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ABSTRACT The Internet of Things (IoT) is a network of distributed devices or sensors connected through
the internet to allow gathering and sharing of data. The data generated by these devices is affected by
anomalies or abnormal behaviour due to attack issues, or breakdown in devices, as examples. However,
most current anomaly detection systems rely on labelled data, while the class labels for IoT data are usually
unavailable. Furthermore, the manual labelling task is expensive and time-consuming to perform due to the
need for domain experts. More importantly, the volume of data in the IoT is growing rapidly, creating a need
to predict the classification labels for future data. This study proposes a Hybrid Learning Model which uses
both Clustering andClassificationmethods (HLMCC) to automate the labelling process and detect anomalies
in IoT data. The model consists of two practical phases, automatic labelling and detecting anomalies. First,
the HLMCC groups the data into normal and anomaly clusters by adopting Hierarchical Affinity Propagation
(HAP) clustering. Second, the labelled data obtained from the clustering phase is used to train the Decision
Trees (DTs) and to classify future unseen data. The results show that the HLMCC is able to automate the
labelling of data, which is beneficial to minimize human involvement. Moreover, HLMCC outperforms the
DTs on the originally labelled datasets and the state-of-the-art model over a wide range of evaluation metrics
based on the average ranks. HLMCC produces the highest average ranks against other models in terms of
False Positive Rate (FPR), recall, precision and the Area Under the Precision-Recall curve (AUCPR) with
1.8, 1.6, 1.8 and 1.8, respectively.

INDEX TERMS Anomaly detection, Internet of Things, machine learning, unlabelled data, sensor data.

I. INTRODUCTION
Many organizations and academic sectors need to pay atten-
tion to the Internet of Things (IoT), owing to the current
potential to automate our lives ‘‘smartly’’. The IoT is a
network of distributed devices or sensors connected through
the internet to allow the gathering and sharing of data. The
IoT has been found in several application domains such as
smart homes, wearable devices, smart cities, health care,
agriculture, transportation, and industrial sectors of industry.

IoT devices generate data that may behave inconsistently
owing to abnormal or anomaly behaviour as a result of attack
issues or breakdown in devices, as examples. An anomaly,
in this context, means an abnormality in the data that dif-
fers from the predicted pattern [1]. The characteristics of an
anomaly are: different from the norm and occurring rarely in
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the data [2]. Anomaly detection is the technique of identifying
rare observationswhich do not follow the expected behaviour.
It can be applied within different domains and diverse indus-
tries such as intrusion detection, fraud, and fault detection,
as examples.

The common technique for performing anomaly detection
involves the use of machine learning algorithms. This helps to
improve the performance of the system by learning from and
using data from previous experiences. There are three types of
machine learning task, which are supervised, unsupervised,
and semi-supervised learning. Supervised learning trains the
model based on predefined labelled data, while unsupervised
learning finds similarities between unlabelled data. However,
semi-supervised learning deals with partially labelled data to
build the model.

Most current anomaly detection systems rely on labelled
data which may not be available or it is time-consuming and
expensive to produce. In addition, the data collected from IoT
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devices usually lack the class label and form as unlabelled
data. Moreover, the volume of IoT data is growing at an
increasingly rapid rate, creating a need to predict, detect,
and classify any anomaly for future unseen data. To over-
come these limitations, this paper proposes aHybrid Learning
anomaly detection Model in IoT that employs Clustering and
Classification approaches called HLMCC.

The HLMCC model consists of two functional phases:
automatic labelling and detecting anomalies. In the automatic
labelling phase, Hierarchical Affinity Propagation (HAP)
clustering is applied to automate the labelling process, which
helps to address the issue of unlabelled data and can be
helpful in reducing human intervention. In detecting anoma-
lies, the obtained labelled data is used to train the Decision
Trees (DTs) to detect and classify future unseen data. The
HLMCC model is evaluated over different clustering and
classification validation techniques such as silhouette coef-
ficients and recall, respectively.

In particular, the main contributions of this article are as
follows:
• To propose the HLMCC model based on clustering and
classification approaches to automate data labelling and
to detect anomalies in IoT.

• Label the data by employing the HAP clustering
algorithm.

• Compare HAP with other clustering algorithms such as
Inverse Weight Clustering (IWC).

• Compare HLMCC against the DTs on the originally
labelled data and the existing model.

• For reproducibility purposes, the implementation of the
proposed HLMCC model is available in GitHub.1

This paper represents an extension of the published paper
in the Proceedings of the 6th Swiss Conference on Data
Science [3]. This extended version improves the results in
detecting anomalies for the proposed model against DTs
on the originally labelled data, and the state-of-the-art
model, applies the Synthetic Minority Over-sampling tech-
nique (SMOTE) by adding synthetic data to the original data,
and describes the proposed algorithm in more detail. Also,
it presents expanded experimentation that focuses on detect-
ing positive samples correctly, with new experiment settings
and results, and using additional different evaluation metrics
such as the Area Under the Precision-Recall curve (AUCPR).

The paper is organized as follows: Section II provides a
review of the machine learning workflow for anomaly detec-
tion in IoT. It then explains the existing anomaly detection
approaches in IoT. Sections III, IV andV present the proposed
HLMCC model, the experimental set-up, and discuss the
experiment results, respectively. Finally, Section VI presents
the conclusion of the paper.

A. MOTIVATION
The motivation for this work is the widespread use of day-
to-day devices and sensors, such as weather sensors, in IoT,
meaningmore data can be collected and analysed. This data is

1https://github.com/nrghanmi/HLMCC_AD_IoT

the foundation of any system for making intelligent decisions
on future actions and plans. The availability of labelled data is
considered one of the major challenges in anomaly detection
systems [1], while the class labels (normal/anomaly) for IoT
data are usually unavailable.

Generally speaking, machine learning algorithms (super-
vised, unsupervised or semi-supervised) provide effective
methods for detecting, identifying, and classifying anomalies.
The main benefit of all approaches is the ability to learn from
data that is widely available in the IoT environment. There-
fore, it is a challenging task to build an anomaly detection
model that relies entirely on supervised learning algorithms,
due to the cost of producing the labelled data [1], [4].

Furthermore, Cisco estimates that the data generated from
the IoTwill reach 847 Zettabytes (ZB) by 2021, but the stored
amount will be relatively small, at approximately 7.2 ZB
{Brazdil, 2000 #150} [5]. It means that the IoT data is grow-
ing quickly and there is a need to predict anomalies in new and
future data, which, from a practical perspective, are limited in
unsupervised learning algorithms.

II. LITERATURE REVIEW
To construct a machine learning model, there are diverse ele-
ments which should be considered, such as datasets, the type
of learning algorithm, feature selection and evaluation tech-
niques. For anomaly detection, the data is collected from IoT
devices and placed into data storage. Then, machine learning
techniques (supervised, unsupervised or semi-supervised) are
implemented. Finally, validation techniques are used to eval-
uate the performance of the model.

The existing solutions based on machine learning algo-
rithms (supervised, unsupervised or semi-supervised) for
anomaly detection in IoT are described in the following
sub-sections.

A. SUPERVISED LEARNING
Supervised learning builds a model based on predefined
labelled data. Training and testing are the two phases for
supervised learning [6]. In the training phase, we build the
model using the training data, while in the testing step,
the trained model provides the class label for unseen data.
There is a wide range of learning algorithms such as Neu-
ral Networks (NNs), Support Vector Machines (SVMs) and
K-nearest neighbours (KNNs).

Different learning approaches such as single, ensemble or
hybrid models are explained by Tsai et al. [7], that are used
to classify the data into either normal or abnormal classes.
Single models consist of a single classifier such as KNNs,
SVMs, NNs, whereas ensemble models improve the system
performance by including diverse weak classifiers, while
hybrid models consist of more than two classifiers in a model
such as the neuro-fuzzymodel. Twomain steps are performed
in hybrid models [8]: firstly, the model uses the data to
produce the intermediate results. Secondly, the intermediate
results are used as input to output the final results.
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The following sections present solutions that are based on
single, ensemble, and hybrid models.

1) SINGLE AND ENSEMBLE MODELS
Single models consist of only one method for the classifi-
cation process. For securing the IoT network, the paper [9]
suggested a solution based on NNs to 4,000 observations
collected by simulating ten sensors. The model consists of
two experiments with different features to train NNs. The first
experiment includes two parameters, which are device ID and
sensor value, plus the delay value in the second experiment.
In terms of accuracy, both tests performed at over 99%, with
less than a 1% negative rate in the second experiment.

Jain and Shah [10] proposed a model to extract the
desired information from the Citypulse project for Aarhus,
Denmark [11], [12], by comparing three algorithms, namely
NNs, binary SVMs, and multiclass SVMs. In both SVMs
cases, various types of kernels were applied, such as linear,
polynomial, and Radial Basis Function (RBF). The results
showed that both cases of SVMs performed better than NNs.
More precisely, the RBF kernel was better than the linear
kernel in terms of accuracy for binary SVMs. In multi-class
SVMs, the polynomial kernel performed better than the linear
kernel and RBF kernel in terms of accuracy.

Furthermore, Pachauri and Sharma [13] detected anoma-
lous behaviour in the medical domain by using the MIMIC
dataset [14], [15]. They applied the RandomForest (ensemble
model), and KNN and J48 decision trees (single models).
In terms of the performance, the results showed that the
ensemble model was better than single models.

2) HYBRID MODELS
Hybrid models consist of more than two machine learning
algorithms for the classification process. Pajouh et al. [16]
proposed a model for intrusion detection based on anomaly
detection in the IoT network. The model consists of
two phases, namely Two-layer Dimension Reduction and
the Two-tier Classification (TDTC) were applied to the
NSL-KDD dataset [17]. To reduce the complexity of the
datasets, the Principal Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA) were used as the first step.
For classification propose, they have applied two classifiers,
Naive Bayes (NB) and KNN. The data is input using the
NB method to detect the anomaly behaviours. Since the NB
is a weak classifier [18], the normal data is passed to the
certainty factor version of KNN (CF-KNN) to detect the class
of normal and abnormal behaviours. The results revealed that
the model achieved the highest accuracy of 84.86%.

Alghuried [19] combined two algorithms - the IWC and
C4.5 decision tree - that was applied to the Intel Lab
datasets [20]. The IWC algorithm was used to cluster the data
into normal and abnormal. It then used the results to train the
C4.5 decision tree. The results showed that the accuracy of
the model was 97% and the recall was 98.3%. In addition,
the application of density-based spatial clustering of appli-
cations with noise (DBSCAN) and SVMs were proposed by

Emadi and Mazinani [21] to the Intel Lab datasets [20]. The
selection of the features (temperature, humidity, and voltage)
was the first step in the model. In DBSCAN, the Coefficient
Correlation (CC) was applied to adjust the values of Epsilon
and MinPts. It then grouped the data to normal and anomaly
clusters, based on the density. Finally, the SVMs was trained
by the labelled data that gained from the clustering step.
The accuracy of the model over different experiments was
over 94%.

B. UNSUPERVISED LEARNING
Unsupervised learning involves dealing with unlabelled
data by finding the similarity among the data points to
cluster them. There are many unsupervised learning algo-
rithms, such as K-means, DBSCAN clustering, and PCA.
Morrow et al. [22] made a comparison between three algo-
rithms: K-means, gaussian kernel density estimation, and
DBSCAN. The proposed model used a dataset from a Cray
supercomputing facility featured in Usenix’s Computer Fail-
ure Data Repository [23]. The results showed that DBSCAN
was able to effectively detect the anomaly and avoid false
positives. Furthermore, based on location density, DBSCAN
ranked only truly anomalous data.

Four machine learning algorithms are compared in [24]
namely Mahalanobis Distance (MD), Local Outlier Fac-
tor (LOF), hierarchical clustering, and one-class SVM
(OC-SVM). The model used the data of the network state
that was obtained over a period of 14 days in the streets of
Barcelona. Different evaluation metrics were used to evaluate
the models such as True Positive Rate (TPR), False Posi-
tive Rate (FPR), and F-score. Also, Feature Vector 1 (FV1),
Feature Vector 2 (FV2) and Feature Vector 3 (FV3) were
selected as different feature selection cases. FV1 includes
the sensor reading and the timestamp, and FV2 contains
FV1, the sequence number of the application packet, and the
battery level. FV3 includes FV2, and other features such as
the number of receivedMACACK andCTS. In terms of TPR,
the results revealed that OC-SVM with FV2 (less than 5% in
FPR) was achieved over 75%.

Martí et al. [25] combined two methods, which were
YASA and OC-SVM to overcome a large amount of unla-
belled data collected from sensors. YASA is a method to seg-
ment the data into blocks, which is useful to overcome certain
limitations in the data such as inconsistency; the segmented
data is then passed toOC-SVM. Themodel applied to the data
was obtained from 64 sensors in the operational system over
a period of six months in 2012. TheMcNamara statistical test
showed that the proposed model outperformed the other solu-
tions such as OC-SVM, and also statistical Confidence Inter-
vals (CIs). Inoue et al. [26] dealt with the complex system by
applying Deep Neural Networks (DNNs) and OC-SVM. The
model used the data collected from the cyber-physical system
called the Secure Water Treatment (SWaT) dataset [27], [28].
In terms of precision and F-score, DNNs were better
than OC-SVM, and OC-SVM was slightly better in the
recall.
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C. SEMI-SUPERVISED LEARNING
Semi-supervised learning deals with a small volume of
labelled data and a large volume of unlabelled data to build
the model.

Meng et al. [29] proposed a LogClass to detect and classify
anomalies from switch device logs. The proposed model was
applied to data collected from tens of millions of switch
logs over different data centres. The LogClass model used
the bag-of-words method to show the patterns of word
combinations. It then used the positive samples (anoma-
lies) and unlabelled data to build a PU learning model
(learning from Positive and Unlabelled data). In this step,
the results showed that the LogClass achieved a 99.515%
F-score. Later on, the anomaly logs were used to build a
multi-class model to classify anomalies in their appropriate
categories. The results indicated that the LogClass achieved
95.32% and 99.74% for Macro-F1 and Micro-F1 scores,
respectively.

Zhang et al. [30] proposed a model for Anomaly Detection
with partially ObservedAnomalies (ADOA), which consisted
of two phases. First, observed anomalies were clustered into
k clusters, and the unlabelled data were grouped into potential
anomalies and reliable normal observations, according to the
isolation degree and similarity score. Second, each observa-
tion was weighted, and the weighted multi-class model was
built to differentiate the anomalies from normal observations.
The proposedmodel used synthetic data, different benchmark
datasets, and collected data for malicious URLs. In terms of
the Area Under the Curve (AUC) and accuracy, the results
showed that the ADOA was better than unsupervised, super-
vised, and PU learning.

In general, previous studies have almost exclusively
focused on building a model based on either the supervised or
unsupervised mode. The former requires predefined trained
labelled data, while the latter deals with unlabelled data by
finding similarities within data to group them. The approach
proposed by Alghuried [19] cannot be considered conclusive
because IWC clustering is required to determine the opti-
mal number of running k-means to obtain the best cluster
results.

In this study, we employ HAP clustering to label the data,
which considers all data points as exemplars until a set of
good exemplars is selected. This means there is no need to
determine the optimal number for running the algorithm, as in
IWC [19]. Moreover, we use different validation techniques
to measure the quality of the clustering results, such as the
silhouette coefficient.

To provide an effective solution for labelling and detect-
ing anomalies, we propose a hybrid learning model called
HLMCC, for anomaly detection in IoT using both clustering
and classification algorithms. The HLMCC model applies
HAP clustering to automate the data labelling, which helps
to reduce human intervention and address the issues of unla-
belled data. The classification approach is then applied to the
obtained labelled data to train the DTs to help with anomaly
detection for future unseen data.

III. THE PROPOSED HLMCC
The conceptual phases of the HLMCC model are shown
in Figure 1. The HLMCC model consists of two phases:

FIGURE 1. The HLMCC model.

1. Automatic Labelling: Employing HAP clustering to
classify the data label into normal and abnormal
clusters.

2. Detecting Anomalies: The labelled data obtained from
the clustering is used to train DTs.

The HLMCC model applies Algorithm 1, which receives
unlabelled data as input and classifies the data into normal
and abnormal classes as output. The two phases are explained
in detail in Sections A and B.

Algorithm 1 HLMCC algorithm
Input: D: Unlabelled dataset
Output: Classified data as anomaly or normal
1: Employ HAP algorithm to cluster D into two groups,
2: LabelD using the clusters, cluster 1: anomaly and cluster
2: normal,
3: Split D into two partitions Dtr for training and Dst for
test,
4: Train the DTs using Dtr ,
5: Classify Dst as an anomaly or a normal label using DTs.
6: end

A. AUTOMATIC LABELLING: CLUSTERING
In automatic labelling, clustering is used to group the data
points that are similar to each other in clusters. However, the
characteristics of the application domain play an important
role in selecting the appropriate clustering algorithms from
a wide range of algorithms. Partitioning clusters such as
K-means assumes that each cluster has a spherical shape [31].
For anomaly detection in IoT, an algorithm that produces
clusters with no assumptions regarding their shape is needed.
Most importantly, which clusters are normal or anomalous
must be assumed. It is then assumed that the clusters with
a large number of instances are considered normal, whereas
those with a small number of instances are considered
abnormal [32].

VOLUME 7, 2019 179495



N. Alghanmi et al.: HLMCC: Hybrid Learning Anomaly Detection Model for Unlabeled Data in IoT

One promising direction to enhance the results of hierar-
chical clustering methods is to integrate themwith other clus-
tering techniques, known as multiple-phase (or multiphase)
clustering [31]. HAP applies Affinity Propagation (AP) as
a first step before employing agglomerative clustering to
join clusters together. AP [33] considers all data points as
exemplars and exchanges messages between them until a set
of good exemplars is selected. One of the main advantages
of AP is that there is no need to determine the number of
clusters beforehand; other K-centres are sensitive to an initial
number of K.

AP works by accepting two inputs (similarity matrix and
preferences). Preferences are used to measure how a data
point is suited to be an exemplar (set to the median of the
similarity matrix). Two types of messages are exchanged
between the data points. First, Responsibility: r (i,k); this
is sent from a data point i to a candidate exemplar point k
to measure how appropriate k is to be an exemplar for i,
considering other potential exemplars. Second, Availability:
a (i,k); this is sent from a candidate exemplar point k to a point
i to measure how appropriate it would be for i to choose k as
an exemplar, taking into account the support from other data
points showing that k should be an exemplar. AP produces
flat clusters and can be extended to be HAP, which works by
finding exemplars at each layer via sending information up
and down [34].

B. DETECTING ANOMALIES: CLASSIFICATION
In detecting anomalies, a Decision Tree (DT) is used to
classify the data as an anomaly or a normal class label. A DT
is a simple type of machine learning algorithm, which works
by splitting the data continuously until reaching leaf nodes.
The leaf node contains the class label. There are different
DT algorithms, such as classification and regression tree
(CART), ID3, and C4.5 (J48). In our experiment, CART was
used.

IV. EXPERIMENTAL SET-UP
The following sections introduce the datasets and describe
data pre-processing.

A. DATASETS
This study is focused on IoT data, so this experiment was
applied to two available IoT datasets. All datasets have a
ground truth, which helps to later validate the model. The
description of each dataset is given below.

1) LWSNDR DATASET
The Labelled Wireless Sensor Network Data Reposi-
tory (LWSNDR) is a real dataset gained from physical sen-
sors (indoor and outdoor) that comprises four datasets over
different scenarios [35], [36]. Two scenarios for each type
of sensors (indoor and outdoor) are applied: single-hop and
multi-hop cases. The single-hop case consists of a sensor and
head station, plus a router in the multi-hop case.

Four input features are used for each dataset, Reading#,
Mote ID, Humidity and Temperature. Over six hours, with a
five-second interval, both humidity and temperature readings
were gathered. LWSNDR is designed for binary classification
task which consists of two classes: ‘‘0’’ for the normal data
and ‘‘1’’ for the anomaly data. Both temperature and humidity
were increased by using hot water to introduce anomalous
behaviour.

2) LANDSAT SATELLITE DATASET
The satellite dataset reflects the intensity values for the
images collected from satellite observations. The original
classification task for this dataset was a multi-class task.
However, a new version of this dataset was delivered by
Goldstein and Uchida [2] for a binary classification task.
They considered two classes: first the normal classes which
were ‘‘red soil’’, ‘‘grey soil’’, ‘‘damp grey soil’’ and ‘‘very
damp grey soil’’. Second, the anomaly classes referred to
non-soil cases, namely ‘‘cotton crop’’ and ‘‘soil with veg-
etation stubble’’. The dataset consisted of 36 attributes in
the range [0,255] that reflected four spectral bands with nine
values for each band.

Table 1 summarizes the datasets used in the experiments.
These datasets have a class imbalance, with one category
(normal) representing the overwhelming majority of the data
points.

TABLE 1. Lwsndr and satellite datasets.

B. DATA PRE-PROCESSING
Data pre-processing involves transforming raw data into an
understandable format. Raw data is often adversely affected
by issues such as incompleteness, inconsistency or noise.
Different techniques are applied to improve and enhance the
quality of the data, such as data cleaning and transformation.
This experiment scaled the data into the range [0,1] after
ensuring there were no missing values in the data. The nor-
malisation is a helpful task for techniques that are realised on
distance measurements like clustering algorithms [31]. The
results of the pre-processing phase were used as inputs to the
clustering algorithm.
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TABLE 2. Adjusted rand index scores for clustering methods. HAP, PAM, HC and IWC stand for hierarchical affinity propagation, partitioning around
medoids, agglomerative hierarchical clustering, and inverse weight clustering, respectively.

V. PERFORMANCE EVALUATION
R Language was employed in our experiment to program
the model and produce the results. After clustering the data,
a clustering label was assigned to each instance as a class
label. Then, each dataset was divided into two parts: 70%
for training and 30% for testing. We ran the experiment five
times with fixed seeds using stratified sampling. Moreover,
SMOTE was used as a further step to enhance the perfor-
mance by adding synthetic data to the original data.

We compared three models using different evaluation met-
rics such as FPR, recall, precision, AUCPR and F-score.
The first model is CART, which applies DTs on the orig-
inally labelled datasets. The second model is the HLMCC
(HAP + CART), which uses the dataset labelled byHAP. The
third model (IWC + CART), proposed by Alghuried [19],
labels the data using IWC.

Sections A and B present the results of the clustering and
discuss the comparison with the state-of-the-art model.

A. EVALUATION OF AUTOMATIC LABELLING
In this experiment, we applied three clustering algorithms in
addition to HAP to compare the quality of the results. These
algorithms were, namely, Partition Around Medoids (PAM),
agglomerative Hierarchical Clustering with complete linkage
(HC), and IWC (existing solution) [19]. Both PAM and HC
have a similar function to HAP; PAM deals with real points
as exemplars, while HC groups the data points as a tree of
clusters. The IWC is based on K-means, which finds the
best means to assign the data points to clusters. This section
explains the results of the clustering algorithms over a variety
of validation techniques on the same datasets.

The Adjusted Rand Index (ARI) [37] was used to evaluate
the label agreements between actual and predicted labels,
ignoring the difference in the label names. For example,
if 0 and 1 are actual labels and 1 and 2 are predicted labels,
the ARI finds the similarity regardless of the label names.
The range of ARI is [−1, +1]: +1 indicates the labelling is
similar, while −1 indicates that the labelling is not similar.
However, the ground truth is required to apply ARI.

As shown in Table 2, HAP has the highest value of ARI
compared to PAM, HC and IWC labels, but there are some
exceptions in PAM, HC, and IWC. PAM has the highest
value for multi-hop indoor dataset, while three datasets have
negative values, meaning that there is a difference between
the true label and the predicted label. This also applies to HC;
four of the datasets are less than HAP with around double

the score, this means that the labelling process is not similar.
Finally, in IWC, the scores are unsteady between negative to
around zero values.

Moreover, silhouette coefficients [38] was also used to val-
idate the quality of different clustering algorithms. Silhouette
coefficients measure the compactness or cluster cohesion,
meaning how close to each other the data points in a cluster
are. Also, it measures the separation among clusters, in terms
of how a cluster is separated from other clusters. The range of
silhouette is between [−1,+1].+1 indicates good clustering
and −1 is poor clustering. The silhouette is calculated using
distance measurements such as Euclidean distance.

In silhouette coefficient plots, positive values indicate that
the clusters are well separated, whilst negative values (under
zero) mean inappropriate separation. As shown in Table 3,
the silhouette plots clearly indicate that the data points are
well separated, with fewer noticeable negative values in HAP.
However, the PAM algorithm reveals that there is instability
between the datasets, such as the single-hop indoor dataset.
For the single-hop indoor dataset, cluster 1 has negative
values, meaning that the data points are assigned to the wrong
cluster as a result of the wrong separation. However, the HC
provides good results for the single-hop indoor dataset, but
then leads to a dramatic change in the satellite dataset with
negative values (under zero). Finally, the IWC results show
that silhouette coefficient plots produce good-quality results
among datasets, with only the single-hop indoor dataset
showing a noticeable negative value in cluster 2.

As shown in Table 3, the number of data points belong-
ing to the clusters can play an important role in decid-
ing whether the clustering methods are appropriate. Firstly,
in HAP, all clusters have a similar percentage of data points
10:4407 and 31:5069. Secondly, in PAM and IWC, some
clusters have almost an equal number of data points, such
as 2493:1924 and 2310:2790, which is logically not accept-
able since this study is concerned with imbalanced datasets.
Finally, in HC, the results fluctuated between unbalanced
to almost equal data points in clusters, such as 5:4412 to
3319:1781.

Table 4 presents scatterplots for the results of the clus-
tering algorithms; the classes of data points are grouped
by colour: red for abnormal and blue for normal cases.
In some datasets, the numbers of data points almost equal;
therefore, the smaller amount of data points are indicated as
anomalous cases. As shown in Table 4, the anomalous points
in HAP are grouped close to each other similar to the original
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TABLE 3. Silhouette plots and the number of data points in each cluster for Single-hop indoor and Landsat Satellite dataset. HAP, PAM, HC and IWC stand
for hierarchical affinity propagation, partitioning around medoids, agglomerative hierarchical clustering, and inverse weight clustering, respectively.
Cluster 1 and Cluster 2 mean the number of data points belong to the cluster.

dataset (ground truth). While, the anomaly points in other
clustering algorithms such as PAM, HC, and IWC are not
always close to each other as shown in the multi-hop outdoor
dataset.

In conclusion, the silhouette plots show that HAP per-
forms quite well across all datasets and is more stable than
PAM, HC, and IWC.Moreover, concerning ARI scores, HAP
outperforms PAM, HC, and IWC. Furthermore, the scat-
terplots show that HAP grouped the data points similarly
to the ground truth, and not as PAM, HC, and IWC. The
results and the plots for the remaining datasets are presented
in Tables 5 and 6.

B. EVALUATION OF ANOMALY DETECTING
Due to the imbalanced dataset, detecting correctly posi-
tive samples (anomaly) is our primary focus. Therefore, to

evaluate the model we used different evaluation metrics such
as FPR, recall, precision, AUCPR and F-score. We used
average ranks [39] to compare HLMCC with other mod-
els, where the best performance is ranked with a 1.
CART uses the original dataset (ground truth), whereas
IWC + CART [19] and HLMCC use clustering to label the
data.

1) FALSE POSITIVE RATE (FPR)
FPR measures how often an anomaly can be predicted while
it is not.

FPR = FP/(FP+ TN ), (1)

where False Positive (FP) refers to normal cases that are
predicted as anomalous and True Negative (TN) to normal
cases that are predicted as normal. The lowest scores for FPR
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TABLE 4. The clustering results for Multi-hop outdoor and Landsat Satellite datasets over the original space: blue for normal and red for anomaly classes.

indicate a good score, which means that there are no normal
cases predicted as anomalous.

Table 7 shows the results in terms of FPR. IWC +
CART [19] has the highest FPR with around 0.06 compared
to HLMCC and CART, meaning that FPR values have a
clear difference among models in satellite datasets. Also,
Table 7 reports the average ranks for each model across the
datasets. HLMCC performs better than CART and IWC +
CART [19] with average ranks 1.8.

2) RECALL
The recall (sensitivity, TPR) is defined as how many anoma-
lous classes are predicted correctly.

Recall = TP/(TP+ FN ), (2)

where True Positive (TP) refers to anomalous cases that are
predicted as anomalous and False Negative (FN) to anoma-
lous cases that are predicted as normal. The highest scores
for recall indicate a good score, which relates to a low false
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TABLE 5. Silhouette plots and the number of data points in each cluster for LWSNDR datasets. HAP, PAM, HC and IWC stand for Hierarchical Affinity
Propagation, Partitioning Around Medoids, Agglomerative hierarchical clustering, and inverse weight clustering, respectively. Cluster 1 and Cluster 2 mean
the number of data points belong to cluster.

negative rate. Table 8 shows the results in terms of recall. For
satellite datasets, both CART and IWC + CART [19] have
the lowest values compared to HLMCCwith 0.7 and 0.95559,
respectively. Moreover, HLMCC performs better than CART
and IWC + CART [19] with average ranks 1.6.

3) PRECISION
The precision is defined as the proportion of correct anoma-
lous cases among all available anomalous cases. The highest
scores for precision indicate a good score, resulting in a
low FPR.

Precision = TP/(TP+ FP), (3)

Table 9 shows the results in terms of precision. In satellite
datasets, both CART and IWC+ CART [19] have the lowest

values compared to HLMCC with 0.82795 and 0.93575,
respectively. In average ranks, HLMCC performs better than
CART and IWC + CART [19] with average ranks 1.8.

4) AREA UNDER THE PRECISION-RECALL CURVE (AUCPR)
The precision-recall curves present the trade-off between
precision and recall. The high area under curve means that
both precision and recall are high. Table 10 shows the results
in terms of AUCPR. In multi-hop indoor, single-hop outdoor
and satellite datasets, HLMCC performs better than other
models with 0.9942, 1 and 0.9922, respectively. In average
ranks, HLMCC performs better than CART and IWC +
CART [19] with average ranks 1.8.
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TABLE 6. The clustering results for LWSNDR datasets over the original space: blue for normal and red for anomaly classes.

TABLE 7. Comparison of the proposed model with the state-of-the-art based on FPR. CART uses the original datasets. FPR and SD stand for the False
Positive Rate value and Standard deviation, respectively. The average rank is based on the FPR value.

5) F-SCORE
F-score is the harmonic mean of both precision and
recall.

F − score = (2 ∗ Recall ∗ Precision)/(Recall+Precision),

(4)

Table 11 shows the results in terms of F-score. It reports the
average ranks for each model across the datasets. HLMCC
and IWC + CART [19] perform with the same average
ranks 1.9.

In conclusion, HLMCC performs better than CART and
IWC + CART [19] over a wide range of evaluation metrics:
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TABLE 8. Comparison of the proposed model with the state-of-the-art based on the recall. CART uses the original datasets. Recall and SD stand for the
recall value and Standard deviation, respectively. The average rank is based on the recall value.

TABLE 9. Comparison of the proposed model with the state-of-the-art based on the precision. CART uses the original datasets. Precision and SD stand for
the precision value and Standard deviation, respectively. The average rank is based on the Precision value.

TABLE 10. Comparison of the proposed model with the state-of-the-art based on AUCPR. CART uses the original datasets. AUCPR and SD stand for the
area under the precision-recall curve value and Standard deviation, respectively. The average rank is based on the AUCPR value.

TABLE 11. Comparison of the proposed model with the state-of-the-art based on F-score. CART uses the original datasets. F-score and SD stand for the
F-score value and Standard deviation, respectively. The average rank is based on the F-score value.

FPR, recall, precision and AUCPR. While both HLMCC
and IWC + CART [19] perform similarly for F-score. Most
importantly, CART and IWC+ CART [19] have fluctuations
in average ranks among evaluation metrics; for example,
CART obtains the second ranks in FPR whereas it obtains
the third ranks in recall and precision.

VI. CONCLUSION
The data in IoT is inconsistent for varying reasons, such as
attack issues, or a breakdown in devices. Anomaly detec-
tion is the technique of finding abnormal patterns in the
data, which is found in different application domains, such
as fault or fraud detection. One of the popular anomaly
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detection techniques involves using machine learning
algorithms.

This paper has proposed the hybrid learning model
HLMCC, which uses clustering and classification approaches
for anomaly detection in the IoT. TheHLMCC consists of two
functional phases, automatic labelling and detecting anoma-
lies. First, the HLMCC employedHAP clustering to automate
labelling of data, which can be helpful to minimize human
involvement and address the issue of unlabelled data. Second,
the obtained data was trained by DTs to predict and detect the
class labels for unseen future data.

The results found that the HLMCC was able to overcome
the absence of labelled data by automating the labelling
process. Moreover, the HLMCC outperformed the DTs on
originally labelled datasets and the state-of-the-art model in
different evaluationmetrics such as FPR, recall, precision and
AUCPR.

In future work, we aim to improve the model and address
certain limitations such as applying and testing different clas-
sifiers, which may help to improve the classification process.
Additionally, selecting features to enhance the detection pro-
cess and reduce the dimensions without the loss of critical
information, especially on datasets like the Landsat satellite
dataset, would be recommended.
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