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ABSTRACT The pinhole model utilized in most computer vision algorithms becomes unfeasible because of
lens distortion. Thus it is a must to compensate lens distortion to make the pinhole model available. In this
paper, we propose a new robust line-based distortion estimation method to correct radial distortion. Our
method works from a single image and is able to estimate the distortion center rather than assuming it is
at the image center. Distortion parameters are estimated from parameters of circulars arcs, on the basis that
straight lines are imaged as circular arcs under one-parameter division model. A new feature selection scheme
by refining circular arcs is introduced to make the process of distortion estimation fully automatic and more
robust. Moreover, a linear optimization algorithm is applied to calculating parameters in each selection run,
making our feature selection scheme more efficient. Experiments on synthetic images and real images show

that our method performs well in radial distortion estimation even with severely distorted images.

INDEX TERMS Distortion estimation, radial distortion, division model, feature selection, plumb-line.

I. INTRODUCTION

The pinhole model that straight lines in 3D world must project
to straight lines in the image plane is the basis for most com-
puter vision algorithms [1]. Due to the imperfection of lens
and misalignment of optical elements, distortion is widely
existed in optical systems, especially in fish-eye and wide
angle lenses [2], [3]. The pinhole model is no longer available
owing to mapping errors introduced by lens distortion. Thus
it is a must to remove distortion accurately.

Among all distortion types, radial distortion is the most
predominant one in today’s cameras [4]-[6]. There are two
main categories as to radial distortion estimation [7], that are
multiple views method [5], [8]-[12], and single view method
[13]-[17]. Multiple views method relies on known calibration
objects [5], [8], sequence of images under camera motion or
at different frames [9], [11], [12]. It is able to obtain distor-
tion parameters and other camera parameters simultaneously.
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The main limitation of multiple views method is that it could
not be applied to circumstances where a calibration pattern,
a mobile camera and a video sequence are not available,
for examples, dealing with images downloaded from website
or real-time calibration of zoom cameras. On the contrast,
the single view method does not need a special calibra-
tion object and is able to implement distortion estimation
from a single image, which would be extremely useful for
many applications, particularly those in human-made envi-
ronments containing abundant lines [28]. One of the most
promising single view method is the well-known plumb-
line approach, which is on the basis of projective invariance
that lines straight in 3D scenes will remain straight in 2D
images. Many achievements based on plumb-line approach
have been obtained in recent years [1], [15], [16], [25], [30].
Aleman-Flores et al. [18], [19], [32], [33], [35] studied on
lens distortion correction by line rectification. Polynomial
model as well as division model are utilized for distortion
estimation. When dealing with severely distorted images,
an extended Hough transform embedding the distortion

180373


https://orcid.org/0000-0003-1614-8977
https://orcid.org/0000-0002-9890-5806
https://orcid.org/0000-0002-2231-7063
https://orcid.org/0000-0001-5291-8874
https://orcid.org/0000-0002-5603-1151
https://orcid.org/0000-0003-3303-383X
https://orcid.org/0000-0003-3406-673X

IEEE Access

L. Zhang et al.: Robust Line-Based Radial Distortion Estimation From a Single Image

parameter is applied to detect longest distorted lines.
Distortion parameters are optimized by minimizing the dis-
tance of the corrected line points to straight lines based on
nonlinear algorithms. Bukhari and Dailey [6], [28] proposed
an automatic distortion estimation method based on Fitzgib-
bon’s division model [22]. They applied a two-step random
sampling process to realize circle fitting and outlier elimina-
tion. Though their method works very well, sometimes it may
be non-deterministic caused by RANSAC. To improve the
robustness of distortion estimation, Benligiray and Topal [31]
applied a sequential backward selection scheme to eliminate
lines that come from non-collinear elements. Line orientation
is taken as the error function, which is minimized using a
nonlinear optimization algorithm. In their method, the dis-
tortion center is assumed to be at the image center, however,
this assumption is not always true [20].

Our method proposed in this paper belongs to the plumb-
line approach. Fitzgibbon’s division model [22] is utilized as
the distortion model because of its advantages in expressing
large distortion with lower order [22]-[24], and the distor-
tion center is estimated rather than assuming it is at the
image center. Our estimator is partially similar to that of
Wang et al. [25] and Wu et al. [7], on the principle that straight
lines are modeled as circular arcs under one-parameter divi-
sion model, and distortion parameters including distortion
center can be obtained from the parameters of at least three
circular arcs. There are two main advantages of our method
over theirs include: (1) we improve the robustness and autom-
atization of distortion estimation by introducing a new feature
selection scheme. The effective features are selected automat-
ically without human intervention and the results of distortion
removal are robust. The feature selection scheme is conducted
backwardly, making it more deterministic than RANSAC:
each line is sequentially selected out of the lines group, and
would be eliminated if its absence makes a minimum of the
objective function. The selection run would be repeated until
no further improvement in the objective function or there
are only three lines left in the lines group. (2) No nonlinear
optimization is needed in distortion model estimation, though
it is usually used in other’s work [7], [31]. Instead, a Lin-
ear Least Squares (LLS) optimization algorithm is applied
to estimate distortion parameters when there are more than
three lines. The efficiency of LLS algorithm outperforms the
nonlinear algorithms significantly while with nearly the same
accuracy, which would be shown in Section IV-A. Because
the procedure of distortion parameters estimation is repeated
in each selection run, the application of LLS algorithm would
indeed save a lot of time for feature selection, thus making
our feature selection scheme more efficient than the one used
in [31].

The rest of the paper is organized as follows: In
Section II, we introduce the proposed methodology for dis-
tortion estimation. Section III presents experimental results
and detailed analyses. Section IV shows the compari-
son with other methods. Finally, we draw the conclusion
in Section V.
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Il. METHODOLOGY

In this section, our robust distortion estimation method is
explained in details. One-parameter division model is applied
to distortion estimation, and under this distortion model,
a straight line is imaged as a circular arc as described in
Section II-A. Section II-B introduces how we detect lines
and how we do robust circle fitting. Section II-C presents the
LLS algorithm utilized to distortion parameters estimation
with more than three lines. Furthermore, a feature selection
scheme to improve the accuracy and robustness of distortion
estimation is proposed in Section II-D.

A. DISTORTION MODELS AND DISTORTION
OF A STRAIGHT LINE
In general, radial distortion is expressed in the following

format [21]
Xy — X0 Xd — X0
=L 1
<yu—y0> (rd)(yd—yo)’ )

where (x,, y,,) is the undistorted point, (x4, y4) is the distorted
point, (xg, yo) is the distortion center, L(ry) represents the
function which defines the shape of distortion and r; =
V(xa — x0)2 + (y4 — yo)?. Different expression of L(r) cor-
responds to different distortion model. Polynomial model and
division model are two widely accepted distortion models
among all radial distortion models.

Division model proposed by Fitzgibbon [22] is formulated

as
1

L+ aar2 + aord + a3r§ 4+ -

The main advantage of division model over polynomial
model is that it is able to express severe distortion at much
lower order. In fact, for most cases, division model with one
parameter would be sufficient [22]-[24].

In this paper, division model with single parameter is used,
and defined as

L(ry) = 2

1

La) = 1+kr§

3

Thus we obtain the mapping function from distorted points to
rectified points as

X4 — X0
Xy — X0 = ———
! 14 ar? @
o yp = 20
“ 1+Ar§

According to Wang et al. [25], a straight line can be imaged
as a circular arc under one-parameter division model. Here,
we define a straight line by

Axy + By, +C =0 5)

with the constraint A> + B®> > 0. By substituting (4) to (5),
we obtain the circle equation

A B 1
2 2
— — e — = (ys— =0
(xg —x0)"+(a —yo) +CA (xq XO)+CA (Va yo)+k
©)
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and it can be simplified as

X242 4+ Dxg+Eyg+F =0 7
where
A
D = — — 2xp,
Cr
E = B 2
= Y0,
F=xy+y— =7%— =7y + —. ®

Ca Ci A

B. CIRCLE FITTING ALGORITHM

Before circle fitting, curved lines detection is conducted.
It starts with edge segments detection using Canny Operator,
and then line segments detection from these edge segments.
Line segments are detected by the straight line detector with
a certain tolerance region, thus curved line segments can be
detected. Afterwards, the detected curved line segments are
further grouped according to their relative orientation and
perpendicular distance. The detailed process for lines detec-
tion may be found in [29]. Furthermore, short features are
reported to deteriorate performance in distortion estimation,
hence they are eliminated [31]. According to our experience,
a threshold on the length of the extracted lines is set one
fifteenth the image width, and is used systematically in the
following experiments.

To accurately fit a curved line to a circle is to minimize
the sum of squared distances from data points to the fitting
circle. For n data points (x;, y;)i=1...n, the error function can
be expressed as

e=Y a2, ©)
i=1

where d; represents the Euclidean distance from the data point
(x, y;) to the fitting circle, and is defined by

di =/ — @)% + (i — b2 — R (10)

where (a, b) is the center and R is the radius of the fitting
circle.

To robustly find the minimum of (9), We choose
Levenberg-Marquardt (LM) iterative nonlinear algorithm to
realize circle fitting. A good initial guess is necessary for
convergence to the optimal minimum and reduction of iter-
ation times. Here, Taubin Fit is adopted as an algebraic fit
method to provide an initial guess to LM circle fitting. Details
about LM Fit and Taubin Fit as well as comparisons between
different circle fitting methods please see [26]-[28].

C. DISTORTION ESTIMATION WITH MULTIPLE LINES
USING LLS ALGORITHM

Wang et al. [25] show it is possible to estimate distortion cen-
ter (xo, yo) as well as distortion coefficient A with three circu-
lar arcs extracted from the distorted image. Here, we briefly
review their algorithm in dealing with three circular arcs and
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then introduce our algorithm for distortion estimation with
multiple lines (more than three lines).

Based on the definition of D, E, and F as shown in (8),
we obtain

1
~ =%+ +Dxo+ Eyo + F. (11)

Then we can calculate the distortion center (xp, yo) as long as
we determine three groups of parameters (D;, E;, Fi)i=12.3,
which are obtained through the circle fitting algorithm pre-
sented in Section II-B. The distortion center (xp,yo) is
obtained by solving the following linear equations

!(Dl —Doxo+ (Br—Eyo+ (Fi—F)=0

(D1 —D3)xo+ (E1 —E3)yo+ (F1 —F3) =0

After the distortion center is determined, the distortion coef-
ficient X is calculated by (11).

To achieve higher accuracy, always more than three cir-
cular arcs are utilized for distortion parameters estimation.
For cases there are more than three circular arcs, we calculate
the distortion parameters using the following LLS algorithm.
We modify (12) to

(Di — D) xo + (Ei — Ej) yo = Fj — Fi(i #j).  (13)
Then we have
MX =N, (14)

where X = (xo, yo)', N = (Fj — F})izj, M = (D; — Dj, E; —
Ej)ij, and M is a non-square matrix. Then the distortion
center (xg, yo) and the distortion coefficient A can be obtained
respectively by (15) and (16)

(x0, vo) = (MTM)_l MTN (15)

1
A= — — =, (16)
xg +y(2)+DXO+Eyo+F

where D, E, and F are the mean value of D;, E;, and F;.
Although this algorithm is usually applied with more than
three lines from a single image, it is also able to handle distor-
tion parameters estimation for circumstances with fewer lines
by taking more images with the same camera or assuming the
distortion center is at the image center when more images are
not available.

LLS algorithm is non-iterative, thus it does not need
initial input and is more computing efficient. Comparisons
between LLS algorithm and LM algorithm used in [7] in
terms of results accuracy and computing time are shown in
Section IV-A.

D. ROBUST DISTORTION ESTIMATION WITH

CIRCULAR ARCS REFINING

This section is of great importance to the robustness of our
distortion estimation method. Since distortion parameters are
obtained from circular arcs parameters according to (15) and
(16), the robustness and accuracy of distortion parameters
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least square
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=
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distance error edge points

FIGURE 1. The distance error of one line is the mean of square distances
from all edge points on the corrected line to the least square fitting line
corresponding to these edge points.

estimation is highly relevant to the validity of extracted cir-
cular arcs.

RANSAC is widely used for the selection of effective
features [28]-[30]. However, sometimes it may fail to be
deterministic especially when there are large numbers of fea-
tures. Benligiray and Topal [31] proposed a sequential back-
ward selection scheme to make feature selection more robust.
In each iteration loop, they utilized line orientation as the
error function, and conducted nonlinear iterative optimization
to minimize the error function. Inspired by their method but
differently, we propose a feature selection scheme based on
distance error to refine circular arcs sequentially, considering
that distance error is less sensitive to step points existed in
lines extracted from low resolution images. Besides, in each
selection run, we recalculate distortion parameters by LLS
algorithm rather than other nonlinear iterative algorithms,
making our feature selection scheme more efficient than Ben-
ligiray and Topal’s [31].

An objective function based on distance error is adopted as
a metric to the straightness of the rectified lines. The distance
error of one rectified line (see Fig. 1) is defined by

1 &
o= di a7
1 .
j=1

where d; ; is the distance from the jth edge point on the ith
rectified line to the least square fitting line corresponding
to these edge points. Given N corrected lines corresponding
to N distorted lines, the objective function is defined by the
mean distance error of all N corrected lines as

1 N
¢=ﬁ;ei. (18)

Here, N refers to all detected long lines before feature selec-
tion, rather than the lines retained in each selection run. The
advantage of this definition for objective function is that we
are able to avoid a local minimum only for the remaining
lines, on the basis that majority of the detected long lines are
expected to be real lines in 3D world.

We refine extracted circular arcs in two folds: (1) Is it a
true arc? (2) Is it a good arc that can provide better perfor-
mance in distortion estimation? If true arcs with good quality
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FIGURE 2. Flow chart of proposed circular arcs refining scheme.

(efficient distortion, low noise, etc.) are selected and utilized
to distortion estimation, the objective function defined by
(18) will decrease. It is realized by removing unvalid arcs
from the lines group, and the whole process is conducted
backwardly: each line is initially excluded from the lines
group one by one, and would be indeed eliminated if its
absence makes a minimum of the objective function defined
in (18). The selection run would be repeated until the objec-
tive function is not improved with elimination of any line or
there are only three lines left in the lines group. We have
to mention that our proposed circular arcs refining scheme
is only conducted when there are more than three lines as
our method needs at least three lines for distortion parame-
ters estimation. Fig. 2 represents the whole process of this
scheme. Firstly, we estimate the distortion parameters with all
M lines and calculate the objective function. Then we select
one line out of the M lines group, re-estimate the distortion
parameters with the remaining M -1 lines and recalculate the
objective function. We repeat the above procedures until all
lines have been selected sequentially. Then the line whose
absence makes the minimum objective function is eliminated
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FIGURE 3. Source image.

from the lines group. Here we set a threshold of o = 0.01
for the reduction of objective function to judge whether the
line is really needed to be eliminated. It means that only if
the objective function diminishes more than 0.01 when the
line is excluded from the lines group, the line is indeed elim-
inated. After a line is actually removed from the lines group,
we repeat the above procedures with the remaining lines.
The iteration stops if there is no further improvement in the
objective function with exclusion of any line or there are only
three lines left in the lines group. Then the optimal distortion
parameters are obtained with the remaining lines and thus
the distorted image is corrected. It is worth mentioning that
LLS algorithm is applied to estimate distortion parameters
in each selection run when there are more than three lines,
which would improve the efficiency of our feature selection
scheme significantly.

Ill. EXPERIMENTS AND RESULTS

In this section, to evaluate our proposed method for distortion
estimation in a quantitative and extensive way, we would
firstly conduct experiments on a series of synthetic images
from the same source image as shown in Fig. 3. The experi-
ments are carried out in three series: varying distortion coef-
ficient, varying distortion center and under different noise
levels. Thus we would demonstrate our method’s ability in
severe and small distortion removal, distortion center esti-
mation and distortion correction for noisy images. Secondly,
we would conduct experiments on real images for qualitative
evaluation. A detailed example of one real image is presented
to illustrate how our method works and show the improve-
ment with our circular arcs refining scheme. Afterwards,
more challenging real images with different scenes are uti-
lized to testify the performance of our method in removing
most visible distortion.

A. SYNTHETIC IMAGES

The size of the source image shown in Fig. 3 is 640 x 480.
The synthetic images utilized in following experiments are
all from the same source image. To quantitatively evaluate
the performance of our proposed method, Dis_center and
Rel_lambda are applied to evaluate the deviation of esti-
mated distortion parameters from true data. Dis_center is
the Euclidean distance between (xq, Y0)#rue and (X0, Y0)estimate -
Rel_lambda is the absolute relative error of A defined by
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FIGURE 4. Distortion correction of synthetic images with different
distortion coefficients. First row: distorted images. Second row:
corresponding refined circular arcs utilized to distortion estimation. Third
row: corresponding undistorted images using parameters calculated by
our method.

|(X estimate — A true ) /A wrue |- Besides, Root Mean-Squared
Error (RMSE) and Peak Signal-to-Noise Ratio (PSNR) are
also adopted in this part to evaluate the performance of our
method in reconstructing the source image.

1) VARYING DISTORTION COEFFICIENT

In the 1st series, we only change the distortion coefficient A
of each synthetic image while keeping the distortion center
unchanged. The distortion center is fixed at the image center
(320, 240), and the distortion coefficient A varies from nega-
tive to positive. For negative A, the synthetic image is smaller
than the source image. For positive A, the synthetic image is
larger than the source image. For severe positive distortion of
A = 1 x 1073, the distorted image is too large to display, thus
only its central part with image size of 800 x 600 is shown.
For each run, we refine circular arcs by our sequential selec-
tion scheme, and estimate distortion parameters (xop, yo, 1)
with remaining circular arcs. The synthetic images under
different distortion levels, corresponding refined circular arcs
and corresponding corrected images are shown in Fig. 4. For
A = 1 x 1073, only points with r3 < 1/4A are mapped
resulting in a centered circular valid region in the undistorted
image.

The results of Dis_center, Rel_lambda, RMSE and PSNR
are shown in Fig. 5. For A = 1 x 10~3, RMSE and PSNR are
only measured over the circular valid region shown in Fig. 4.
In addition, RMSE and PSNR calculated from true data cor-
rected images are also displayed in Fig. 5(c) and Fig. 5(d)
respectively for comparison. Theoretically, RMSE would be
zero and PSNR would be infinity if the distorted image is
corrected with the ground truth data. However, due to errors
introduced by various calculations such as interpolation,
RMSE and PSNR of true data corrected images are not able
to reach the theoretical values. Hence, in our experiments,
results of true data corrected images are displayed as the
ideal values. From Fig. 5, we observe that our method works
quite well in distortion correction. The estimated distortion
parameters are very close to the true data, as both Dis_center
and Rel_lambda are very small with varying lambda. The
maximum of Dis_center and Rel_lambda exist at distortion
level of A = 1 x 10~7, with values of less than 2.7000 pixels
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FIGURE 5. Results of distortion estimation with varying lambda.

(a) Dis_center. (b) Rel_lambda. (c) RMSE of our method corrected images
and true data corrected images. (d) PSNR of our method corrected images
and true data corrected images.

and less than 0.0200 respectively. The relatively poor results
with small distortion is because in low distortion levels, small
deviations in estimated distortion parameters would create a
relatively large error. In fact, though there is a slight drop in
performance under small distortion levels, the results are still
of high accuracy since RMSE and PSNR are very close to the
ideal values as shown in Fig. 5(c) and Fig. 5(d). These exper-
imental results demonstrate our method’s ability in distortion
correction of images with severe distortion as well as small
distortion.

2) VARYING DISTORTION CENTER

In the 2nd series, we fix the distortion level at A = —1 x
107 and vary the distortion center. There are 62 extracted
arcs for each synthetic image, and then distortion estimation
is conducted with circular arcs refining. The experimental
results are listed in Table 1. From Table 1, we can observe that
our method has good performance in distortion removal for
images whose distortion center is not at the image center, and
the performance has little to do with the offset between the
distortion center and the image center. RMSE under different
distortion center is less than 3.3000 pixels, and PSNR is more
than 37.9000 dB. These results are quite close to the results
calculated from true data corrected images.

3) UNDER DIFFERENT NOISE LEVELS

In the 3rd series, we append Gaussian noise with 0 mean
and standard deviation ranging from 0.1 to 1 pixel, which
is considered to be normal level noise [36], to the extracted
circular arcs from the synthetic image with A = 1x1076
and (xg, yo) =l (320, 240).The results of RMSE and PSNR
as Gaussian noise varies from 0.1 to 1 pixel are displayed
in Fig. 6, and the values are the mean of 100 trials. From
Fig. 6(a), we can see that RMSE increases with the noise
level whether we refine circular arcs or not. In fact, with
circular arcs refining, RMSE increases very slowly especially
when the noise level is less than 0.7 pixel. RMSE is less than
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FIGURE 6. Results under different noise level. (a) RMSE. (b) PSNR.

3.0000 pixels in noise level of 0.7 pixel and it is 4.1609 pixels
in noise level of 1 pixel. The results are quite acceptable
for most practical circumstances. However, without circular
arcs refining, RMSE increases much faster with noise level.
RMSE comes to 4.6155 pixels in noise level of 0.7 pixel and
6.8016 pixels in noise level of 1 pixel, which are more than
50% larger than that calculated by our method with circular
arcs refining. Fig. 6(b) shows that PSNR decreases with the
noise level. The value of PSNR is higher, the quality of recon-
structed image is better. Generally, when PSNR is more than
35.0000 dB, the quality of reconstructed image is considered
to be satisfactory. With circular arcs refining, the results of
PSNR are all higher than 35.0000 dB under different level
of noise. With 1 pixel noise, PSNR is 36.1799 dB, while
the value is deteriorated to 31.5832 dB without circular arcs
refining. Through comparison, we can see that our method is
very robust in distortion removal of images with normal level
noise.

B. REAL IMAGES

Here, we present a qualitative evaluation of our method’s
ability in distortion removal of real images with signifi-
cant distortion. Fig. 7 shows results of one real image from
Santana-Cedrés et al. [33]. The image size is 1424 x 2144.
The distorted image is shown in Fig. 7(a), and the correspond-
ing detected edges obtained by applying Canny Operator is
shown in Fig. 7(b). Then lines detection is conducted, and
according to the threshold set for the length of lines as men-
tioned in Section II-B, only 52 lines longer than 100 pixels
are retained in the lines group as shown in Fig. 7(c). Then
circular arcs refining is conducted according to Section II-D
and after applying the refinement process, 39 lines are finally
retained, as shown in Fig. 7(d), to obtain optimal distortion
parameters. For comparison, image corrected without circular
arcs refining (using 52 long lines in Fig. 7(c)) and image cor-
rected with circular arcs refining (using 39 lines in Fig. 7(d))
are shown in Fig. 7(e) and Fig. 7(f), respectively. Fig. 7(e)
and Fig. 7(f) are with the same image size, and not scaled or
translated. We can observe that Fig. 7(f) outperforms Fig. 7(e)
distinctly in visual quality, and this comparison shows that the
performance of distortion estimation and removal has been
greatly improved with our feature selection scheme.

Since our distortion estimation from a single image is
based on the lines existed in the image, it would be very useful
for many applications, especially those in human-made envi-
ronments containing abundant lines. Though human-made
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TABLE 1. Distortion estimation results of synthetic images with different distortion center. The unit of RMSE is pixel and the unit of PSNR is dB in the

table.

(x(h yO)true

Estimated by our method

True data Correct

refined circular arcs (0, Yo)estimate Dis_center Aestimate Rel_lambda RMSE PSNR RMSE PSNR
(240, 320) 41 (240.3716, 319.5285) 0.6003 9.9422x10~7 5.8000x 103 2.8438  39.0527 28111 39.1532
(260, 300) 35 (263.3810, 298.6390) 3.6447 -1.0011x10~¢ 1.1000x 103 3.0140 385479  2.8276  39.1024
(280, 280) 43 (281.5717,278.9583) 1.8856 -9.9829%x10~7 1.7000x 103 27904  39.2176  2.7378  39.3827
(300, 260) 33 (296.3730, 258.9285) 3.7820 -1.0034x10~¢ 3.4000x 1073 3.2417 379153 28167  39.1359
(340, 220) 39 (337.3410, 219.0150) 2.8356 -1.0019x10~¢ 1.9000x 103 2.8932  38.9033  2.7965 39.1986
(360, 200) 42 (358.4634, 198.6244) 2.0624 9.9276x10~7 7.2000x 1073 2.8577  39.0105  2.7804  39.2487
(380, 180) 39 (380.7630, 178.7657) 1.4511 -1.0002x10~¢ 2.4940x 104 27917 39.2134  2.7901 39.2185
(400, 160) 38 (397.5426, 158.6079) 2.8243 -9.9491x10~7 5.1000x 103 29626  38.6972  2.8288  39.0988

(d)

FIGURE 7. Results of one real image from Santana-Cedrés et al. [33].
(a) Distorted image. (b) Detected edges. (c) Identified long lines.

(d) Remaining lines after circular arcs refining. (e) Undistorted image
without circular arcs refining (using identified long lines in Fig. 7(c)).
(f) Undistorted image with circular arcs refining (using remaining lines

in Fig. 7(d)). (The different colors of lines are set for a clearer display, not
representing the belonging to one or another line.)

environments usually follow the Manhattan World Assump-
tion, our method doesn’t use this constraint, instead only
use the constraint that straight lines in the 3D world must
be straight lines in 2D image if distortion is compensated.
Aslong as there are several real lines in the image, our method
is available. For cases there are a few curves in 3D world mis-
taken for straight lines after lines detection, the wrong lines
would be further eliminated with our circular arcs refining
scheme as the objective function usually diminishes with the
absence of the wrong lines. Fig. 8 presents experiments on
a set of challenging real images with different scenes from
previous papers on distortion estimation [33], [34]. As to the
last real image, there are only a few short lines in the scene,
thus the distortion center is assumed to be at the image center.
The results shown in Fig. 8 demonstrate that our method is
able to remove most of the visible distortion for real images
containing several real lines. It is also worth mentioning
that for worst cases that wrong lines are predominant in the
images, it is better to refine circular arcs with human inter-
vention to obtain better performance of distortion removal.

IV. COMPARE WITH OTHER METHODS
A. COMPARE LLS ALGORITHM WITH LM ALGORITHM

In Wueral.’s [7] method, LM iterative nonlinear least squares
algorithm is applied to calculate distortion parameters with

VOLUME 7, 2019

FIGURE 8. Correction of some challenging real images from previous
papers on distortion estimation [33], [34]. Column 1 and column 3 are
original distorted images. Column 2 and column 4 are corresponding
undistorted images using parameters estimated by our proposed method.

more than three circular arcs. However, in our method, LLS
algorithm is utilized. A comparison between LLS algo-
rithm and LM algorithm in terms of computing accuracy
and efficiency is conducted below. The circular arcs utilized
in the following experiments are part of those extracted
from a synthetic image made from the source image shown
in Fig. 3 with 4 = 1x107% and (xo, yo) = (320, 240).
The same circular arcs are utilized to calculate distortion
parameters for both algorithms (LLS and LM). Here, LLS
algorithm is conducted without the need of initial estima-
tion, while LM algorithm is conducted with initial input of
A = -1.1175x107% and (xo,yo) = (353.7563, 216.3052).
The initial value provided to LM algorithm is obtained from
three marginal circular arcs according to (11) and (12). The
results are shown in Table 2, and running time listed in this
table is the mean computing time of 100 trials for distortion
parameters calculation by solving (11) and (13) with LLS
and LM algorithm. It can be seen that distortion parameters
obtained by LLS algorithm is very close to those obtained by
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TABLE 2. The comparison between LLS algorithm and LM algorithm.

Number of lines Algorithm (2o, Y0) estimate Aestimate Dis_center Rel_lambda Running time
28 LLS (320.6203, 238.3567) -1.0064x10~6 1.7564 6.40x10~3 0.006s
LM (320.6203, 238.3567) -1.0064x10~6 1.7564 6.40x10~3 1.671s
24 LLS (320.5978, 238.4246) -1.0002x10~6 1.6850 -2.40x10% 0.006s
LM (320.5978, 238.4246) -1.0002x10~6 1.6850 -2.40x10~% 1.639s
20 LLS (320.6032, 238.8090) -9.9295x10~7 1.3350 7.10x10~3 0.006s
LM (320.6032, 238.8090) -9.9295x10~7 1.3350 7.10x10~3 1.432s
16 LLS (320.6502, 240.5879) -9.9900x10~7 0.8766 1.00x10—3 0.005s
LM (320.6502, 240.5879) -9.9900x10~7 0.8766 1.00x10~3 1.286s
12 LLS (320.6599, 239.9361) -1.0005x10~6 0.6629 -4.94x10—% 0.005s
LM (320.6599, 239.9361) -1.0005x10~6 0.6629 -4.94x10~% 1.240s

TABLE 3. Comparison with Santana-Cedrés et al. [33]. The unit of RMSE is pixel and the unit of PSNR is dB in the table.

Estimated data correct True data correct

(z0,y0) Method
RMSE PSNR RMSE PSNR
Santana-Cedrés ef al. divisior} model 3.6589 36.8638
(320, 240) polynomial model ~ 3.7938 36.5494 23552 40.6902
Our method 2.7448 39.3607
Santana-Cedrés et al. divisiop model 6.0324 32.5210
(300, 260) " polynomial model  5.9050 32.7064 2.8167  39.1359
Our method 3.2417 37.9153

LM algorithm (their values are the same under the effective
digits listed in Table 2), including both distortion center and
distortion coefficient. This is true when we apply different
number of circular arcs to distortion estimation. It means that
our LLS algorithm can achieve nearly the same accuracy as
LM algorithm in distortion parameters calculation. But our
LLS algorithm is non-iterative and thus more computation-
ally efficient than LM algorithm. In our experiments, LLS
algorithm is more than two orders of magnitude faster than
LM algorithm under the same working conditions as shown
in Table 2.

B. COMPARE OUR METHOD WITH SANTANA-CEDRES

et al’s method

Finally, we compare our method with Santana-Cedrés et al.’s
[33] method. They have conducted continuous study on radial
distortion estimation, and published several related articles
[18], [19], [32], [33], [35]. Moreover, they have provided
an online demo for their automatic distortion correction
method, which is available to anyone interested in their study.
In the latest version of their demo, they applied an improved
Hough transform to detect distorted lines, and then used
nonlinear iterative optimization to estimate distortion model.
In their demo interface, the users could choose two-parameter
division model or two-parameter polynomial model as the
distortion model and whether to handle distortion center esti-
mation. For a fair comparison with our method, the option
for optimization of the center of the lens distortion model is
chosen. The comparison between our method and Santana-
Cedrés et al.’s method are firstly carried out with synthetic
images. Two synthetic images, which are with the same
image size of 640 x 480 and the same distortion level
of A=—-1x 10_6, while with different distortion center,
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are used for quantitative comparison. The corrected images
obtained from Santana-Cedrés et al. are scaled and translated
properly to match the original undistorted image best. The
experimental results are shown in Table 3. We can observe
that in Santana-Cedrés et al.’s method two-parameter division
model and two-parameter polynomial model have similar
performance. Their method works well when the distortion
center is at the image center (320,240), but its performance
is not satisfactory when the center of distortion deviates from
the center of the image though distortion center estimation
is indeed conducted. Conversely, the results of our method
are very close to the results obtained from true data corrected
image regardless of whether the distortion center is at the
image center. For distortion center of (320, 240) and (300,
260), the PSNR obtained by our method are 6.77 % and
15.93 % higher than the values of Santana-Cedrés et al.’s
method, respectively. Secondly, two real images from [33],
[34] are utilized for further comparison and the results are
shown in Fig. 9. In Fig. 9(a), both two methods succeed
in removing most of the distortion. However, in Fig. 9(b),
the visual quality of undistorted image obtained by Santana-
Cedrés et al’s method is evidently worse than the one
obtained by our method, for there is obvious residual dis-
tortion in their undistorted image, which may be easily seen
in the right marginal region. The possible reason may be
the actual distortion center of Fig. 9(b) is a little far from
the image center, and Santana-Cedrés et al.’s method could
not properly handle the distortion center estimation, which
is in accordance with the results of experiments on synthetic
images. Therefore, it is demonstrated by the above experi-
ments that our method outperforms Santana-Cedrés et al.’s
method in distortion estimation especially when the distortion
center is not at the center of the image.
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(b)

FIGURE 9. Distortion estimation results of our method and
Santana-Cedrés et al.’s [33] method with real images from [33], [34].
Column 1 are original distorted images. Column 2 are undistorted images
obtained by our method. Column 3 are undistorted images obtained by
Santana-Cedrés et al.'s method with two-parameter division model.

V. CONCLUSION

In this paper, a robust line-based method is proposed for
distortion estimation. It does not require a special calibra-
tion pattern, and is able to implement distortion correc-
tion from a single image as long as there are several lines,
which is accessible for most human-made environments.
Experiments on abundant synthetic images and real images
have demonstrated our method’s ability in estimating distor-
tion parameters with high robustness and accuracy. The main
contributions including novelties of this paper are: 1) a new
distance-error based circular arcs refining scheme is proposed
to make our feature selection fully automatic and more robust,
and has been proven to significantly improve the performance
of distortion estimation; 2) LLS linear algorithm is intro-
duced to distortion parameters calculation in each feature
selection run, which is much faster than LM nonlinear algo-
rithm with nearly the same accuracy, thus making our feature
selection scheme more efficient; 3) robust distortion center
estimation is implemented by our method and it has been
manifested that our method outperforms a publicly accessible
method in distortion estimation of images especially those
whose distortion center is not at the image center.
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