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ABSTRACT Urban flooding is a common problem across the world. In India, it leads to casualties every
year, and financial loss to the tune of tens of billions of rupees. The damage done due to flooding can be
mitigated if the locations deserving attention are known. This will enable an effective emergency response,
and provide enough information for the construction of appropriate storm water drains to mitigate the effect
of floods. In this work, a new technique to detect flooding level is introduced, which requires no additional
equipment, and consequent installation and maintenance costs. The gait characteristics in different flooding
levels have been captured by smartphone sensors, which are then used to classify flooding levels. In order to
accomplish this, smartphone sensor readings have been taken by 12 volunteers in pools of different depths,
and have been used to train machine learning models in a supervised manner. Support vector machines,
random forests and naïve bayes models have been attempted, of which, support vector machines perform
best with a classification accuracy of 99.45%. Further analysis of the most relevant features for classification
agrees with our intuition of gait characteristics in different depths.

INDEX TERMS Activity recognition, smartphone sensors, gait analysis, machine learning, flooding level
detection.

I. INTRODUCTION
Flooding during heavy rains can be disastrous in urban areas
with poor planning. It leads to loss of life and property, infras-
tructural, and economic damage. During a flooding disaster,
it is useful to determine the level of flooding in order to rush
emergency response to the required location using an appro-
priate route. Further, knowledge of the flooding level leads
to better urban planning and remedial measures to mitigate
the effect of floods. This paper introduces a new technique to
detect the level of flooding using smartphone sensors.

Traditionally, flooding detection has been done using a
satellite-based remote sensing technique called Synthetic
Aperture Radar (SAR) (e.g. [1] and [2]). However, perfor-
mance using this technique deteriorates significantly in the
case of an urban settlement. This is because much of the
ground area is blocked by establishments such as buildings,
walls, or big vehicles.

Frequently, several commuters are left with no option but
to wade through water. Gait characteristics of commuters
in different flooding depths, can be captured by smartphone
sensors, which can then be used to classify the flooding level
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at a particular location. This obviates, to some extent, the need
for additional equipment, installation and maintenance costs;
further, the ubiquitous nature of the smartphone aids in the
construction of a ‘flood map’ with level of flooding shown
at different locations, which would be handy for emergency
response and construction of storm water drains. It is envis-
aged that smartphone users would just open an app while
walking in a flooded region, which would record sensor
readings, classify the level of flooding, and send the level of
flooding and location to a central server.

Use of smartphone sensors for gait analysis and human
activity recognition (e.g. sitting, standing, lying down, walk-
ing, jogging etc.) is an active area of research with a variety
of applications in the fields of medicine, fitness, sports, and
biometric verification. From among all smartphone sensors,
it has been noted in [3] that accelerometer and gyroscope sig-
nals provide the most information about human movement.
In this work, smartphone sensor data (based on accelerom-
eter, gyropscope and magnetometer sensors) has been col-
lected by a group of 12 volunteers using AndroSensor, for
individuals walking inwater at different depths. Time-domain
(e.g. mean, variance) and frequency domain features (e.g.
sum of FFT coefficients) have been extracted from windows
of data. Random Forests, support vector machines and naïve
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bayes models have been attempted of which support vector
machines offer the best performance with up to 99.45% clas-
sification accuracy. An analysis of the most relevant features
for classification has been performed, which justifies the
intuition of the differences between gaits at different flooding
levels.

The remaining sections of the paper are organized as
follows; Sec. II provides a background for the motivation
behind this work; Sec. III discusses related work with respect
to activity recognition using smartphone sensors; Sec. IV
discusses the forces involved during human movement in
water; Sec. V describes how data was collected. Sec. VI
describes the features extracted for building machine learning
models; Sec. VII explains the machine learning models and
performance metrics used; Sec. VIII evaluates the perfor-
mance of the algorithms and finally Sec. IX concludes the
paper.

II. BACKGROUND
Urban flooding is a severe problem in India. The financial
loss ensuing out of damage to infrastructure runs into tens
of billions of rupees [5]; daily life is also affected due to
confinement of people at homes, which in turn affects the
economy.

The causes of flooding are many. Firstly, improper city
planning - in many cases water bodies have been converted to
settlement areas, which naturally get flooded with excessive
rainfall; water flow gets blocked due to encroachments in
urban areas; surface sealing in urban areas due to impervious
surfaces in the form of pavement and buildings increases
runoff. Secondly, drainage system is ill-equipped to handle
excessive rainfall, drains get blocked by solid waste, and
obstructions from city constructions like bridges and flyovers.
Thirdly, climate has changed with the result that more rain-
fall in a shorter span of time has become a more frequent
occurrence [4].

The state of the art for flood detection is a remote sens-
ing technique called Synthetic Aperture Radar (SAR). It is
essentially a technique in which high resolution images
are obtained from a side looking moving satellite using
radar [1], [2]; images can be taken during day and night, and
even in the case of bad weather, and near-real time detection
can be achieved using TerraSAR-X, a satellite with an orbit
of 1.6 hrs. However, much of the urban area blocked by
buildings cannot be classified correctly; algorithms are able
to correctly classify 76% of the flooded pixels visible to
the radar [1], which means there is scope for improvement.
Detection of flooding level by identifying gait characteris-
tics in that flooding level (using smartphone sensors) has
the potential for good classification performance (as will be
demonstrated later in the paper); due to the ubiquitous nature
of the smartphone, flooding information at all locations may
be obtained; further, all this can be accomplished at minimal
cost to the government.

FIGURE 1. Comparison of FBAs, BPDAs and BPIAs.

III. RELATED WORK
Classification of flooding level based on gait characteristics is
similar to humanmovement monitoring. In this section, a sur-
vey of human movement monitoring has been performed.
However, we restrict the discussion to smartphone sensors
rather than wearable sensors, which have been used in the
likes of [6]–[9].

Reference [10] surveys the evolution of smartphone sen-
sors for monitoring human movement. They divide the
research work into 3 broad categories. Fixed to the body
algorithms (FBA) require the smartphone to be in a fixed
position and orientation; basically, they require the smart-
phone to be strapped to the body. Body position dependent
algorithms (BPDAs) require the smartphone to be placed
in a fixed position, but do not require the orientation to
be fixed, for e.g. placing the smartphone in the pockets on
the hip or the chest. Body position independent algorithms
(BPIAs) do not require the smartphones to be placed either
in a fixed position or orientation. Fig. 1 depicts how these
classes of algorithms fare with regard to convenience of use
and granularity of classification. While FBAs are somewhat
inconvenient to use, as the smartphone should be strapped to
the body at a fixed position and orientation, in the case of
BPDAs, orientation may change, while in the case of BPIAs,
both orientation and position may change. The convenience
of BPIAs comes at the cost of granularity of the classification
task, e.g. distinguishing between walking and walking up
the stairs performs poorly [11]; BPIAs are also computation-
ally intensive when compared to FBAs and BPDAs. On the
other hand FBAs can categorize tasks of finer granularity
compared to BPDAs and BPIAs e.g. identifying a variety
of movements [12] which aid in estimating energy expendi-
ture, identifying movements specific to certain sports (soccer,
hockey) [13], and evaluating exercises performed in a gymna-
sium [14]. In this work, the FBA approach has been used; the
benefits of fine granularity of FBAs has been preferred over
the coarse granularity of BPIAs, as it is desired to differentiate
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between gait characteristics in different depths; even-though
BPIAs offer convenience of use, this factor is relatively less
important because a reading taken over a period of 5s is
sufficient for classification.

A subarea of human movement monitoring that is rele-
vant to this research work is gait analysis, which involves
‘‘a measurement, description and assessment of quantities
that characterize human locomotion’’ [15]. In this area,
smartphones have been used to predict the health status of
individuals suffering from chronic obstructive pulmonary dis-
ease (COPD) [16], by measuring the speed of movement
of an individual, as this is an indication of his/her health.
Others have used smartphones to detect abnormal gait pat-
terns which may be used as an alert to indicate susceptibility
to falls [17] or a developing Parkinson’s disease [18]. Gait-
based user verification and authentication is another area
where smartphones have been used; they are useful to detect
theft of smartphones, faking of gait (e.g. to lower health insur-
ance costs) and user spoofing attacks to claim healthcare ben-
efits or to find fault with the successful operation of mobile
healthcare systems [19], [20], [22]–[25]. Reference [21] ana-
lyzes the gait to determine the level of intoxication of an
individual e.g. 0-2 drinks, 3-6 drinks or more than 6 drinks,
with an accuracy of 70%.

Another subarea of human movement monitoring, closely
related to gait analysis, is human activity recognition (HAR);
activities like sitting, standing, walking, running, ascending
and descending stairs may be recognized and enable the
computation of energy expenditure, which can then be used to
evaluate individuals with obesity and diabetes. As flooding-
level detection also involves distinguishing between differ-
ent types of walking (based on flooding level), the authors
review the techniques used in HAR. Approaches to HAR
typically use a window of data [26]–[32] spanning a few sec-
onds to classify the activity by computing statistical fea-
tures over the window like mean, median, variance, etc.
These are also referred to, as time domain features. Referen-
ces [27], [29]–[31] include autoregression coefficents
while [26] includes autocorrelation function as a feature
to model the correlation between data points in close
proximity to one another. Frequency domain features like
spectral energy, fast fourier transform coefficients have
also been used [26], [28]. Classifiers used are naïve
bayes [26], [29], decision trees [26], [33], k-nearest neigh-
bours (kNN) [28], [29], deep belief networks [30] and support
vector machines [26], [33]. As the sensor readings represent a
time series, [34] uses a convolutional neural network (CNN)
in order to make use of correlation between data points in
close proximity; moreover they make use of a multi-layer
CNN to extract complex features. Similarly, [35] uses hidden
markov models (HMMs) to model the sequence of data
points; their approach is hierarchical, the first level of which
reads raw data and identifies an action (e.g. walking, standing,
etc.) and the second level takes a sequence of actions as
input and identifies an activity (e.g. shopping, travelling by
bus).

Various sensors have been used in the area of activ-
ity recognition using smartphone sensors - accelerome-
ter, gyroscope, magnetometer, barometric pressure sensor,
audio-visual components (camera, microphone) and location-
based sensors (e.g. WiFi, Bluetooth, GPS). Among these,
accelerometer, gyroscope, magnetometer and barometric
pressure sensor consume less power when compared to the
others. Further, it has been noted that accelerometer and
gyroscope signals provide the most information about human
movement [3]. In this work, accelerometer and gyroscope
sensors have been used; both time-domain and frequency
domain features have been extracted; even-though frequency
domain features are more computationally expensive than
time domain features [36], unlike human activity recognition,
flooding level detection is a one time activity over a span of 5s
that is triggered by the user when required. Support vector
machines, random forests and naïve bayes models have been
used to classify examples.

IV. HUMAN MOVEMENT IN WATER
A summary of the forces acting in water will be provided in
this section. The forces acting on individuals in water (shown
in Fig. 2a, Fig. 2b and Fig. 2c) are:

1) Force due to Gravity: Force exerted on the individual
due to Earth’s gravitational pull.

2) Buoyant Force: Upward force exerted by the fluid
(water) on the object immersed in it in a direction
opposing force due to gravity. It increases with depth.

3) Drag Force: Force exerted by the liquid in a direction
opposite to relative motion of the body with respect
to the liquid. It increases with cross-sectional area of
immersed object. In the case of human movement in
water, larger depths cause larger drag, as the surface
area immersed inside water increases.

The forces acting on the smartphone are (see Fig. 2d):

1) Force due to Gravity: Force exerted on the smartphone
due to Earth’s gravitational pull.

2) User Exertion: Force exerted by the user on the smart-
phone. The direction of user exertion varies, as indi-
cated in the figure.

The above forces affect the smartphone sensor readings.
It may be noted that drag force and buoyancy do not directly
act on the smartphone, as the smartphone is kept out of water.
However, they influence the user exertion on the smartphone.

V. DATA COLLECTION
The authors are not aware of any data set available for
flooding-level detection, and have therefore, collected smart-
phone sensor data for this purpose; data was recorded using
smartphones by volunteers, who obtained the readings from
several swimming-pools with different depths of water, and
on land as well. Samsung Galaxy S8+ and Lenovo Zuk
Z2 plus were used to record the data, both of which are
based on Android operating system. AndroSensor, a freely
available app for Android, was used to take the readings
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FIGURE 2. Forces acting on a human moving in water.

with updating interval (measure of how frequently readings
are taken) set to ‘very fast’ and recording rate (measure of
how frequently readings are updated to data file) set to 10Hz.
A group of 12 volunteers (with body mass indices in the
range 17-30.6, standard deviation of 4.13) took the readings
in swimming pools of different depths. Readings were taken
by keeping the mobile phones in the position shown in Fig 3,
with the display facing the volunteer; the smartphone could be
held in either hand. The following smartphone sensors were
activated before recording data:

1) Gravity Sensor: It provides the projection of acceler-
ation due to gravity on the three axes of the mobile
phone. These values will be represented as gx , gy and
gz. Force due to gravity is constant in the direction of
the earth. Smartphone users were instructed to hold it
vertical, which means that ideally only gy is non-zero.
In reality, there is always some deviation from the ideal
position, which results in non-zero values for gx and
gz as well, and smaller values than 9.8 for gy. This
frequently happens due to disturbances in water, which
cause the users to tilt their phones.

2) Linear Acceleration Sensor: It provides accelerations
along axes of mobile phone that are not caused by

gravity; these are a result of user exertion. These values
will be represented as ax , ay and az.

3) Gyroscope Sensor: It provides the angular velocity with
respect the axes of the mobile phone. These will be
denoted as ωx , ωy and ωz.

It may be noted that gravity and linear acceleration sen-
sors may be implemented as software sensors, whose val-
ues are derived from the accelerometer, gyroscope and
magnetometer.

The readings mentioned above were taken while walking
in pools with depths 4.5ft, 2.5ft, 0.19ft as well as on dry
land. While the 4.5ft and 2.5ft were taken in swimming
pools, the 0.19ft reading was taken by flooding a washroom
with water. Volunteers were requested to obtain readings for
walking straight a few metres, at the end of which, they were
to stop the recording; turnings were not recorded. The num-
ber of readings taken, for different depths, has been shown
in Table 1. The method of extracting the examples from raw
readings will be explained in the next section.

VI. FEATURE EXTRACTION
Asmentioned before, sensor data was collected at a recording
rate of 10Hz. The standard approach in the case of HAR
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FIGURE 3. Posture of a volunteer walking with smart phone in hand.

TABLE 1. Details of readings and examples for each depth.

using smartphones has been to extract time and frequency
domain features from a window of data; further 50% overlap
is permitted between consecutive windows [10]. In this work,
a window size of 5s has been used; this means 50 consecutive
readings when data is recorded at 10Hz, with an overlap
of 25 readings between consecutive examples. This window
size was chosen in order to enable capture of frequency com-
ponents present in the gait, as a single step would typically
take between 0.5-1s. The number of examples obtained by
using the above procedure has been shown in Table 1.

Time domain features extracted from each window are
mean, median and variance. Frequency domain features
extracted have been explained below:

1) Sum of FFT Coefficients: Fourier Transform converts a
set of values from their original (space or time) domain
to the frequency domain. Discrete Fourier Transform
(DFT) decomposes a signal in terms of its frequency
components. Fast Fourier Transform (FFT) is an effi-
cient way of computing DFT. The first five coefficients
found using the FFT representing lower frequencies are
summed. A higher value of the sum of FFT coefficients
indicates a better frequency response at these lower
frequencies.

2) Spectral Energy: It is the sum of squared FFT coeffi-
cents normalized by length of the window. The spectral
energy is proportional to the energy of the signal E
specified in Eq. 1, where x(n) is the signal value of nth

sample, and N is the number of samples in the window.
This means that large signal magnitudes increase the
spectral energy of a signal.

E =
N∑
n=0

|x(n)|2 (1)

Three sensor readings have been considered (as mentioned
before) - linear acceleration, gravity and angular velocity. For

each, there are components along 3 directions of the mobile
phone, and for each of these 5 features have been extracted
(time and frequency domain features) over a window of data;
this means 45 features for each window of data, therefore
each training example contains 45 features.

VII. EXPERIMENTAL SETUP
Preprocessing performed, machine learning models and per-
formance metrics used are described in this section.

A. PREPROCESSING
All features fi were first normalized by subtracting the means
µi and dividing by respective standard deviations σi as shown
in Eq. 2. This was done in order to prevent the results from
being biased towards features with large magnitudes.

f ′i =
fi − µi
σi

(2)

B. MACHINE LEARNING MODELS
In this work, random forests, naïve bayes and support vector
machine classifiers were used to classify the examples; the
main consideration in the choice of these classifiers (over
neural networks, CNNs, HMMs or kNN) was the simplicity
of the models which have fewer training parameters and
are therefore more suitable for a small data set. Another
advantage of these models over neural networks is the lower
computational and energy requirements, which render them
more suitable for implementation in the smartphone. These
models have been implemented using python sklearn library
(explained below).

1) RANDOM FORESTS
Random forests (RF) is an ensemble of decision trees. The
training data for each tree is obtained by choosing each
example randomly with replacement; further, the next feature
to be chosen for the split is restricted to a subset of the
features. In this fashion, a number of trees are generated;
the majority vote of all trees is the predicted category of the
random forest. In this manner, random forests try to improve
the classification accuracy as well as prevent overfitting.

The parameters used for random forests have been listed
in Table 2. Entropy has been used to select the next feature for
a split; a relevant feature decreases the conditional entropy of
the category of the example. Another parameter is maximum
depth; it directly relates to overfitting as a large depth means
too many conditions need to be satisfied before category of
an example if predicted, and too few examples in the leaf
nodes. As there are 902 examples in total, the maximum
depth of the tree was chosen as 10 - a depth of 8 would
result in 256 leaf nodes (for a complete binary tree) with
3.52 examples per leaf node on an average; in reality, the tree
is unbalanced with fewer than 256 leaf nodes, so a depth
slightly larger than 8 (i.e. 10) has been chosen. Yet another
parameter, which also relates to overfitting is the minimum
number of examples at a node, required for a split; this has
been set to 8 examples. As mentioned before, RF selects the
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TABLE 2. Parameters for RF classifier.

TABLE 3. Parameters used for SVM classifier.

TABLE 4. Parameters for Naïve Bayes classifier.

next feature for a split from a subset of features; the number of
features in this subset, is set to the square root of total number
of features; finally, the number of decision trees to be used in
the ensemble, is set to 30.

2) SUPPORT VECTOR MACHINES
Support Vector Machine (SVM) is a discriminative model
which seeks out a decision boundary of maximum margin
between the classes. In this work, the linear-kernel SVM,
which provides a linear decision boundary, has been used.
The parameter setting for the SVMhas been shown in Table 3.

The decision boundary provided by SVM enables us to
predict the category to which an example belongs, from
among two classes. However, flooding level detection is a
multi-class classification problem. So, a one vs one approach
is used; class label is predicted by majority vote over all pairs
of classes.

Yet another use of SVM model, in this work, is to find out
the most characterizing or relevant features. SVM computes
a decision boundary as shown in Eq. 3:

a0 + a1f1 + a2f2 + . . .+ anfn = 0 (3)

where ai are the coefficients corresponding to feature fi; the
magnitudes |ai|, therefore, indicate the importance of features
fi in the classification task, and larger values of magnitudes
may be used to identify relevant or characterizing features.

3) NAÏVE BAYES
Naïve bayes (NB) is a generative model, which classifies with
the class having maximum posterior probability for a partic-
ular example (from Bayes rule) and assumes independence
of features. As features are typically not independent, and
may be correlated, principal component analysis (PCA) may
be applied in order to obtain an uncorrelated set of features.
These features may then be used by the NB model to classify
examples. The parameters of the NB model have been shown
in Table 4.

TABLE 5. 5-fold cross validation average accuracy for different models.

TABLE 6. RF performance.

TABLE 7. NB + PCA performance.

TABLE 8. SVM performance.

C. PERFORMANCE METRICS
The data was split with 80% of the data used for train-
ing and the remaining 20% of the data used for testing.
The performance metrics used were classification accuracy
(percentage of correctly classified examples), precision,
recall and F1 score. While classification accuracy was com-
puted by averaging over all classes, precision, recall and
F1 score were computed for each class. 5-fold cross valida-
tion was used, and performance metrics were averaged over
the 5 folds in order to obtain stable estimates.

VIII. PERFORMANCE EVALUATION
In this section, performance of machine learning models is
compared followed by a discussion of gait characteristics
in different depths and an analysis of relevant features for
classification.

A. MODEL PERFORMANCE
The classification accuracy for the models mentioned in Sec.
VII-B is shown in the Table 5. The results for individual
models are given in Tables 6, 7 and 8. Results indicate that
all models perform well on all the classes with SVM, RF
models performing better than NB + PCA model. SVM and
RF are both discriminative models, while NB is a generative
model. The lower performance of NB may be attributed to
the assumed Gaussian probability density which may not be
true in the case of all features. The models perform well on
all the classes. Similar classification accuracies have been
reported in the case of other FBAs e.g. HAR [37], detection
of a correct repetition in the case of resistance training [38]
and identifying ski-skating gears [39].
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FIGURE 4. Acceleration patterns in different water depths.

In the succeeding sections, the characteristics of gait in
different flooding levels and the relevant features in each case
are analyzed.

B. GAIT CHARACTERISTICS IN DIFFERENT DEPTHS
The gait in different depths of water was observed to have
different characteristics. Fig. 4 shows the plots of ay and az
over a window of 200 points for all depths. It may be noted
that ax , ay and az are directly proportional to the user exertion
on the phone (as a consequence of Newton’s second law of
motion). The different characteristics of ay and az in each of
these depths is discussed below:

1) Land: The gait on land is characterized by consistent
walking pattern when compared to walking in water,
and user exertion has a larger magnitude when com-
pared to walking in water as indicated by the plots
in Fig. 4. Interleaved exertions in opposite directions
(due to both acceleration and deceleration in the same
step) results in large variances in accelerations.

2) 0.19ft: A narrow layer of water on the surface causes
the user to exert caution while walking to prevent
from slipping, and to prevent water from splashing
onto clothes. This results in user exertions of smaller
magnitude, and smaller variances in accelerations.

3) 2.5ft: The user needs to exert a great deal of force to
lift his leg up (almost out of the water) and bring it
down; lifting the leg up involves overcoming drag force
in opposite direction, and bringing the leg down like-
wise also involves overcoming drag force in opposite
direction as shown in Fig. 2c. The same can be said
about moving the leg forward (Fig. 2b). This leads to
exertions of large magnitudes and variances (Fig. 4).

4) 4.5ft: Water resistance (i.e drag force and buoyancy)
is more in this case, which overwhelms the user, and
renders him/her incapable of exerting a large force.

This leads to smaller magnitude user exertions inter-
leaved in opposing directions and consequently smaller
acceleration variances (Fig. 4).

C. CHARACTERIZING FEATURES
The most characterizing features for each pair of classes may
be determined from the one-to-one SVMmodel, as explained
in Sec. VII-B, by using the coefficients of the decision
boundary.

Fig. 5 shows a scatterplot for each pair of classes with
the two most relevant features on the x and y axes. Fig 5c
(0ft vs 4.5ft) indicates that the spectral energy of ay takes
larger values on dry land than on 4.5ft. This means that
magnitudes of ay, and consequently user exertion, are greater
for dry land than 4.5ft; this was noted from the discussion
in Sec. VIII-B (Fig. 4a); as mentioned before, this is true
because user exertion is restricted in 4.5ft deep water. The
figure also indicates that ay, and consequently individual
exertion in the direction of gravity, has more variance in dry
land than in 4.5ft water; this is true because movement in both
upward and downward directions is restricted in 4.5ft water;
this difference in variances was also noted in Sec. VIII-B
(Fig. 4a). A similar figure is obtained in Fig 5a (land vs
0.19ft); as mentioned in Sec. VIII-B, user exertion is lesser in
the case of 0.19ft as individuals are normally more cautious
about walking in 0.19ft as a precaution against slipping and
to prevent water from splashing onto clothes.

Fig 5b compares gait patterns on land with 2.5ft; it indi-
cates that gy has a stronger frequency response for land than
2.5ft; this is due to perturbations in water, which result in
more erratic walking pattern in 2.5ft water.

Fig. 5d compares 0.19ft with 2.5ft. It indicates that in the
case of 0.19ft, gy has higher values on an average, indicating
that themobile phone is tilted to a smaller extent in 0.19ft than
in 2.5ft. Also, gy has stronger frequency response for 0.19ft
than 2.5ft.
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FIGURE 5. Pairwise scatter plot for each pair of categories using two most relevant features.

Fig. 5e compares gait patterns for 0.19ft with 4.5ft. It indi-
cates that variance of az is usually larger for 0.19ft; this is
in in line with the intuition that user exertion in the forward
direction has greater variation for 0.19 ft than for 4.5ft; as user
exertion in the forward direction is mitigated by high water
resistance (i.e drag force) in 4.5ft case. Further, variance of
ωy is usually larger for 0.19ft as compared to 4.5ft; this may
also be due to the effect of high water resistance in 4.5ft case.

Fig. 5f compares gait patterns for 2.5ft with 4.5ft. Spectral
energy of az, which indicates magnitude of user exertion in
forward direction, is normally more for 2.5ft as compared to
4.5ft; this is due to the greater water resistance (i.e drag force)
in 4.5ft as compared to 2.5ft. Further, frequency response of
gx is usually greater for 2.5ft as compared to 4.5ft; this indi-
cates that the pattern of tilting the smartphone with respect to
the earth shows a regular pattern more frequently in the case
of 2.5ft.

IX. CONCLUSION
Detecting flooding level in urban areas aids in rushing emer-
gency response to areas of attention. It also aids in improve-
ment of storm water drains in urban areas by identifying
congestion points. This work introduces a new technique to
detect the flooding level using smartphone sensors; this tech-
nique is exempt of additional costs for installation of sensors
along the road for flooding-level detection; the ubiquitous
nature of smartphones in this generation ensures that data is
collected from several locations.

Characteristics of the gait in different water levels were
easily distinguished using accelerometer and gyroscope read-
ings, and were using to identify flooding levels. Random
forest, SVM and NB classifiers were attempted to predict
the flooding level, of which SVM performed best with
99.45% accuracy. The most relevant features for classifica-
tion match the intuitive understanding of gait in different
flooding levels. As future work, other models for classifica-
tion like kNN, CNN, deep belief networks or HMMs may be
attempted.

In this work, prediction of flooding-level, which could
be one of four values, has been performed, and this is a
classification problem. It may alternatively be treated as a
regression problem, and flooding level may be predicted as
a continuous value; this would require data from all flooding
levels.

To take full advantage of smartphone sensors, the authors
believe that a body position independent mechanism should
be used; further, flooding level detection should automati-
cally be triggered without user involvement. A combination
of the above two features would enable flooding data to be
automatically transferred to the central server, leading to the
generation of a ‘flood map’ of the locality. For this approach
to be feasible, continuous mobile sensing, and energy effi-
cient mechanisms on the lines of [40] should be used.

Another interesting research direction would be the classi-
fication of flooding level using sensor signals picked up from
vehicles moving on flooded roads.
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