encrypted models and gradients to each
partner). This public key can be used only to encrypt (and not
decrypt) data. Once the prediction operation (using encrypted
model and input signals) is performed, the result must be
decrypted. This must be done by the supervisor (which holds
both the homomorphic public and private keys corresponding
to the models sent to each partner). The supervisor uses its
homomorphic private key to decrypt the result, which is then
sent to the requesting partner. The supervisor must inspect
the ‘‘results’’ to decrypt very carefully in order to reject any
attempt to decrypt models or gradients.
Considerations Regarding the Use of Homomorphism in

CNNs: In TCLearn-C we suggest the use of homomorphic
encryption to ensure traceability and confidentiality of the
model. In this scenario, the whole manipulation of the CNN
takes place in the homomorphic domain, which introduces
some challenges that are described hereafter.

First, the neural network algorithm requires that both
addition and multiplication operations be used and com-
bined. Consequently, the ‘‘somewhat homomorphic encryp-
tion’’ scheme (see ElGamal [20], BGV [21] or Paillier [22]),
which allows the use of one sole type of homomorphic arith-
metic operation, cannot be used. We thus have to use FHE,
which requires considerable memory and computational
resources.

The use of a CNN in the homomorphic domain also
introduces implementation issues. Indeed, while most FHE
implementations support only homomorphic addition and
multiplication, implementating CNN activation functions in
the homomorphic domain requires complex operations such
as trigonometric operations (tanH), exponentials (sigmoid),
and tests (ReLU). Zhang et al. [23] proposed the use of a
Taylor development to replace the sigmoid function in order
to compensate for the lack of exponential functions in FHE
schemes. Although this method allows us to use the sigmoid

function in the homomorphic domain, it remains approxi-
mate. Moreover, it still increases the number of operations
to perform.

Solving those problems has been the subject of some
recent work. As an example, in [24], Bourse et al. presented
a framework for homomorphic evaluation of neural net-
works using a highly optimized FHE algorithm. This scheme,
dubbed TFHE, offers several orders of magnitude perfor-
mance improvements over previous FHE architectures. In this
article, the authors used a ‘‘discretized’’ neural network to
allow the creation of a model capable of fitting data from the
MNIST database. Several tips are proposed to reduce the time
required for learning and prediction (bootstrapping, look-up
table, and noise management).

One could thus use Bourse’s solution. If this approach
is not sufficient to mitigate the resource issues associated
with TCLearn-C, the training process could alternatively be
performed using tamper-proof black boxes deployed in each
of the partner’s facilities. Such black boxes could be used
to decrypt the CNN model, retrain it, and then re-encrypt it
without anyone being able to interfere. However, this solution
requires all of the partners to request the installation and
maintenance of this black box by a trusted third-party service
provider.

If we look again at the pseudocode (cf. Algorithm 12),
we can add a line of encryption between lines 5 and 6.

D. ADDITIONAL FEATURES
In addition to the TCLearn approaches, we propose two
optional extra features.

1) REVERTING TO A PREVIOUS STATE OF THE MODEL
Each and every increment of the model recorded on the
blockchain and validated using the FBA are accessible by the
partners. In the case of late detection of corruption, it could be
necessary to restore themodel to one of its previous states. For
this reason, we add the possibility of performing prediction
or even continuing the training from old weights stored in the
off-chain site. Only authorized partners are able to perform
this operation, in which case a new block is generated, pre-
vailing over previous learning steps.

2) UPDATES TO THE MODEL HYPERPARAMETERS
The model architecture (kernel size, number of layers, etc.)
is initialized in the genesis block of the blockchain but some
hyperparameters (epoch number, batch size) can be modified
during the learning step. The learning rate of the optimizer
for the gradient descent is a critical parameter. It could be
high at the beginning of the blockchain because the model
is still naive, but the more precise the model is, the lower
the learning rate should be (without becoming too low).
A method that adapts the learning rate according to the per-
formances of themodel automatically could be integrated into
our concept [25].
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IV. SECURITY ANALYSIS
A. SOLUTION TO THREAT 1: KEEP CONTROL
OVER THE DATA
1) DISTRIBUTED LEARNING FOR A MEDICAL
APPLICATION: AN EXAMPLE
To illustrate the use of distributed learning, we propose
to apply it to a medical challenge that has already been
solved using CNNs, namely, bladder contouring on com-
puted tomography scans [3], [4]. Léger et al. proposed using
U-Net [26] to segment the bladders of 339 patients with
prostate cancer. Their semi-automatic approach takes two
channels as input (a 3D volume of the bladder with one of its
slices labeled manually by an expert) and outputs a prediction
for the target bladder segmentation tile.

We reproduced their results using the parameters and
database used by Léger et al. [3] and Brion et al. [4]. First,
we performed a centralized training using all the training
samples in 50 epochs (see Fig 4a). Then, we randomly
split the initial database into several subsets to simulate
several partners and perform a distributed learning using
the smaller datasets successively. Thus, each partner realizes
their own training process (with 50 epochs) one after the other
(see Fig 4b).

FIGURE 4. Loss value (- Dice score) during training (a) in a centralized
and (b) in a distributed way [3], [4].

Once the training was over, the accuracy achieved with
a distributed database was not significantly different from
that resulting from centralized training (88.4% and 88.7%,
respectively). This result means that the model is able to
catch relevant information from the split dataset as well as
from the centralized one. This result is the same even if we

switch the order of the partners. In both cases each partner
has a balanced dataset. Otherwise, this could lead to perfor-
mance impairment of the model; TCLEARNwould therefore
reject the proposed model. Moreover, to avoid the long term
memory effect, the training step included batch inputs. Thus,
each gradient represents the average information provided
by these batches and not just by a single patient. Therefore,
we cannot directly infer the features of a given patient from
the gradients.

B. SOLUTION TO THREAT 2: KEEP CONTROL
OVER THE MODEL
1) SOLUTION TO THREAT 2A: PROTECTION OF THE
MODEL AGAINST DEGRADATION BY TRAINING
ON INADEQUATE DATA
To protect the model against malicious events that might
reduce its accuracy we proposed using of federated Byzantine
agreement. This system ensures the integrity and perfor-
mances achieved by each proposed candidate model.

2) SOLUTION TO THREAT 2B: CONFIDENTIALITY
AND TRACEABILITY OF THE MODEL
This threat depends on the confidentiality level required by
the consortium. In TCLearn-A, the model is open and does
not require any protection. In TCLearn-B, the model is built
using private datasets and shared within a restricted consor-
tium of trusted partners. In this case, we propose using secure
transport for exchanging the model between the partners
and the supervisor. For TCLearn-C, the model is built using
private datasets and shared within a restricted consortium
of untrusting partners. In this case, we suggest the use of
homomorphic encryption allowing to use the model in the
encryption domain.

In both cases, the encryption is managed by a trusted
supervisor (either at the transport level such as in TCLearn-B
or at the application level such as in TCLearn-C). Moreover,
we suggest storing the model in an external off-chain storage
vault. The blockchain will contain links to the model, thereby
minimizing its size while allowing the implementation of
access control and auditing mechanisms. Only authorized
users should be able to download a given version of the model
weights, and each access should be logged into an immutable
audit trail.

It might be possible to use this audit to gather statistics
about the actual accesses of each individual user to mod-
els. This in turn could be used to restrain future accesses
(e.g., allowing users to access a certain number of mod-
els depending on their level of contribution to the models).
Therefore, a moderated level of traceability is offered even in
the case of TCLearn-B: if a given version of amodel is leaked,
it is possible to audit all of the requests related to this specific
version predating the leak in order to establish the list of
partners that actually downloaded this version and may have
leaked it. In the case of TCLearn-C, the public homomorphic
key associated with the model could be directly matched
to a single access (member, date and time, and accessed
model).
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V. IMPLEMENTATION AND EVALUATION
In this section, we present an implementation prototype for
TCLearn-A & B, that demonstrates the feasibility of our
approach. This prototype is available at https://github.com/
slugan/TCLearn .

The goal of this prototype (which is not intended for
deployment in a production environment) is to illustrate and
demonstrate an example of implementation of the presented
architectures.

The blockchain architecture is based on the proof-
of-concept implementation proposed by Gerald Nash in
this article: https://medium.com/crypto-currently/lets-build-
the-tiniest-blockchain-e70965a248b.

Our prototype relies on Python version 3.6.8 and Numpy
version 1.16.4. The server-side scripts (including the super-
visor) are implemented using Flask Microframework version
1.1.1 while the client-side scripts rely on requests version
2.22.0 (a Python HTTP library). The sample certificates
are generated using OpenSSL version 1.0.2k. The (purely
illustrative) server-side TLS encryption is handled by the
uWSGI application container server version 2.0.17.1. The
deep learning part is based on Tensorflow version 1.5.0 and
Keras version 2.2.4.

In this prototype, each virtual site is associated with a
Flask application. A separate application simulates the super-
visor (in the case of TCLearn-B and TCLearn-C). Python
scripts are used to send commands to these applications
using HTTPS calls (e.g., to simulate submissions by a given
partner). Please consult the documentation on the GitHub
repository for more information.

This proof-of-concept illustrates the principles of the
TCLearn architectures on the MNIST dataset (32× 32 pixels
handwritten digits, 60000 training images and 10000 test
images). The test set is split in two groups: the first half is
used as a global test set and the second half, divided equally
between 7 partners, constitutes the virtual consortium. Each
partner is able to test a candidate model using both the global
test set and their own local test set. The training set is split
into batches of increasing size, each associated with a distinct
partner of the consortium and constituting the input used by
this partner to submit a new candidate model (iteration). The
CNN architecture used is: Input → Conv → Maxpool →
Fully Connected → Output . The optimizer is Adadelta with
a learning rate of 1.0, a mini batch size of 64 and number of
epochs equal to 20.

In the first example (Fig. 5), the training set is randomly
and arbitrarily split in (small) batches of 204, 1080, 1080,
3000, 4800, 4800 and 9600 images (40% of the complete
set). The accuracy slowly increases (due to the small size
of the initial batches) quite steadily among the various test
sets with each iteration (corresponding to the submission of a
new candidate model by a partner). The global test database
(7 times larger than each of the local test set of each partner)
is associated to the highest accuracy values as expected.

In the second example (Fig. 6), the training set is now
randomly split in batches of 2400, 4800, 4800, 6000, 10800,

FIGURE 5. Loss and accuracy with small batches (204, 1080, 1080, 3000,
4800, 4800 and 9600 images). Training history represents the
performances obtained during the training process on the training
dataset.

FIGURE 6. Loss and accuracy with larger batches (2400, 4800, 4800, 6000,
10800, 10800 and 20400 images). Training history represents the
performances obtained during the training process on the training
dataset.

10800 and 20400 images (100% of the complete set). Given
the larger size of the initial batches, the accuracy reaches a
high level from the firsts iterations, and globally continues to
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increase. However, we notice a few occurrences of decreasing
accuracy from one iteration to the next one when tested
against some local test sets. This illustrates the need for the
joint use of the global test set by each partner in addition to
their own local test set when evaluating a candidate model.
This also shows the importance of the λ threshold tolerating
a moderate decrease of the performances when evaluating a
new submitted model.

VI. CONCLUSION
In this article, we propose a new architecture for distributed
learning by a model based on federated Byzantine agreement
mechanism. The performance of themodel is ensured through
a shared evaluation of individual contributions leading to
acceptance or rejection based on an objective criterion.

This approach makes it possible to constitute trusted coali-
tions in which the actions for updating the model by the
members are registered in a public ledger implemented as
a blockchain. We have explored three kinds of coalitions
according to the access control required for distributing the
model. Each approach corresponds to distinct trust levels that
depend on the shared rules in the coalition. We have proposed
solutions that rely on efficient cryptographic tools, including
homomorphic encryption. We have given a example of our
proposed architectures with the case of the distributed learn-
ing by a CNN model applied to distributed medical images
databases. The proposed architectures safeguards data pri-
vacy thanks to a system of encryption and off-chain storage to
avoid the dissemination of sensitivemedical data or metadata.
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