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ABSTRACT Epilepsy is the most unpredictable and recurrent disease among neurological diseases. Early
detection of epileptic seizures can play a critical role in providing timely treatment to patients especially
when a patient is in a remote area. This paper uses deep learning framework to detect epilepsy in the
Electroencephalography (EEG) signal. The dataset used is publicly available and has a recording of three
kinds of EEG signals: pre-ictal, inter-ictal (seizure-free epileptic) and ictal (epileptic with seizure). The
proposed Long Short-Term Memory (LSTM) classifier classifies these three kinds of signals with up to
95% accuracy. For binary classification such as detection of inter-ictal or ictal only, its accuracy increases to
98%. The EEG signal is modelled as wide sense non-stationary random signal. Hurst Exponent and Auto-
regressive Moving Average (ARMA) features are extracted from each signal. In this work, two different
configurations of LSTM architecture: single-layered memory units and double-layered memory units are
also modelled. After standardising the features, double-layered LSTM approach gives the highest accuracy
in comparison to previously used Support Vector Machine (SVM) classifier and proved to be computationally
efficient at Graphics Processing Unit (GPU).

INDEX TERMS Deep learning, neo-natal EEG, LSTM architecture, desnoising, biomedical signal

processing.

I. INTRODUCTION

Epilepsy is a harmful disease which affects millions of people
around the world. It is a brain disease which occurs due
to a chronic neurological disorder of neurons producing an
abnormal signal. Any process which affects the neuronal
activity whether it is from illness or brain damage can cause
a seizure. It is caused by a sudden disturbance which appears
in the brain functions [1]. The seizures occur due to a sudden
change in brain activity. EEG is an effective method com-
monly used for monitoring the brain activity diagnosis of
epilepsy. An EEG signal is a band-limited frequency (0.1Hz
to 60Hz) modeled and classified into five categories: delta
(0.1Hz to 4Hz), theta (4Hz to 8Hz), alpha (8Hz to 12Hz),
beta (12Hz to 30Hz) and gamma (30Hz to 60Hz) waves that
record different brain activities [2]. The four main stages of
transitions during the epileptic seizure cycle are (i) pre-ictal,
(ii) ictal, (iii) post-ictal and (iv) inter-ictal. Pre-ictal is the
period before the seizure, ictal is the interval during which the
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seizure occurs, post-ictal is the period at the end of a seizure
and inter-ictal is the time between two seizures [3], [4]. The
signal captured at the ictal stage represents the time in which
the seizure occurs. Most neurologists can detect upcoming
seizures by inspecting changes in EEG recordings [2]. These
four transitional stages are calculated by the EEG signal.
The ictal stage can be easily identified from the recorded
intracranial EEG signal.

A. SEIZURE PREDICTION
The process of discrimination between the pre-ictal and
inter-ictal states is known as seizure prediction. It is also
called seizure forecasting. By detecting the appearance of
a pre-ictal state the epileptic seizure is predicted. Machine
learning approaches are used to predict the epileptic seizure
which includes EEG signal acquisition, pre-processing,
feature extraction and the classification of the seizure
states.

Threshold-based techniques are used for the prediction of
seizure where the analysis is targeting a high/low change
in the values of some features during the pre-ictal stage.
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The classification method can also be performed on the raw
data of the EEG signal. The prediction of the seizure depends
on the threshold value of the features. If the value of the esti-
mated features exceeds the activation value (pre-ictal value),
an alarm is raised to signal an incoming seizure [5].

The current machine learning techniques or deep learn-
ing approaches are commonly used for the prediction
and treatment of epilepsy seizure. The Adaptive Neu-
ral Network (ANN) and SVM are both widely used by
researchers [5]-[8]. In these schemes, the EEG signal data are
classified by features which are extracted from the recorded
EEG data signal. A binary classifier is trained to obtain the
difference between the two (pre-ictal and inter-ictal) stages.
The ictal and post-ictal segments cannot help in seizure
prediction and are removed from the analysis [4]-[10] in
most of the applications of deep learning algorithms used in
medical image and signal processing. The main reason is the
large computational power and big data, which shows the
high impact and significance in most cases. Convolutional
Neural Network (CNN) can be used for seizure prediction
because CNN provides better results in the image processing
field [7].

The seizure prediction algorithms are not only accurate but
also employable in real-time. The pre-processing and feature
extraction from an EEG signal plays an important role in
improving true positive rates and prediction time. The noise
and unwanted components from the signal are removed in
the pre-processing of the EEG signal. The main advantage of
pre-processing EEG signal is that it increases the Signal-to-
Noise Ratio (SNR). Many filters are used by the researchers
like Common Spatial Pattern (CSP) and a large Laplacian
filter for the pre-processing of the EEG signal. Some machine
learning approaches like Discrete Cosine Transform (DCT),
Fast Fourier Transform (FFT) and graph theory are used for
the feature extraction process. Classifiers like SVM, Least-
Squares SVM (LS-SVM) were used to detect a seizure signal
from the EEG signal [11].

B. RESEARCH HIGHLIGHTS

SVM classification performs well for binary classification
problems but the non-stationary Gaussian EEG signals have
variations at multiple stages before epilepsy. The Bonn Uni-
versity data for epilepsy detection is used which has five
classes. The EEG signal in the data is recorded from a
normal person with eyes open/close and persons who have
epilepsy. So, we focused on multiclass problem and proposed
a new architecture of deep learning network-LSTM. Two
main highlights of this work are as under:

1) anew LSTM architecture is selected after two different
LSTM layers group evaluation.

2) Hurst and ARMA features are extracted and a 20 fea-
tures dimension for a channel are created for the EEG
signal as the Brownian movement of neurons.

3) the extracted features are standardised as a pre-
processing step before LSTM training. This is done
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to avoid the biasing in LSTM training towards any
particular data class.

4) the experimenting is done for cases like pre-ictal vs
ictal, pre-ictal vs inter-ictal, inter-ictal vs ictal, pre-ictal
vs inter-ictal vs ictal.

Il. RELATED WORK

As we mentioned in the previous section, epilepsy is one of
the common neurological disorders characterized by a sudden
malfunction of the brain which causes a seizure. 50 mil-
lion people are affected by epilepsy worldwide [2]. EEG is
generally used for the detection and treatment of epilepsy
seizures. A Heart-Rate Variability (HRV) based epileptic
seizure method [12] that predicts monitoring was used in
which the interval between R-waves in the ECG (RRI) data
recorded from patients was translated into HRV features and
then monitored by Multi-variate Statistical Process Control
(MSPC). The Pre-processing of data was done by Common
Average Reference (CAR) filter [13], Independent Compo-
nent Analysis (ICA) [14], Anti-aliasing filter sets [3], Sparse
optimization [15], 10-fold cross-validation [10] and Butter-
worth (IIR) filter [16].

Mathematical and statistical methods like HRV [12],
Empirical Mode Decomposition (EMD), Singular Value
Decomposition (SVD), Discrete Wavelet Transform (DWT)
[17], Autoregressive (AR) [2], Multi-rate filter bank and DCT
filter [2], Power Spectral Density (PSD) [3], FFT, Butter-
worth bandpass filter and Cross Correlation (XCORR) [6],
Averaged Instantaneous Envelope (AIE) and Averaged
Instantaneous Frequency (AIF) [4] were used in the previous
research for features extraction. In addition, graph theory was
used to measure the local and global features for a cluster
field [7].

The features are the sets of coefficients of a linear model
built for each channel of EEG data. These features were
used for classification purposes. The classifier generally used
SVM [1], [2], [6], Multi-variate Statistic Process Control
(MSPC) [12], Recursive and Sequential Multiple Model
(RSMM) [18], LS-SVM [9], CNN [7], [10], LSTM [5],
Multi-layer Perceptron (MLP) [8], K-nearest neighbor and
naive bays [19] in the previous research work. In most of the
previous work, the SVM classifier was used. Deep learning
methods had large applications as a classifier.

The EEG signals were preprocessed by the ICA method
and Fuzzy Multichannel EEG Classifier (FMCEC) used for
the classification and the feature extraction process [1]. Sim-
ilarly, in [10], the data was pre-processed by Computer-
Aided Design (CAD) and classified by CNN which detected
normal, pre-ictal and seizure classes. The EEG data features
were extracted by the Amplitude and Frequency Modulated
(AM-FM) model in which the amplitude dominant signal and
frequency dominant signal identify the features. The internal
process like Averaged Instantaneous Envelope (AIE) and
Averaged Instantaneous Frequency (AIF) parameters were
produced. SVM tested the feature vectors and classified the
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EEG signal [4], [20], [21]. A significant amount of research of
seizure prediction was conducted in [5], [7]-[10], [16], [17],
[19], [22]-[29]. The combination of multiple features into
the feature vector for the epileptic seizure can be predicted.
The EEG signal of brain activity was pre-processed by the
EMD method and then features were extracted by the time-
frequency domain. The extracted features were classified by
the SVM classifier [19]. The EEG recorded signals are
very reliable for the treatment of epilepsy seizure. A great
number of uni-variate features were extracted [9], [24] but
none of them obtained high performance when compared to
the bi-variate techniques. The EEG signal analysis obtains
large information from the signal. This can be done by the
transformation used in [17]. The wavelet transform was used
in previous research widely.

A method was proposed in [25] where the EEG and ECG
data were analyzed by the DWT pre-processing method.
Sequential Forward Selection (SFS) was provided for the
features selection and K-nearest neighbour or Linear Bayes
was implemented as the classifier [25]. The ECG signal could
be a potential resource for predicting the epileptic seizure.
A Short-Time Fourier Transform (STFT) was used in [26]
for the transformation of EEG data into a matrix form, taken
from Children’s Hospital of Boston-Massachusetts Institute
of Technology (CHB-MIT).

The output of STFT was provided to the CNN which
extracted the features from the transformed data. A discrete
Kalman filter was used as the classifier. K of n-filter provided
the prediction of an epileptic seizure. A phase space represen-
tation method was proposed in [27] for the feature extraction
of the EEG signal. The EEG signal was pre-processed by
the EMD method. Propeller Shaft Rate (PSR) extracted the
features from the EEG signal. LS-SVM was used as the clas-
sifier which predicts the epileptic seizure from EEG signals.
A publically available dataset was used for the experiment.
The weighted Extreme Learning Machine (ELM) was pro-
vided in [28] for the epileptic seizure from the imbalance
EEG data set. The dataset contains the normal signal as well
as the seizure signal. The wavelet transform was used to
pre-process the seizure signal and Pattern Match Regular-
ity Statistic (PMRS) was used for the non-seizure signal.
The Notch filter was used in [29] for pre-processing the
data. Shannon Entropy (PE) provided the feature’s selection.
Finally, the time series domain features were extracted by the
PE method.

Ill. DATASET

The data used in our study is available on the EEG time
series page of University of Bonn, Germany. All the data
samples were recorded by the test of epilepsy patients in
the Department of Epileptology at Bonn University [22].
The data contains five segments (A — E). Each segment
contains 100 text files. Each text file consists of 4096 samples
of one EEG time series in ASCII code. The EEG time-
series signals were recorded with the same 128-channel
amplifier system. The five sets of signals were recorded in
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FIGURE 1. EEG time series representation for five sets (4, B, C,
D, and E) [22].

this dataset. The data was converted into a digital form using
an Analog to Digital Converter (ADC). After that, the data
was continuously recorded on the disc at a sampling rate
of 173.61 Hz. The filter used for the data acquisition process
normally ranges from 0.53 to 40 Hz. Each signal from the
A to E sets contained 100 signal channels with EEG seg-
ments of 23.6-second duration. After the visual inspection
of contaminants like muscle activity, five segments were
selected and separated from the continuous multi-channel
EEG recordings. The segments A and B were taken out
from the EEG recording surface. Both segments represented
healthy person data. Segment A displayed the eyes-open state
and segment B was concerned with the eyes-closed state of a
healthy volunteer. The other three segments (C, D, and E)
were related to the seizure condition of the brain activity.
Five patients that were suffering from epileptic seizures were
selected [22]. The sets C and D only contained seizure-
free brain activity interval. The E segment contained the
seizure activity. Only the ictal activity was represented in
selected segments.

The Figure 1 shows the electrical signal of the brain
activity. These electrical signals were recorded on the EEG
surfaces. Generally, the amplitude of the signal is in the form
of V. The inter-acranial EEG signal amplitude is approx-
imately 100uV. In the seizure case, the voltage amplitude
exceeds the value 100 V. The E signal amplitude exceeds the
1004V range which is ictal having almost periodic and high
amplitude. The signals C and D are seizure-free sets which
are recorded in the inter-ictal epileptic activities. A total
of 4396 samples were cut out in the recordings based on
time series spectral frequency components. At the begin-
ning of each final segment, 4096 samples were selected.
Each segment consists of 4096 samples of EEG data [22].
Figure 2 shows the number of samples in all recorded sig-
nals. Every object with a different signal condition, whether
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FIGURE 2. Histogram plot of the number of EEG samples distribution.

normal or elliptic, has a different number of samples. There
are 17000 samples in Object A and 22000 samples in
Object E.

In the deep learning training process, data is divided into
mini-batches and signals are truncated or padded to match
the size of a mini-batch. It may remove the required infor-
mation in the signal and degrade the performance of clas-
sification/prediction. To avoid this, we segmented the data
into a fixed number of 17000 samples. In this process, more
than 17000 samples were rejected and fewer than 17000 were
padded.

IV. LONG SHORT-TERM MEMORY ENCODER

A variation in the recurrent network by using memory blocks
is called Long Short Term Memory blocks or LSTM. LSTM
has the input layer, hidden layers and output layers. The
hidden layers have memory blocks which are also called cells.
Memory blocks contain information in a gated cell which
is outside the normal flow of the recurrent network [30].
The three gates present in the LSTM are the input gate,
the output gate and the forget gate. The memory cells contain
the same input and the same output gate, forming a structure
called memory cell block. All the data or information can be
stored in a memory cell block as in computer memory. The
functions, like data (read, write and erase), are performed by
the cells through the open and close operation of gates. The
gates are analogue, a sigmoids function multiplies element-
wise and provides range 0-1. The gates have a differentiable
property due to its analogue nature so it can be used for the

VOLUME 7, 2019

FIGURE 3. LSTM basic architecture.

back-propagation. The gates of LSTM perform a similar task
like a node in Neural Network (NN) and they can pass or
block the information of received signal by strength. We used
the LSTM method to classify the EEG data. As a classifier,
the LSTM approach provides better performance. Another
approach, the SVM, can also be used as a classifier. The
LSTM method is used for the large sequence time-series data
but SVM is only used for small sequence time-series data.
LSTM has more parameters and gating units that control the
flow of information easily and provide higher accuracy in
classification. Moreover, the multiplicative gates of LSTM
allow the memory cells to access and store the information
over a long period. Finally, the computational cost of LSTM
is lower than the SVM [5].

A. LSTM ARCHITECTURE

The LSTM cell contains the following components: Forget
gate (F) which is a neural network with a sigmoid func-
tion, Candidate layer (C) NN with fanh, Input gate (I) NN
with a sigmoid, Output gate (O) NN with sigmoid, Hidden
state (H) and Memory state (M) which is a vector. The basic
structure of LSTM is shown in Figure 3. x; is the input vector,
¢(—1) memory from input blocks, m_1) previous output
from the blocks. Similarly, m; and ¢, are the output and mem-
ory of the current blocks respectively. The network contains
three inputs. x; is the input current time step, m_1) is the
output from the previous LSTM unit and ¢t — 1) represents
the memory of the previous unit. Therefore, a single unit
decides by considering current input, the previous output and
the previous memory which generates a new output and alerts
its memory.

The LSTM architecture contains the special blocks called
memory blocks which are present in the hidden layers. Each
memory block contains the input gate and the output gate.
Both gates perform the control functions at input activation
and output activation. Forget gate is added to the memory
block latter. An LSTM network finds the mapping from
input sequence x = (x1,x2...x7) to the output sequence

179077



IEEE Access

M. U. Abbasi et al.: Detection of Epilepsy Seizures in Neo-Natal EEG Using LSTM Architecture

y = (1, y2 . .. yr) by figuring out the network unit activations
using following equations:

iy = o (Wixxy + Wigmy—1 + Wice,—1 + i), (H
fi = o(Wpxy + Wemy—1 + Wrecr—1 + by), 2
¢ =fr Ocr—1 +ir © g(Wexxr + Wemy—1 + b)), 3
or = 0(Woxxr + Wommy—1 + Wocci—1 + bo), 4
m; = o; O hey, (®)]
e = ¢(Wymm; + by). (6)

In the above equations, W represents the weight matrices
and W;x is the maximum weight of the input gate to the
input. W;c, Wrc and W,c are the diagonal weights of peep-
holes connections. LSTM has the peep-holes connections in
internal cells to the gates in the same cells. b; is the input
gate bias vector, o is the sigmoid function i, f, o and c are
the input gate, forget gate, output gate and cell activation
vector. g, h are the cell input and cell output functions and
¢ is the network output activation function (softmax) [31].
The activation layer is used to learn the complex structure
of the input data. The sigmoid (o) and hyperbolic tangent
(tanh) activation functions are used in the multilayer LSTM
structure. Both activation fucntions sigmoid and hyperbolic
tangent are transfomed the input value between O to 1 and —1
to 1. The sigmoid function is used as the gate input activation
function and hyperbolic tanh is used as the block input and
output activation function. The non linear activation function
allows LSTM to learn complex mapping functions.

B. LSTM ARCHITECTURE EVALUATION

The LSTM architecture varies with the change in the nature
of data. The number of memory units in the hidden layers,
the activation function and number of stacked layers are
variables in any LSTM structure. The classification accuracy
is affected by their various combinations. We test the two
different layers of arrangement of LSTM for various memory
unit size. One layer arrangement is a conventional pattern
with a stacked sequence input layer, an LSTM layer, a fully
connected layer, a softmax layer and finally, a classification
layer. This arrangement is tested for different size of memory
units mu = [50 : 10 : 130] and we name it LSTM-1. This
arrangement is shown in Figure 4a. In the second arrange-
ment, the layer arrangements and memory units are the same
as LSTM-1, the difference is that we made the LSTM deeper
and added two LSTM layers instead of one, as shown in
Figure 4b.

The previously mentioned LSTM architectures are evalu-
ated by the EEG data. From the Bonn University EEG dataset,
the normal person EEG recordings and the epileptic person
recordings are used for classification purposes. It is a binary
classification problem. The whole period of raw EEG record-
ings per case is used to find out the complete classification
accuracy in the EEG segments into pre-ictal and inter-ictal
classes. The five-segment EEG signal input of LSTM. The
size of the LSTM input is 200 x 1, featuring the two sets
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FIGURE 4. LSTM architectures.

of pre-ictal recordings, each of which contains 100-channel
recordings. The complete raw data for each channel is the
single feature. The structure of the LSTM-1 is not complex;
it can be quickly saturated. So LSTM-1 provides a reduced
classification accuracy as shown in Figure 5. A comparison
of LSTM-1 and LSTM-2 with raw EEG signals is shown
in Figure 5. LSTM-1 architecture does not give a robust
conclusion for various memory units whereas, LSTM-2 is not
showing significant changes with the increase in the number
of memory units. So, we evaluate both architectures with
features rather than raw data. The feature extraction process
is discussed in the next section of this paper.

C. METHODOLOGY

The whole work is divided into two major steps: features
extraction from EEG signal and classification of EEG as
epileptic or non-epileptic. Each EEG signal has five channels
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FIGURE 5. Comparison of classification accuracy for two different LSTM
architectures with raw EEG data and extracted features.

with different frequency range: delta (0.1Hz-4Hz), theta
(4Hz-8Hz), alpha(8Hz-12Hz), beta (12Hz-30Hz) and gamma
(30Hz-60Hz). The features from each channel are extracted.
To segment the signal into these five channels, a 2-level
discrete cosine transform (DCT) is used which breaks the
signal into two equal frequency range. The lower frequency
range EEG signal is down-sampled further to achieve the
channels. Since, the EEG signal is quite random-pattern in
nature due to fractional brownian movement, Hurst exponent
and ARMA features extracts the more similar nature of it.
These hurst and ARMA features are extracted from the DCT
segmented channels.

These features are trained and classified by the proposed
LSTM architecture. In section 4.2 we rigorously tested the
optimal number of memory units for LSTM to get the
highest accuracy. In LSTM architecture, we have primarily
two hyperparameters which can affect the epilepsy detec-
tion accuracy: number of memory blocks and LSTM lay-
ers. The Adam optimization in activation layers is widely
accepted as best choice since its birth. The good learning
rate with adam optimization is either 0.01 or 0.001. For
image classification tasks, the learning rate of 0.001 for
adam optimizer suits best but for our case 0.01 learning
rate gives better accuracy. To select the memory blocks in
each LSTM layer, we tested with different number of units
as discussed in section 4.2. 100 units in LSTM showed the
best performance for two LSTM layers. The final structure
and hyperparameters after rigorous tuning of hyperparam-
eters is tabulated in table 2. The complete methodology is
shown in figure 6. Before final training of the data, it is
divided into 80:20 ratio for testing and training. The com-
plete features set is standardized also before LSTM training
to avoid the overfitted results. The complete flow chart is
shown in figure 7.

V. FEATURE EXTRACTION
Previously, we have seen that the accuracy of EEG signal
classification is higher with features data than raw signals.
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In this section, we discuss the feature extraction process,
considering the EEG signal as externally stimulated non-
stationary signal. EEG signal is a non-stationary wide sense
stationary Gaussian process [2], so its behaviour can be con-
sidered as fractional Brownian motion of multiple neurons in
the brain. These are self-similar Gaussian processes as shown
in the periodogram plot of a signal of set D in Figure 6. The
periodogram of such a process has a mirror image. The self-
similarity of these signals is measured by Hurst Exponent
(H). The first order fractional Brownian motion fBm has H €
(0, 1) [32], the second-order has similarity value H € [1, 2)
and H € [m — 1,m) is of m" order Hurst Exponent [2].
Since the dataset collected is of external stimulus and can be
modelled by fBm, we can use the Hurst Exponent of each EEG
channel as a feature to predict epilepsy. The five sets in our
Bonn University data are of 1 and 2" order fBm as shown
in Table 1.

TABLE 1. Hurst exponent for each set in the considered dataset.

Set A B C D E
H 0.9159 | 1.2701 | 0.9042 | 0.9755 | 1.6509

Five brain waves are extracted from the EEG signals. These
brain waves are delta, theta, alpha, beta and gamma. The
frequency-domain of the following waves are 0.1-4Hz(delta),
4-8Hz (theta), 8-12Hz (alpha), 12-30Hz (Beta) and 30-60Hz
(gamma). Since the EEG signal is a non-stationary ran-
dom process to model the EEG signal as fractional Brown-
ian motion, it is required to extract the un-correlated brain
pattern. Multi-rate DCT filters can break the EEG into
un-correlated sub-bands using the eigen-values of covariance
of fBm process [33]. To break the signal into five sub-bands,
it is passed through a 2-level DCT basis filter bank which
breaks down the 0-60Hz signal to 0-30 Hz and 30-60 Hz band.
The 0-30 Hz is further filtered down to 5-level decimation and
higher three bands are combined to form g sub-band. The
other two channels of 0-6Hz each are combined to make a
channel of 0-12 Hz and again 3-level decimated filtered down
to get the §, 6, o sub-bands of 0-4Hz, 4-8Hz and 8-12Hz
respectively. A block diagram of the DCT filter decimation
is shown in Figure 9.

From these brain waves, the following features have been
chosen: (i) Hurst Exponent (H) (ii) ARMA model.

A. HURST EXPONENT

The Hurst Exponent calculates the similarity index if the
signal is as discussed earlier. We used the Maximum Like-
lihood (ML) method for H calculation but that method is
limited only for the 1* order Hurst Exponent, so it is extended
for a higher-order [2]. A vector y € Y,[N — 1] of m fBm
process is considered whose probability density function can
be defined as:

1 )

P@;H)Zme . @)
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where y = {y1,y2...yy_1}7 is the data vector, K is the
covariance matrix which is E[xx]?. In extended version we
used logarithm of p(y; H) as:

—oTk1y)

> ®

—N 1
logp(y; H)= - log(2m)— 3 log |K |+
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The elements of K are expressed as:

2
i o
Kij=kli = jl=—-[r + 17 = 20 +r = 1271 9)

where r = |i — j|. There are two parameters to be esti-
mated: H and o2. The covariance matrix K can also be
represented as:

K =0’K'. (10

Putting this value in above equation:

—N N
logp(y; H) = —~ log(2m)— 7 log o
1 —Tk!
— Zlog |K|+(y—2y). a1
2 20y
To maximize this equation, derivative w.r.t H is taken and
compared to zero, which gives
O L))
1%1 =— (12)
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By putting this into (12), we get the maximization problem
to get the Hurst Exponent of higher order:

Harg maxo-p<1(—N logy"k'~'y) — log|K'|) —m. ~ (13)

The maximization of this equation will givethe 0 < H < 1
for the 1" order and 1 < H < 2 for the 2"¢ order Hurst
Exponent. The Hurst Exponent for each sub-band will be
calculated and we get the Hurst features of dimension 100 x 5.
A scatter plot of each row to the column of features and
histogram plot is shown in Figure 8 for set E.

B. ARMA FEATURE
The ARMA model predicts the nature of a random signal by
using past values and present values. Let a vector represents
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the set k time-series at time ¢
Zi=Zn. 20 Zis ... Zy)" . (14)

The vector of the theoretical means for Z; given by u =
(w1, U2, U3, - .. ,uk)T, and T represents the transpose of the
vector. If the auto-regressive order is p and the moving
average is represented by g [34], then the equation of the
k-dimensional model is:

AR
=& —wW—¢1Z—1—w)—$2Z—2—p) ... ¢p(Zt—p—M)-
15)

MA
=a;— 0141 —Oa;2--- —...04a,4. (16)

where O is the i matrix of auto-regressive parameters order
ofkxkandi=1,2,3...pand O is the i moving average
parameter matrix order of k x k where i = 1,2,3...q9.
is the k-dimensional vector of innovations for Z;. A multi-
variate ARMA model is always preferred for the analysis
purpose. This feature is extracted from the epileptic EEG
dataset [34]. Each EEG signal sub-band gives 3-ARMA fea-
tures, making a total of 15-ARMA features in an EEG signal
channel.

VI. RESULTS

In the LSTM architecture evaluation section, we noticed that
LSTM-2 with 100-memory units has the highest performance
in Figure 5. Thus, we finalized the double LSTM layered
architecture in our work. Table 2 lists all the selected param-
eters of the proposed LSTM architecture.

179081



IEEE Access

M. U. Abbasi et al.: Detection of Epilepsy Seizures in Neo-Natal EEG Using LSTM Architecture

Oﬁ Boaced ot . TNl [ T (IR i el L0 PR ) el P O PO P
B0 TS 17 o[ ok] & [aifei o] 4] <]
08ls -&.bli A S | s | e | | ind | o | ]
BEERR o = IR e B el B I
E-Bﬁ- ot L [ e e B B R e B A T B
S S r = R ~ - ] e [ 3 e -
21 S N R [ U PRSI N NS SR A A
ﬁ; 1ok 9050 g s ] # [l 2] 5] %] &
oslf [ wl¢ [r 1270 | B[ 2 ]ovr [sa] @] 2| «
g% PR I P O P T e e R
1 el R R = | o & ; A1 = =% =
odlf | FF |§ 4 S B A7) R F €
: Lo el weely «olwmy | gl - ~ 2| 2 £
ofe [ [r7ls7] Il il gl ] 4] #] ¢
alr =lE 12 a1 -~ ® 1 .7 1]
-0. ﬁ e v IR B Fladi s & o | ﬁhﬂ & | #F|. >£
‘-1 * TR ryNzTrorar= ﬂ o
0Lk | (& |F 1| d t]  F| oo |ab| & | 400|207 | 4F| 4 o #
Higf E - I R RO (R N B N prery peom ) B
‘ 0 0O 030 041 0 08 0121487 0909 0 1.50 0 1 1330.60.2 0.8

FIGURE 11. ARMA features of dimension 100 x 15 for five sub-bands of Ictal EEG data of 100 single channels.

TABLE 2. Proposed LSTM architecture parameters.

Parameters Value
LSTM layers 2
Learning rate 0.01
Memory Units 100 for each LSTM layer
Activation Layer adam
Epochs 100
Batch size 150
Input Features dimension 400x20

In machine learning algorithms, if the data used is highly
different in their magnitudes, then training would be biased
towards the high mean and hence overfitted results could be
expected. The mean of Hurst feature for a signal of set E
is —1.1706 whereas for ARMA features it is 0.3292 which
creates the biasing of LSTM towards ARMA features. So,
it is required to standardize the data. We used popular z-score
which uses the mean (1) and standard deviation (o) approach
to standardize the data (z = (x — u)/o). This pre-processing
of data increases the classification accuracy of an ictal signal
as shown in Figure 7. We compared our results with the work
of Gupta [2] which used a 10-fold SVM classification tech-
nique to predict the ictal EEG signals. Figure 12 shows the
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box plot for the raw featured training data and standardized
data. It shows the difference between the median of every
feature in the data. Every feature out of total 20 features is
noisy as these differ in magnitudes but after pre-processing,
the data is normalized and the LSTM training will not be
biased now.

We tested the algorithm for different dataset cases which
are: pre-ictal vs ictal (AB vs E), pre-ictal vs inter-ictal (A or
B vs C or D), inter-ictal vs ictal (C or D vs E) and a multi-
label classification problem of pre-ictal vs inter-ictal vs ictal
(A vs C vs E). The linear SVM classification technique in [2]
is limited to binary classification problems and can perform
well only for those problem sets. However, our proposed
LSTM architecture surpasses the SVM results for binary as
well as achieves high accuracy for multi-label classification
problems. The algorithm was tested on the single Nvidia
GPU GeForce 940M for good computational efficiency. The
proposed algorithm was very robust for each test case and
outperformed the SVM. Table 3 lists the accuracy values
of all data test cases with SVM comparison. The proposed
LSTM showed a 99.17% accuracy for pre-ictal and ictal
signal classifications whereas it is 97.27% for SVM [2].
Figure 11 compares the accuracy in each iteration for
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TABLE 3. Comparative results for Proposed LSTM and SVM classifier
for Ictal classification.

Data Set Cases Proposed LSTM results

Accuracy Specificity Sensitivity

SVM results [2]
Specificity

Accuracy Sensitivity

pre-ictal
vs ictal

(AB vs E)
pre-ictal

vs

inter-ictal
(AvsC)
inter-ictal

vs

ictal

(D vsE)
pre-ictal

vs

inter-ictal

vs

ictal

(A vs CvsE)

0.9917 0.9945 0.9888 0.9727 0.9715 0.9740

0.9778 0.9892 0.9570 0.9650 0.9600 0.9700

0.9778 0.9885 0.9677 0.9635 0.9620 0.9650

0.9481 0.9943 0.9263

100-epochs for all test cases. The fastest convergence is
obtained for pre-ictal vs inter-ictal (A vs C) classification.
Binary classes are rarely available in real-life problems and
so is the EEG signal. The proposed algorithm is also robust
for multi-class EEG signal classification. We get a 94.1%
accuracy for all three classes of classification in our data.
It can help to detect epilepsy before it happens.
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VIi. CONCLUSION

This paper has contributed a novel LSTM architecture to
classify the epileptic EEG signal. We modelled the EEG
signal as Brownian movement of brain neurons and Hurst
Exponent with ARMA features used to train the LSTM clas-
sifier. The novelty of this paper lies in the multi-class EEG
signal detection. We can now detect epilepsy in EEG in its
prior stage of occurrence i.e. pre-ictal. Our algorithm gives a
94% accurate detection in case of multi-class EEG detection
for the data taken from Bonn University which has five data
sets recorded at different stages of epilepsy from different
sensor locations in the brain. The proposed approach has
improved the binary classification accuracy by 2% from the
previous SVM classifier. Each EEG signal is passed through
a multi-rate DCT filter which divides it into five sub-bands of
different bandwidths. Hurst and ARMA features are extracted
for each sub-band which generate a total of 20-features for an
EEG signal. These features, when classified by the proposed
LSTM architecture, give an accuracy of 99.17% for pre-ictal
vs ictal, 97.78% for pre-ictal vs inter-ictal, 97.78% for inter-
ictal vs ictal and 94.81% for pre-ictal vs inter-ictal vs ictal is
achieved.
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