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ABSTRACT An optimized energy management strategy (EMS) based on a recent coyote optimization
algorithm (COA) applied to a hybrid electric power system is proposed in this paper. The proposed hybrid
system comprises fuel cell (FC), battery storage bank (BSB) and supercapacitors (SCs). The FC has been
selected to be the chief power source to meet the load demand at steady state. Whereas BSB is used
as the chief energy buffer and to help the FC during deficit periods and SCs are employed to meet the
transient maximum power. The performance of the hybrid electric power system mostly depends on how to
distribute the demanded load through different kinds of power sources. Therefore, optimized EMS is highly
required to do this job. The key objective of the proposed EMS is to reduce hydrogen consumption by the
hybrid system and increase the durability of power sources. To investigate the superiority and validity of
COA, a comparison with other approaches is carried based on minimum hydrogen consumption and high
energy efficiency. Such methods include external energy maximization strategy (EEMS), particle swarm
optimizer (PSO), genetic algorithm (GA), grey wolf optimizer (GWO), grasshopper optimization algorithm
(GOA), multi-verse optimizer (MVO), salp swarm algorithm (SSA) and sunflower optimization (SFO). The
obtained results confirmed the superiority of the proposed COA. Using COA reduced hydrogen consumption
by 38.8% compared to the EEMS method. Based on the minimum hydrogen consumption, the strategies are

ranked from the best as following; COA, GWO, SSA, GOA, MVO, GA, PSO, and EEMS.

INDEX TERMS Energy efficiency, fuel cell, supercapacitor, energy management, optimization.

I. INTRODUCTION

Freshwater, energy and the environment are interrelated
factors that have become one of the most important and
widespread topics in engineering research. Specifically,
global warming and resources scarcity have been still the
main issues that have been addressed. Therefore, industrial
activities and engineering communities start a new era of
energy-efficient uses. The environmental issues and eco-
nomic concerns rise tendency to develop the transportation
sector [1]. The transportation sector is mainly depending
on fossil fuel and emit greenhouse gases. Therefore, sev-
eral attempts have been done to increase the usage of the
fuel cells (FCs) in transport applications as a green electric
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power source with zero greenhouse gas emission [2], [3].
Spreading the application of FCs in electric cars, trains and
aircrafts protects the surroundings and secure a renewable
fuel source for the transport applications [4]. FCs are emerg-
ing energy conversion devices that demonstrated numerous
features compared to conventional devices such as high
energy efficiency, small in size, environmentally safe, long
lifetime. . .etc. FCs produce electrical power via chemical
reactions in the presence of hydrogen, oxygen, and elec-
trolyte. The proton exchange membrane fuel cell (PEMFC)
is considered as the most suitable type to be used in transport
application since it has high density in electric power produc-
tion in conjunction with lower heat generation causing lower
temperature that is essential in transport applications.

The low dynamic response is the main disadvantage faces
FC in transportation application. It cannot deliver suitable
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reactions to unexpected load changes since the gas supply of
FC lags behind the load variation [5], [6]. Therefore, FC must
be integrated with battery and/or supercapacitor [7], [8].
Battery storage has high energy density; however, it also
has some weaknesses. Such weaknesses include low power
density, long charging time, high cost and short life-
time. In contrary, SC has high power density and long
lifetime [6].

The optimal method to solve the mentioned issues is
the utilization of hybrid FC/BS/FC. This topology permits
the different power sources to provide their features: FC
as the chief steady-state power source, BSB as an energy
buffer and SCs as a device for transient maximum power.
For achieving such hybridization and reach the main target,
an energy management strategy (EMS) is highly required to
distribute the load demand among energy sources [6], [9].
The EMS considerably enhances the hydrogen consumption
and increase energy efficiency by restricting the operation
of the FC to high-efficiency operating points [7]. Numerous
traditional EMSs were proposed to manage the load demand
among the hybrid system components. Such EMSs include
state machine control, fuzzy, PI control, equivalent and exter-
nal energy maximization strategy (EEMS). In addition to
other strategies based on modern optimization.

Wang et al. [10] suggested a management strategy based
on the finite state machine for a multi-system comprising
battery, fuel cell (FC) and supercapacitors (SC). Energy
management based on Proportional-Integral (PI) controller
has been presented in Ref. [11] to manage energy between
photovoltaic (PV), FCs, batteries, and SCs. In ref. [12],
the power estimate of battery and SC is employed for rule
energy management strategy, different modes of operation
have been analyzed for a hybrid system comprising a bat-
tery, SC and FC. Jiang et al. [13], presented a dynamic
programming approach for minimizing the consumption of
energy for hybrid system of FC, battery, and SC to sup-
ply power train. Li et al. [14] presented energy management
based fuzzy logic control for two-hybrid systems, the first
one comprises FC and battery and the second one has FC,
battery, and ultracapacitors (UCs) for supplying an electric
vehicle. Adaptive neuro-fuzzy inference system (ANFIS) has
been presented in Ref. [15] to optimally manage the power
between FC, battery employed to supply unmanned electric
vehicle. Chen et al. [16] introduced two layers energy man-
agement approach based on wavelet transformation and radial
basis neural network to optimize the energy distribution in
EVs. An energy management technique based on wavelet
transform algorithm was presented in Ref. [17] for managing
the power between FC, UCs, and battery for supplying EVs.
Djerioui et al. [18] introduced grey wolf optimizer (GWO)
to optimally manage a hybrid source of FC, SC for EVs.
An equivalent consumption minimum strategy (ECMS) has
been introduced in Ref. [6] using sequential quadratic pro-
gramming to manage the power between FC, battery, and
SC for EVs. Marzougui et al. [19] presented a strategy com-
bining three approaches for energy management between
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FC, UC, and battery supplying EVs, the approaches are
fuzzy logic control, rule-based algorithm and flatness con-
trol. Fathy et al. [4] introduced a new approach based salp
swarm algorithm (SSA) to optimally manage the energy
between FCs, batteries, and SCs with considering hydro-
gen consumption as an objective function. Li et al. [20] ana-
lyzed the energy management of a hybrid source of FC and
SCs for supplying excavator based on three approaches of
dynamic programming, model predictive control and min-
imum principle of Pontryagin considering hydrogen con-
sumption as the objective function. Zhao et al. [21] presented
different metaheuristic optimization approaches for man-
aging the energy of the fuel cell hybrid system for sup-
plying aircraft. Yu et al. [22] designed a hybrid FC, battery
and SCs to supply EVs optimally such that minimizing
the system cost. Rule-based distribution technique has been
employed in Ref. [23] to manage the energy of a hybrid
generating system. Additionally, Bays Monte Carlo algo-
rithm has been introduced to estimate the power of batteries
and SCs. Thounthong et al. [24] presented energy manage-
ment for hybrid FC, battery and SC for EVs’ applications.
Han et al. [25] introduced two levels of energy management
for PV, FC, and battery incorporated in DC microgrid. Differ-
ent approaches of energy management strategies employed in
managing the energy in EVs powered by fuel cells have been
reviewed in Ref. [3]. Bendjedia et al. [26] designed an energy
storage system (ESS) representing FC and another source
for supplying light vehicle by investigating three approaches
for energy management. In Refs. [6], [27], different energy
management strategies have been presented for EVs powered
by FC. Bizon [28] introduced an adaptive energy management
approach based two-dimension function representing the eco-
nomics of fuel of FC hybrid system. Li et al. [29] presented
combined fuzzy logic control and wavelet transformation to
manage the energy of hybrid tramway optimally.

The main contribution of this research is proposing an
optimized EMS for reducing hydrogen consumption and slow
down the FC performance degradation. According to the No
Free Lunch theorem [30], no single optimizer can solve all
optimization problems, which means that new optimizers are
still welcome in the research area of energy management.
A recent optimizer called coyote optimization algorithm
(COA) is presented by Pierezan and Coelho in 2018 [31]. The
main advantage of COA is providing a new mechanism to bal-
ance the exploration and exploitation during the optimization
procedure. This urges the authors to use it for the first time to
optimally manage the load demand among power sources in
hybrid FC/BS/SC.

Most of reported approaches have some shortcomings in
terms of complicated structure of energy management strat-
egy, EMS, and requirement of large efforts in implemen-
tation, need high initial state of charge, SOC, for battery
and SC with excess data especially for methods employed
ANFIS. Additionally, some employed heuristic optimiza-
tion approaches in EMS may fall in local optima. In this
paper, we considered all these defects and proposed a simple
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constructed EMS based on reliable heuristic approach of coy-
ote optimization algorithm (COA), as it provides a balance
between the exploration and exploitation during the optimiza-
tion procedure, this feature prevents the algorithm to fall in
local optima.

Il. PROBLEM FORMULATION

In hybrid FC/BS/SC, it is important to optimally manage the
energy between the energy elements for enhancing the hybrid
system performance. This job can be achieved by minimizing
the consumption of hydrogen in the proposed system with
keeping the state of charge (SOC) for both BS and SC within
their acceptable limits. The core idea of external energy
maximization strategy (EEMS) is based on minimization of
hydrogen consumption through maximizing the demand of
BSB and SCs with achieving their constraints. EEMS is
characterized by its simplicity as it only requires the cost
function of BS and SC and it doesn’t require the calculation of
battery energy which is usually determined empirically [32].
The configuration of EEMS is shown in Fig. 1. Considering
Fig. 1, the inputs to the EEMS are the state of charge (SOC)
of BSB and DC bus voltage. The outputs are the reference
power of BSB and SCs charge/discharge voltage (AV). The
power of BSB is compared with the load demand to estimate
the reference power of FC through the FC current (II;"C). SCs
state (charge/discharge) is evaluated by comparing the sum
of its voltage and reference voltage of DC bus (Vg _rer) With

the actual DC bus voltage.
% " Ibatt boost
Voliage
regulator Toatt_buck”

EEMS
Algorithm

FIGURE 1. EEMS configuration.

In the EEMS optimization problem, two variables have to
be evaluated. They are BSB power and the charge/discharge
voltage of the SCc; x = [Ppasr, AV]. The objective function
to be maximized is the energy supplied by BSB and SCs
during a certain time interval, it can be formulated by the
following [32]:

1
Maximize J = — (Pbaﬂ.AT + 5cr.mﬂ) 1)
Subjected to
Poar AT = (SOC = SOC™™) Vs O @

While the parametric inequality constraints of battery power
and DC bus voltage are described as follows:

min max
Ppan Pparr < Ppan

<
Vdcmin < Vi = ValcmaX (3)
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where Py, is the battery delivered power during sampling
time of AT, C; is supercapacitor rated capacitance, Vé‘c‘in and
Ve denote the boundaries of buss DC voltage, Vi, denotes
voltage of BS and Q is BS capacity.

The conventional EEMS uses fmin function from Mat-
lab toolbox. Therefore, to enhance the performance, fmin is
replaced by a modern optimization algorithm. During the
optimization process, the decision variables are FC output
power, Prc, the battery output power, Py, and the battery
state of charge (SOC). The lower and upper bounds of the
variables under consideration are selected as, Pj?gl =850 W,
Pret = 8800 W, Ppii = 1500 W, Ppiv = 3400 W,
soc™ = 60; SOC™* = 90. The suggested strategy
used COA optimizer for maximizing the objective function
in equation (1) with the related constraints explained in equa-
tion (2). Fig. 2 illustrates the suggested optimization outline.
Both battery SOC and SC voltage are fed to the proposed
EMS based COA, while the outputs are the battery reference
power and charge/discharge voltage of the SC which are
compared with the load and the reference SC voltage. The
mismatch between the SC voltage and reference one is mod-
ified via proportional integral, PI, controller which feeds the
battery converter with the required current. on the other hand,
the difference between the battery power and the demand is
converted to the reference FC current.

Vdc_mf
> FI > Ibatticom'*
( \ AY
soc coA P
Algorithm att BV
Vie 1/ &Vrc Ny
~ @/ %
Proad

FIGURE 2. The suggested optimization configuration.

Ill. A BRIEF OVERVIEW ON OPTIMIZATION ALGORITHMS
A. PARTICLE SWARM OPTIMIZER

PSO simulates behavior of known animal social like fish
schooling and bird flocking [33], [34]. It has two stages to
have in order to find the optimal solution. At first, each parti-
cle shares its information with other particles after moving in
their direction. They can learn how to update their direction
after each iteration and tune the parameters. In the literature,
PSO has been used as an effective tool to solve many opti-
mization problems, including optimal allocation of electric
vehicle charging station and distributed renewable resource
in power distribution networks [35] and global maximum
power point tracking of photovoltaic system under partial
shading [36], [37].

B. GENETIC ALGORITHM
GA is a search heuristic algorithm. The core idea of GA
is extracted from Darwin’s theorem of natural evolution.
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GA reflects the process of natural selection where the fittest
individuals are chosen to continue in the next generation.
During the optimization process, five stages were taken
into consideration. Such stages include; initialization, fitness
function, selection, crossover, and mutation [38].

C. GREY WOLF OPTIMIZER

GWO optimizer inspired by the natural mechanism of ani-
mals [39]. It solves optimization problems through some
stages. Firstly, it searches for some animal as prey. Next,
it surrounds the possible prey(s) by exploitation, doing a
local search for finding the border of sample space. Lastly,
it attacks the prey, doing a local search to find the best value
within a new area.

D. GRASSHOPPER OPTIMIZATION ALGORITHM
Grasshopper Optimization Algorithm (GOA) is proposed by
Saremi et al. [40]. In this method, Grasshopper are insects.
They are deemed a pest because of their harm to crop produc-
tion and agriculture. Even though grasshoppers are frequently
seen separately in nature, they become involved one of the
biggest swarm of whole creatures. The swarm size sometimes
becomes a continental scale and a nightmare for farmers.
Millions of nymph grasshoppers’ leap and shift as rollers.
They eat almost all plants. When nymphs become adults, they
form a swarm in the air. This is how grasshoppers travel over
large distances.

E. MULTI-VERSE OPTIMIZER

MVO is considered as one of the recent optimizer’s developed
by Mirjalili theory [41]. The core idea of MVO is based on
three concepts in cosmology: white hole, black hole, and
wormhole. MVO divides the search process to two main
stages: exploration and exploitation. The concepts of white
hole and black hole are employed for exploring search spaces
by MVO. In contrary, the wormholes are used to explore the
search spaces. More details about the mathematical model of
MVO can be found in [41].

F. SALP SWARM ALGORITHM

Motivated by exploration and foraging attitude of salp in the
deep ocean, Mirjalili et al. [42] reported a novel optimization
technique, named SSA. These creatures form a close chain
called swarm or salp chain. This chain comprises of a leader
salp and a group of followers, which attempt to find the best
region of food via this search method. Likewise, the algorithm
is initialized with an initializing matrix of nxdim, which rep-
resents salps’ positions, where n denotes the agents and dim
is the decision variables. This is a recursive process, where
the position of each salp is updated, as per the information
given by the leader, for devouring the best food (F).

G. SUNFLOWER OPTIMIZATION

Sunflower optimization (MFO) was presented by
Gomes et al. [43] and motivated from the motion of sun-
flower with the sun movement. At every day, sunflowers
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wake and follow the sun like the clock’s needles. Sunflower
motion follows inverse square law radiation which states the
radiation intensity is inversely proportional to the square of
the distance. When the distance between the plant and the sun
is less, the amount of received radiation becomes great and
vice versa. The first step in MFO is initializing a population
includes individuals, the fitness function of each individual is
calculated to determine which individual will be switched to
the sun.

IV. PROPOSED COYOTE OPTIMIZATION ALGORITHM
Coyote optimization algorithm (COA) was first proposed by
Pierezan et al. in 2018 [31], the idea of such a metaheuristic
algorithm is motivated from canis latrans species that live
in North America. COA is interested in acting the coyotes’
social society and its acclimation to the environment. The
main advantage in COA algorithm is to maintain a balance
between exploration and exploitation phases in the optimiza-
tion process. COA is unlike GWO as it does not care of
hierarchy and hegemony rules followed in these animals.
Additionally, it doesn’t depend on only hunting preys fol-
lowed in GWO but also the social structure and experiences
interchange performed by the Coyotes. They are character-
ized by cooperative features as they move toward the prey in
a group while they have a desire to devour it individually.
Coyotes have a strong sense of smell by which the prey
location can be identified. In the hunting process, Coyotes
attacks they prey in a group, this action requires the agents to
update their positions to better ones. When Coyotes’ hitting
their adversaries, it is well prepared with a threat probability
and it surges an excessive random distance away from its
current position. The population initiated in COA is divided
into N, packs with N, coyotes, the approach begins with
initializing coyotes’ global population, the social condition,
soc, of ¢ coyote in p™ pack can be initialized as follows:

sodl’t = Ibj + rj. (ubj — Ib)) 4

where Ib; and ub; are the lower and upper limits of variables
to be designed and r; is a random number in the range [0, 1].
The adaptation of the coyotes in the present social conditions
is represented as a fitness function which can be calculated as
follows:

fitl" = fE" (soc") Q)

At the beginning of the algorithm, the coyotes are randomly
distributed to packs, they may leave their packs or join to
another one, this action can occur with a probability of,

P, = 0.005.N? (6)

The process of transferring the coyotes between the packs
helps in increasing the populations’ interactions with enhanc-
ing their cultures. One alpha is selected from three alphas in
COA and given as follows:

alpha”' = {soc’j" |argc={1’2’~_"NC} min f (soc’j")} @)
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In COA, it is assumed that all coyotes are organized ade-
quately to share the social culture. Therefore, the coyotes’
information are linked and computed as cultural tendency as
follows:

01()1’\5(-+1> . N¢ is odd
Bkl
cultjf’” — 0”&’ + Ofiﬂ) ) ®)
% otherwise

where OP*' is the ordered social conditions of coyotes in
park p at 1" time instant. The ages of coyotes, age[g’t, are
calculated in COA as the birth of new one is represented by
combining randomly selected two parents’ social conditions
with considering the influence of environment as follows:

socp’t.

Iy

pupf’t = socfz’fj rndj < Ps+ Py or j = j )

R; otherwise

rndj < Pgor j = ji

where soc,l,j”" and soc,z,jp” are the social conditions of
two random coyotes r; and r in the pth pack at time ¢, j;
and j, are two dimensions of the problem which are selected
randomly, Pj is the probability of scatter, P, is the probability
of association and R; is a random number in the range of
variables’ bounds. Both P, and P, lead the cultural variety of
the coyotes from the pack, they can be calculated as follows:

Py =1/p (10)
P, =1 =PI/ (11)

where D is the problem dimension, inside the pack, there are
some rules control the processes of birth and death of the
coyotes, two parameters are presented in COA for simulating
such rules which are the solution groups representing the
worst fitness function, w, and the coyotes’ number in such
group, ¢. Flowchart given in Fig. 3 shows the governing
rules for such process. The cultural interaction in the pack is
simulated by assuming that the coyotes are under alpha effect,
81, and pack effect, 6,, which can be calculated as follows:

81 = alpha”™' — soc, (12)
8y = cult’! — socg;tz (13)

where c,1 and ¢, are random coyotes. The social condition
of the coyote is updated based on the alpha and pack effects
as follows:

SOCIZ’Z’MW — Socg,t,old + Vl~81 —+ r2,82 (14)

The updating process of the social condition is performed
according to the following condition:

SOC[C),I,}’IEW ﬁ.tg,t,new <ﬁtc]‘7,t

soc’é"t

The steps followed in COA are summarized in the flowchart
shown in Fig. 4.

The proposed solution methodology incorporated COA is
shown in Fig. 5. At the beginning, a population matrix of size

soch T = (15)

otherwise
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Calculate ® and

*  Parents survive
*  The only covote in @

e Parents survive
*  The oldest coyote in

. ]

FIGURE 3. Birth and death rules followed in COA.

Parents die

N, x dim is initialized including probable solutions for BSB
power and the charge/discharge voltage of the SC. Each row
of the population matrix represents a probable solution for the
problem. For each row, the steps of COA given in Fig. 4 are
performed with observing the Hydrogen consumption for
each pack. The pack with the minimum hydrogen consump-
tion is selected as the best solution.

TABLE 1. Electrical specifications of the system under study.

Specifications of FC

Rated current (A) 250
Rated voltage (V) 41.15
Number of cells 65
%Efficiency 50
Operating temperature (° C) 45
Air flowrate (Ipm) 732
Fuel pressure (bar) 1.16
Air pressure (bar) 1
Specifications of battery

Rated voltage (V) 48
Capacity (Ah) 40
Maximum capacity (Ah) 40
Full charged voltage 55.88
Rated discharge current (A) 17.4
Internal resistance (Q2) 0.012
Specifications of SC

Rated capacitance (F) 15.6
Series resistance () 0.15
Rated voltage (V) 291.6
Surge voltage (V) 307
Number of capacitors in series 108
Number of capacitors in parallel 1
Number of layers 6

V. RESULTS AND DISCUSSION

The system under study comprises a hybrid generating
source of a fuel cell (FC), battery and supercapacitor (SC),
the Simulink/Matlab model is shown in Fig. 6. The system
is designed to supply a load of aircraft with a load profile
shown in Fig. 7. Table 1 shows the specifications of the
system component, the system comprises proton exchange
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Initialize N packs including NV, covotes using eqn. (4)

v

Caleulate the corresponding fitness
function using eqn. (5)

¥

Determine the covote represents the
alpha of the pack using eqn. (7)

p=ptl

]

Calculate the cultural tendency of
the pack using eqn. (8)

¥

=1

vt

Calculate the new social
condition using eqn. {(14)

v

Update the social condition using
eqn. (13)

=i+

Last coyote?

Perform birth and death process inside the
pack (eqn. (6) and flowchart in Fig. (1)

FIGURE 4.

COA flowchart.

Perform packs’ transitions
using eqn. (6)

¥

Lipdate ages of covotes

Mo

Yes

Print the zlobal best covote —Il-
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Input the data of FC,
battery, SC and load

v

Initialize a population dimension of N,xdim
represents probable solutions (Ppan, AV)

v
P=1

| 1

\Al

Perform the steps given in Fig. 4

v

Next probable solution

Observe the hydrogen consumption

A

Print the best Hz consm® and
corresponding Pp,and AV

FIGURE 5. The proposed methodology incorporated COA.

membrane fuel cell (PEMFC) of 10 kW power, its terminal
voltage is 30-60 V, battery of type Li-ion with rated voltage
of 48 V and 40 Ah capacity and 15.6 F, 291.6 V SC stack
with six cells connected in series, each one has 48.6 V, boost
converter of 12.5 kW power is employed to regulate the
terminal voltage of PEMFC. Additionally, two converters are
used with battery, 4 kW boost and 1.2 kW buck converters,
for regulating charging and discharging processes. To avoid
overcharging of both battery and SC, 15 kW protecting resis-
tance is used in the proposed system. An inverter of 15 kVA,
240 V/200 V and 400 Hz frequency is employed to supply
the load of aircraft. Referring to the Simulink model of the
hybrid system shown in Fig. 6, the reference FC current is
supplied to boost converter to extract its maximum value,
while the reference current of the battery is supplied to the
two converters at its terminal to generate battery reference
voltage and DC voltage during the discharging process, Vg,
and Vpcz. The proposed coyote optimization algorithm is
represented in Simulink model with a block named COA,
the battery state of charge (SOC) and load profile are fed
to the COA block then it gives the reference FC current,
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I, and reference battery current, I, .. The objective of the
proposed COA is minimizing the consumption of hydrogen.
Table 2 shows the controlling parameters of the proposed
COA. To confirm the reliability of the proposed methodol-
ogy, comparative study with other metaheuristic optimization
approaches, external energy maximization strategy (EEMS),
particle swarm optimization (PSO), genetic algorithm (GA),
grey wolf optimizer (GWO), grasshopper optimization algo-
rithm (GOA), multi verse optimizer (MVO), salp swarm opti-
mizer (SSA) and sunflower optimizer (SFO), is performed.
The approaches are selected as they are the same in nature
inspired swarm optimization. The optimal hydrogen con-
sumption obtained via the proposed COA in comparison with
other approaches are tabulated in Table 3. It’s clear that the
minimum Hj consumption is 19.3778 gm obtained via the
proposed COA while the worst value is 31.6774 gm obtained
via EEMS. Fig. 8 shows the bar-chart of the optimal H, con-
sumption obtained via COA compared to other approaches.
The hybrid FC, battery, and SC presents an emergency
source used in the landing of the aircraft (load), first, the load
is supplied via 3-phase source and during this period the
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FIGURE 6. Hybrid FC/battery/SC Simulink model.
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FIGURE 7. Load profile.

TABLE 2. The proposed COA controlling parameters.

Parameters Value
Maximum Iteration 300
Number of packs 100
Number of coyotes 5

FC is employed to recharge the battery until it reaches to
its nominal power. When the main source is interrupted,
the hybrid system is employed to supply the essential loads.
The SC is discharged and its terminal voltage becomes less
than the reference voltage, at this situation battery supplies
power to regulate the DC bus voltage to its reference values.
During this situation, FC supplies the total power to load
and also recharge the SC. When FC reaches to its maximum
power, the battery is employed to supply extra power to load
until it reaches to its maximum power then SC shares the
load. The time response of H, consumption obtained via
the proposed COA in comparison with the others is shown

179416

TABLE 3. Hydrogen consumption obtained via the proposed COA and
other approaches.

Methodology H: consumption
(gm)
EEMS 31.6774
PSO 25.4348
GA 21.4513
GWO 19.4000
GOA 19.4176
MVO 19.4308
SSA 19.40
SFO 19.4817
Proposed COA 19.3778
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FIGURE 8. Bar-chart of optimal Hydrogen consumption obtained via the
proposed COA and other approaches.
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in Fig. 9. While the variation of consumed hydrogen, in
Im, with time obtained via all studied approaches is shown
in Fig. 10. The responses confirmed the superiority of the
proposed COA as it provides the minimum H» consumption
compared to the others.

VOLUME 7, 2019



A. Fathy et al.: Recent Coyote Algorithm-Based EMS for Enhancing Fuel Economy of Hybrid FC/Battery/SC System

IEEE Access

== =EEMS s SSA =sss= GA ====PSQ == =SFQ ===== GOA == ==MVO wmmm=Proposed COA ===+ GWO

H2 consumption (Im)

o 50 100 150 200 250 300 350
Time (sec.)

FIGURE 9. Variation of hydrogen consumption for all studied approaches.
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FIGURE 10. Time response of H2 consumption in gm obtained via COA
compared to the others.
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FIGURE 11. Variation of FC, battery, SC and load powers with time.

The variations of FC, battery and SC powers with time are
shown in Fig. 11, in addition to the load profile. The response
confirmed that FC represents the main emergency source
while the battery and SC act as auxiliary suppliers employed
to cover extra load in case of FC extracts its maximum power.
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FIGURE 12. Time response of battery SOC obtained via all studied
approaches.

Fig. 12 shows the battery SOC variation with time. At the
beginning of the simulation, the battery SOC is nearly equal
to 55% (nearly half fully charged), then the SOC is increased
as at this period, FC is employed to charge the battery.
At t = 40 sec., the main source is interrupted and the hybrid
system is used to supply load, therefore; the battery SOC
begins in decreasing until the end of the simulation. Referring
to Fig. 12, the minimum SOC is obtained via the proposed
COA, this confirmed the dependency on the battery to cover
the load is more than dependence on fuel cells, resulting in
less hydrogen consumption and this confirms the preference
of the proposed method in minimizing the amount of H»
consumption compared to the other approaches.

Additionally, the efficiency of the proposed COA com-
pared to the others are calculated and tabulated in Table 4,
the efficiency is calculated via dividing the average load
demand by the average generated power from the hybrid
system. The proposed approach succeeded in achieving the
highest efficiency of 82.09% while the worst efficiency is
68.27%obtained via GWO.

TABLE 4. Efficiency of the proposed COA compared to other approaches.

Strategy Efficiency (%)
EEMS 74.15

PSO 73.6

GA 80.20

GWO 68.27

GOA 78.31

MVO 80.34

SSA 81.22

SFO 79.47
Proposed COA 82.09

Finally, one can get that, the obtained results confirmed the
superiority and efficiency of the proposed COA in solving the
problem of Hy consumption of hybrid emergency FC, battery
and SC employed to supply aircraft load in landing situations.
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VI. CONCLUSION

An efficient energy management strategy (EMS) based on
a recent coyote optimization algorithm (COA) applied to a
hybrid electric power system is proposed in this research
paper. Such system comprises fuel cell (FC), battery and
supercapacitor. The key objective of the suggested EMS
is to reduce consumed hydrogen of the system. To test
the superiority and validity of COA, a comparison with
other methods is carried out. Such methods include exter-
nal energy maximization strategy (EEMS), particle swarm
optimizer (PSO), genetic algorithm (GA), grey wolf opti-
mizer (GWO), grasshopper optimization algorithm (GOA),
multi-verse optimizer (MVO), salp swarm algorithm (SSA)
and sunflower optimization (SFO). The obtained results con-
firmed the superiority of the proposed COA. Using COA
reduced hydrogen consumption by 38.8% compared to the
EEMS method. Based on the minimum hydrogen consump-
tion, the strategies are ranked from the best as following;
COA, GWO, SSA, GOA, MVO, GA, PSO, and EEMS.
In future works, it’s recommended to consider the system
overall cost in optimization process of hybrid FC/Battery/SC
with EMS.
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