
Received November 21, 2019, accepted December 7, 2019, date of publication December 12, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2959089

A Firmware Code Gene Extraction Technology
for IoT Terminal
XINBING ZHU , QINGBAO LI , PING ZHANG , AND ZHIFENG CHEN
State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China

Corresponding author: Xinbing Zhu (catcheverysecond@sina.com)

This work was supported by the National Natural Science Foundation of China under Grant 61802432.

ABSTRACT With the development of the IoT technology, an unprecedented number of IoT terminals are
connected to various networks. Commercial-off-the-shelf (COTS) technology is widely used in the IoT
terminal firmware, which results in high code reuse rates. Such firmware is always heterogeneous and closed-
source. It is so difficult to detect and investigate the security risks at the firmware level that their impacts are
faster and broader. In recent years, some firmware security detection technologies based on similarity are
gradually becoming a research hotspot. However, in these studies, the basic issue regarding whether these
foundations comprise an essential basis for comparison and their utility as similarity measures has not been
addressed theoretically. Inspired by biological genes, this paper attempts to supplement a foundation for
cross-platform firmware binary code homology and similarity analysis by mining firmware code genes that
can essentially identify code and exhibit stability, antivariability and heritability. The firmware code gene
extract system(FCGES) is designed and implemented in this paper. FCGES first extracts the features of
firmware code, then numericizes and normalizes them, and finally sublimates them to firmware code genes
by the hypothesis margin. The experimental results show that the firmware code gene extracted by FCGES
has essentiality, stability, antivariability and heritability on different platforms.

INDEX TERMS IoT, IoT terminal, firmware, code gene, similarity, hypothesis margin.

I. INTRODUCTION
With the continuous development of the IoT technol-
ogy, the global IoT has entered a new round driven by
the upgrading of traditional industry and the large-scale
consumer market. An unprecedented numbers of IoT ter-
minals are connected to various networks [1], [2]. These
terminals have firmware that is heterogeneous and closed-
source, which make it difficult to detect and investi-
gate the security risks at the firmware level. And most
firmware use commercial-off-the-shelf(COTS) technology;
thus, code reuse is more common [3], [4]. In recent years,
numerous security incidents regarding IoT terminals have
occurred [2], [5], [6]. It can be seen from these incidents
the same vulnerabilities or malicious code exists in many
products or withinmultiple manufacturers to varying degrees.
Even the long-standing vulnerabilities that have been exposed
still do not have remedial measures [2], [3], [7]–[9]. There-
fore, the homology and similarity analysis of the firmware
code of IoT terminals will be helpful for further research

The associate editor coordinating the review of this manuscript and
approving it for publication was Ahmed Farouk.

on malicious code detection, vulnerability mining, backdoor
discovery and copyright protection.

A. MOTIVATION
Due to the firmware is heterogeneous and closed-source, and
closely related to the hardware, it is difficult to carry out
universal and cross-platform firmware level security detec-
tion [3], [4], [7]–[9], [15]–[20]. In recent years, some secu-
rity detection technologies based on similarity are gradually
becoming a research hotspot [15]–[20]. However, in these
studies, the basic issue regarding whether these foundations
comprise an essential basis for comparison and their util-
ity as similarity measures has not been addressed theoreti-
cally. Instead, these foundations are directly applied to the
actual detection, which in turn verifies the initial hypothesis.
Inspired by biological genes [25], we attempt to address the
issue by mining firmware code genes that can essentially
identify code and exhibit stability, antivariability and heri-
tability. The goal of this paper is also to extract such firmware
code genes and verify their existence, supplementing a basis
link for cross-platform firmware binary code homology and
similarity analysis.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 179591

https://orcid.org/0000-0001-7059-6768
https://orcid.org/0000-0001-8712-3887
https://orcid.org/0000-0003-0060-2151
https://orcid.org/0000-0001-8901-1002

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

This paper proposes a firmware code gene extraction tech-
nology based on the idea of the hypothesis margin, and a
firmware code gene extraction system(FCGES) is designed
and implemented. The experimental results show that the
firmware code genes extracted by FCGES are intrinsic and
exhibit stability, antivariability and heritability.

B. CONTRIBUTIONS
In this paper, we make the following contributions:

(1) We introduce gene theory into the field of firmware.
By defining the firmware code genes from two aspects of
materiality and informativeness, we solve the dilemma that
code genes exist widely in firmware, software and even net-
work space but cannot be accurately described.

(2) We propose a unified and extensible framework for
firmware code gene extraction. More importantly, it exposes
the essential differences between features and genes.

(3) We design and implement FCGES and verify the exis-
tence of the firmware code genes.

(4) Our work provides a theoretical foundation for
cross-platform firmware binary code homology and
similarity analysis.

C. OUTLINE
The rest part of this paper is structured as follows: Section II
shows the relatedworks; Section III introduces firmware code
genes and the workflow of FCGES; Section IV proposes a
feature extraction method for the firmware code; Section V
provides a numericalization and normalization method for
the feature values; Section VI sublimates the firmware code
features extracted in the previous section to firmware code
genes; Section VII presents the experimental steps, scenarios
and results, and verifies the existence of the firmware code
genes; and Section VIII discusses the deficiencies of this
paper and the plans for follow-up works.

II. RELATED WORKS
Traditional code analysis technologies are mainly divided
into dynamic analysis technologies and static analysis tech-
nologies. However, when they are combined with firmware
code, there are some problems.

A. DYNAMIC ANALYSIS
For dynamic code analysis techniques [4], [7]–[13], they need
to run code in a controlled environment and record the run-
ning state and execution results. However, since the firmware
is closely related to the hardware, there are generally two
ways to achieve dynamic analysis of firmware: one is to carry
out on the real hardware; the second is simulation in the vir-
tual environment. Avatar [8], [9] performs dynamic analysis
by partially offloading execution of firmware to actual hard-
ware. However, running on real hardware is not only expen-
sive, but effective for specific devices, with poor versatility
and scalability. FIRMADYNE [4] relies on software-based
full system emulation with an instrumented kernel to achieve
the scalability necessary to analyze thousands of firmware

binaries automatically. Danese et al. [10] performs full sys-
tem emulation to achieve the execution of firmware images
in a software-only environment, i.e., without involving any
physical embedded devices. There are other dynamic stud-
ies [11], [12] that simulate the operation of the firmware in
different forms. However, the first problem to be solved in
dynamic firmware analysis is how to simulate the interaction
with the hardware. Even a small interactive simulation fail-
ure will cause code running crash, thus the universality and
scalability is still not guaranteed.

B. STATIC ANALYSIS
Although static analysis technologies [14]–[24] do not need
actually run code, there are several limitations when they are
applied to firmware. First, they are mostly aimed at the source
level, which is contradictory to the closed-source of IoT
terminal firmware [14]. Second, they are often only aimed at
a single architecture, especially x86, which is contradictory to
the cross-platform deployment of IoT terminal firmware [15].
Third, they have limited capabilities and is often targeted
at specific problem domains, such as C, PHP, Java or cor-
responding binary code, which is contradictory to the fact
that IoT terminal firmware is often a mixture [16]. More
importantly, static code analysis techniques cannot solve the
problem of interaction between firmware and hardware.

In recent years, a number of security detection technolo-
gies for IoT terminal firmware based on similarity have
emerged. For example, similarity analysis based on fea-
tures [3], [22], [23], similarity analysis based on intermediate
representation [17], [18], similarity analysis based on the
graph (or tree) structure [19]–[21], [24], similarity analysis
based on machine learning [3], [20], [21], etc. However, there
are three common questions in these studies: first, whether the
attribute information, such as the comparative features and
graph structure, is essential, that is, whether the information
can identify the code itself in terms of grammar and seman-
tics; second, whether the comparative attribute information is
stable and antivariability, that is, whether the information is
intrinsic and the code can be identified on different platforms;
and third, whether the attribute information compared is her-
itable, that is, whether it exists stably in the same series or
similar code.

There are also some studies on software genes [26]–[29]
which try to address the above problems. However, all of
these studies have not answered three questions. First, what
is the composition of a software gene? The lack of an answer
to this question means that they have not completed the
mapping of biological gene composition to software space.
Thus, when defining a software gene, they only use a ‘‘binary
fragment carrying functional information’’ [26]–[28]. Sec-
ond, the difference between a software gene and feature
has not been identified; that is, the sublimation of software
features to software genes has not been completed, and thus,
the software gene has become a well-known concept that
cannot be clearly defined. Third, the universal processing of
numericalization and normalization of software genes has not

179592 VOLUME 7, 2019

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

been investigated; that is, the transformation from concrete
to general has not been accomplished. Thus, prior studies
mostly focus on the search and matching of specific text
information rather than numerical calculation.

III. OVERVIEW OF THE FIRMWARE CODE GENE
In this section, after analyzing the composition of biological
gene, the structural mapping of the gene concept to firmware
is established, and the definition of a firmware code gene is
given. Then, we present the workflow of FCGES.

A. BIOGENE
It is well known that the concept of a gene in biology did
not exist at the very beginning. FromMendel’s discovery of a
‘‘factor’’ in pea flowers, which can transfer from generation
to generation in a discrete state and determine the external
traits or phenotypes of organisms, to Watson, Crick, Wilkins
and Franklin’s ultimate solution to the mystery of the double
helix structure of DNA,more than a hundred years transpired.
Even today, the understanding of genes is constantly develop-
ing and improving.

A gene refers to a DNA fragment carrying genetic infor-
mation [25]. DNA is composed of a skeleton of glycosyl
and phosphoric acid. Four bases–A, T, G and C–are arranged
in accordance with certain rules on the skeleton. A gene
is a long DNA fragment that contains other information
regarding how to construct proteins. When your body needs
a protein, it reads the corresponding nucleotide sequence to
synthesize it. The next level is the chromosome. There are
23 pairs of chromosomes in humans. Long strands of DNA
are wrapped around a skeleton called histone, which forms
the chromosome. Chromosomes contain many genes, which
are separated by long segments of DNA.

We can see that a gene is composed of basic structural
units, including letters, vocabularies, syntax and grammar.
There are only four letters in the ‘‘alphabet’’ of a gene. They
are the four bases(A, C, G and T). Vocabularies are triplet
codes. As shown in Fig. 1, three linked bases can encode an
amino acid in a protein. ACT codes threonine, CAT codes
histidine, and GGT codes glycine. Proteins are similar to
‘‘sentences’’ encoded by a gene and can chain letters together.
For example, ACT-CAT-GGT encodes threonine-histidine-
glycine. Gene regulation creates rich contexts for these sen-
tences. The regulatory sequence attached to the gene can be
considered as the grammar within the gene [25].

FIGURE 1. The triple cryptographic map.

B. FIRMWARE CODE GENE
Similar to genetic languages in biology, firmware code also
has such basic structural units. As shown in Fig. 2, there

are only two letters in the ‘‘alphabet’’ of firmware code, i.e.,
0 and 1. Vocabulary is a byte in an instruction consisting of
an octet cipher. There are 256 encoding cases. Instructions
are ‘‘sentences’’ encoded by a firmware code gene and can
chain letters together. In different instruction architectures,
instructions have different lengths, compositions and mean-
ings. The control flow of firmware code is the regulation
rule of a firmware code gene, which creates rich contextual
connotations for these instructions and can also be regarded
as the grammar within the firmware code gene.

As we know, not every DNA fragment in biology is a gene.
There are many other DNA fragments to separate genes. Only
those DNA fragments carrying genetic information are genes.
This paper argues that firmware code genes are similar to
biological genes.
Definition 1: A firmware code gene refers to a binary code

fragment that carries genetic information in the firmware
code. The fragment satisfies the following properties:

(1) The genetic information contained in such a binary
fragment is extractable and representable.

(2) If two or more different binary fragments are generated
by the same source code, the genetic information contained
in these binary fragments is stable and consistent.

(3) If two or more different binary fragments are generated
by similar source codes, the genetic information contained in
these binary fragments is also stable and consistent.

As seen from Definition1, Property (1) shows that a
firmware code gene has a real physical existence, which
reflects the material side. Properties (2) and (3) show that
a firmware code gene is intrinsic and stable, which reflects
the informative side. In addition, Property (2) also reflects
the antivariability, and Property (3) also reflects the heritabil-
ity. The following sections will focus on the definition and
properties to discuss the extraction and verification of the
firmware code genes.

However, emphasis on the following is necessary:
(1) Biological genes and firmware code genes belong to

different domains. They are two different concepts. Their
existence forms and action mechanisms are not exactly
the same. There is no one-to-one mapping relationship
between them, either in the existence form or in the action
mechanism.

(2) The mapping established in this paper is from the
point of view that both biological genes and firmware code
genes are composed of basic structural units. According to the
expression and mechanism of biological genes, the mapping
is carried out at the levels of alphabet, vocabulary, sentence
and grammar. This structural mapping better reflects the
nature, stability, antivariability and heritability of firmware
code genes and better supports the similarity and homology
analysis than the traditional methods.

C. WORKFLOW
In this paper, FCGES is designed and implemented. As shown
in Fig. 3, the system consists of three modules:

VOLUME 7, 2019 179593

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

FIGURE 2. The bit-byte-instruction-baseblock-function map.

FIGURE 3. The workflow of FCGES.

(1) Firmware code feature extraction module. This part
corresponds to Section IV. It mainly completes the extraction
of the original features of firmware binary code.

(2) Numericalization and normalization module. This
part corresponds to Section V, which mainly deals with

the numericalization and normalization of the original
feature.

(3) Firmware code gene extractionmodule. This part corre-
sponds to Section VI. It mainly uses the idea of the hypothesis
margin to sublimate the features to the genes.

179594 VOLUME 7, 2019

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

IV. CROSS-PLATFORM FIRMWARE CODE FEATURE
EXTRACTION
In this section, we introduce the differences of three main
instruction set architectures(ISA). Then, we specify the het-
erogeneous instruction sets into five categories according to
their basic functions. We also propose a feature extraction
method without uniform intermediate representation(IR).

A. IDEAS FOR FEATURE EXTRACTION
ARM, MIPS and x86 processors belong to different ISA.
x86 is a typical CISC [30]. MIPS is a typical RISC [31].
As suggested by its name(advanced RISC machine) [32],
ARM is an RISC, but also exhibits some advantages of CISC,
such as the emergence of multi-register load/store instruc-
tions and conditional execution. The instruction sets of these
three processors are quite different. Some studies unify the
three instruction sets into an IR [17] to bridge the gap between
them. However, there are two disadvantages:

(1) It is not easy to unify instruction sets of various archi-
tectures into a unified IR. If we want to do so, it is necessary
to abstractly unify the instruction set, register organization,
addressingmode, stackmanagement, call convention, storage
management model and so on. It is difficult to create an
abstract unification of these aspects. In fact, the IR often
unifies some attributes in an abstract way that incurs some
tradeoffs in terms of syntax and grammar, as well as seman-
tics.

(2) Even if the instruction sets of various architectures are
expressed as a unified IR, the same code representation in
syntax or grammar cannot be obtained. Due to the differences
in register organization, addressing mode, calling conven-
tion, stack management and so on, instructions of different
architectures do not have one-to-one or one-to-more mapping
relationships. Consequently, when we translate the code of
different architectures into the IR, the intermediate code is
also different.

Because of these shortcomings, we do not use the idea of
‘‘binary code–assembly language–IR’’, which has appeared
in previous studies, but instead directly use ‘‘binary code–
assembly language’’ to extract firmware code genes. We
attempt to design a scientific and reasonable mechanism to
evaluate the binary code similarity, which is deployed in
different architectures. To achieve this goal, two contradic-
tions need to be addressed: first, Contradiction between the
different binary representations and the grammar or syntactic
similarity measurement cross-platform; second, Contradic-
tion between the different binary representations and the
semantic similarity measurement cross-platform.

However, it is essential that the semantic similarity can
faithfully reflect the code similarity, and not all grammatical
or syntactic similarity can reflect. This is why many code
similarity studies focus on the semantic similarity but not
grammatical or syntactic similarity.

According to the function of instructions, we classify
the common instructions of these three architectures into

five categories: Data Transfer Class Instructions, Arithmetic
Operational Class Instructions, Logical Operational Class
Instructions, Comparing Test Class Instructions, and Branch
Jump Class Instructions. In fact, we have completed a type of
‘‘implicit’’ unity without uniform IR. This type of ‘‘implicit’’
unity also has certain preferences.

B. CROSS-PLATFORM FIRMWARE CODE FEATURE
EXTRACTION
Research has revealed that some basic attribute informa-
tion and structural attribute information remain stable when
the same source code is compiled to different platforms.
In particular, we also find that the IoT terminal firmware
is strongly indicative of the associated professional business
and strongly interacts with the real physical world. Regard-
less of the platform that the same or similar firmware code
is compiled to, some configuration information and specific
operations in the code remain stable. Based on these analyses,
we extract the basic attribute information of firmware binary
code and the structural attribute information of CFG in dif-
ferent architectures without uniform IR.

1) BASIC ATTRIBUTE INFORMATION OF CODE
These information can reflect the code’s grammatical or syn-
tactic similarity and even semantic similarity partly.

a: STACK ATTRIBUTE INFORMATION
A stack is often used as a storage structure, regardless of
whether there are special stack operation instructions. In this
paper, the stack space size Sta_Spa and the number of
like-stack frame operations Stafra_Num are counted.

b: INSTRUCTION NUMBER AND PROPORTION
INFORMATION
Instructions are the most basic units of the firmware code.
Ranging from every business to every operation, all require a
series of instructions. Because of the characteristics of the IoT
terminal, the firmware of the same series products or similar
functional products may have similar operations. These sim-
ilarities will eventually be reflected in the instructions. Con-
sequently, the following are counted: the instruction number
Ins_Num, the data transfer instruction numberMovIns_Num,
the arithmetic operation instruction number AriIns_Num,
the logic operation instruction number LogIns_Num, the com-
parison test instruction number CmpIns_Num, the branch
jump instruction number JumIns_Num, the data transfer
instruction proportion MovIns_Rat, the arithmetic operation
instruction proportionAriIns_Rat, the logic operation instruc-
tion proportion LogIns_Rat, the comparison test instruction
proportion CmpIns_Rat and the branch jump instruction pro-
portion JumIns_Rat.

c: INSTRUCTION ENTROPY INFORMATION
Same as information entropy, instruction entropy reflects the
instruction occurrence probability. Generally, the higher the
probability that a class of instructions appears, the higher

VOLUME 7, 2019 179595

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

the execution probability of the operations represented by
such instructions. Consequently, the following are counted:
the instruction entropy Ins_Ept, the data transmission
instruction entropy MovIns_Ept, the arithmetic operation
instruction entropy AriIns_Ept, the logic operation instruc-
tion entropy LogIns_Ept, the comparative test instruction
entropyCmpIns_Ept and the branch jump instruction entropy
JumIns_Ept.

The calculation of instruction entropy is shown in for-
mula (1). Pk is the proportion of the class k instruction.

Ins_Ept = −
∑n

k=1
Pk log2 Pk (1)

The specific instruction entropy is calculated according to
the above formula and the specific situation. For example,
JumIns_Ept of the x86 is calculated as in formula (2):

JumIns_Ept = −
∑n

k=1
Pk log2 Pk (2)

given that this paper only counts 33 branch jump instruc-
tions of x86, k = 1, 2, 3, . . . 33.

d: CONSTANT, VARIABLE, AND STRING INFORMATION
Constants and strings in firmware reflect environmental
parameters and business configurations. Variables reflect the
process information, such as data processing. They are help-
ful for analyzing code similarity. In this paper, the string
number Str_Num, the string set Str_Set, the variable number
Var_Num, the constant number Con_Num and the constant
set Con_Set are counted.

2) STRUCTURAL ATTRIBUTE INFORMATION OF CFG
For code similarity, the semantic is more advantage than
the grammar or syntax. Although complete semantic com-
parison is impossible, approximate equivalence is possi-
ble. As the regulation rule of the firmware code gene,
the control flow creates rich contextual connotations. This
paper argues that the structural attribute information of
CFG can reflect the semantic similarity to a certain
extent.

a: NODE ATTRIBUTE INFORMATION OF CFG
Each node in CFG is a basic block composed of a sequence
of uniformly executed instructions. The control flow infor-
mation mainly reflects the jump transfer between nodes.
Consequently, the following are counted: the node number
Nod_Num, the average input degree of the node Indeg_Ave,
the average output degree of the node Outdeg_Ave, the aver-
age undirected degree of the node Deg_Ave, the max input
degree of the node Indeg_Max, the max output degree
of the node Outdeg_Max, the max undirected degree of
the node Deg_Max,the input degree ascending sequence
Indeg_AscLis, the output degree ascending sequence Out-
deg_AscLis, and the undirected degree ascending sequence
Deg_AscLis.

b: OVERALL STRUCTURAL ATTRIBUTE INFORMATION
OF CFG
In addition to the jump transfer centered on independent node,
the basic block execution sequence in CFG, i.e., edges and
paths also reflects the control flow information from a larger
perspective. Sometimes they seems to be more advantageous
than the node-centered local information in reflecting code
similarity. Consequently, the following are counted: the CFG
edge number Edg_Num, the CFG graph density Gra_Den,
the CFG undirected graph clustering coefficient Gra_Clu,
the CFG average path length PatLen_Ave, the CFG graph
diameter(maximum path length) PatDia, the CFG graph
link efficiency PatEff and the CFG shortest path ascending
sequence Pat_AscLis.

The calculation of Gra_Den is shown in formula (3):

Gra_Den =
2× Edge_Num

Node_Num (Node_Num− 1)
(3)

The calculation of Gra_Clu is shown in formula (4):

Gra_Clu =
1

Node_Num

∑Node_Num

k=1

2c
dk (dk − 1)

(4)

c denotes the edge number of the undirected CFG subgraph
composed of node k and all its neighbor nodes, and dk denotes
the undirected degree of node k .

The calculation of PatEff is shown in formula (5):

PatEff =
Edg_Num− PatLen_Ave

Edg_Num
(5)

As shown in Table 1, the original firmware code features
in different ISA are listed.

TABLE 1. The features of the firmware code.

V. NUMERICALIZATION AND NORMALIZATION
In this section, we numericize and normalize the feature
values. Suppose that the two binary codes to be compared
are T1 and T2. According to the feature extraction method,
the feature vectors V1 and V2 aregenerated. Obviously V1[i]
and V2[j](1 ≤ i, j ≤ n) may only be of three types: numerical
type, set-valued type and sequential type.

179596 VOLUME 7, 2019

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

A. NUMERICAL TYPE FEATURE
For a numerical feature, we use formula (6) to measure the
similarity. It can be seen that in European space, the closer the
distance between the two values is, the smaller the absolute
value of the difference, and the less obvious the difference in
the denominator as the greater of the two is, the smaller the
ratio and the higher the similarity. Moreover, the farther the
distance between the two values is, the greater the absolute
value of the difference, and the more obvious the difference
in the denominator as the greater of the two is, the greater the
ratio and the lower the similarity. 0 ≤ Sim (V1[i],V2[j]) ≤ 1,
C is a constant, and 0 ≤ C ≤ 1.

Sim (V1[i],V2[j])

=

C, if V1[i] = 0 and V2[j] = 0,

1−
|V1[i]− V2[j]|

max (V1[i],V2[j])
, else

(6)

B. SET-VALUED TYPE FEATURE
For a set-valued feature, the Jaccard coefficient is used to
measure the similarity, and the calculationmethod is shown in
formula (7). It can be seen that the more intersecting elements
of two sets there are, the greater the Jaccard coefficient and
the higher the similarity; moreover, the fewer intersecting ele-
ments of two sets there are, the smaller the Jaccard coefficient
and the lower the similarity. 0 ≤ Sim (V1[i],V2[j]) ≤ 1, C is
a constant, and 0 ≤ C ≤ 1.

Sim (V1[i],V2[j])

=

C, if V1[i] = ∅ and V2[j] = ∅,
|V1[i] ∩ V2[j]|
|V1[i] ∪ V2[j]|

, else
(7)

C. SEQUENTIAL TYPE FEATURE
For a sequential feature, the longest common subsequence
(LCS) ratio is used to measure the similarity, and the calcu-
lation method is shown in formula (8). Thus, the longer the
LCS of two sequences is, the greater the ratio of the LCS and
the higher the similarity; moreover, the shorter the LCS of two
sequences is, the smaller the ratio of the LCS and the lower
the similarity. 0 ≤ Sim (V1[i],V2[j]) ≤ 1, C is a constant, and
0 ≤ C ≤ 1.

Sim (V1[i],V2[j])

=

C, if V1[i] = NULL and V2[j] = NULL
|LCS (V1[i],V2[j])|
max (|V1[i]| , |V2[j]|)

, else
(8)

In this paper, the value of C is 0. If the numeric feature
is 0, the set-valued feature is Ø, and the sequential feature is
NULL, the feature is meaningless to measure similarity. If C
is not 0, we measure the similarity with a feature that does
not exist, which will obviously distort the overall similarity.

After numericalization and normalization, we shield three
differences in each dimension of the feature vector: First,
we shield the difference of value meanings so that we do not

need to consider what the specific meaning of each feature
is. Second, we shield the difference of value types so that we
do not need to consider whether it is numerical, set-valued
or sequential. Third, we shield the difference of value range
so that we do not need to consider which interval value it
is or which set or sequence of space it is. More importantly,
it provides a general extension method for our future research
according to the actual application scenarios without the limi-
tation of the 41-dimensional features in this paper. If there are
better features, even if they cannot be expressed by these three
data types, as long as we numericize and normalize them,
we can still use them in our method.

VI. CROSS-PLATFORM FIRMWARE CODE GENE
EXTRACTION
In this section, we use the idea of hypothesismargin [33]–[35]
to sublimate the firmware code features to genes.

A. IDEAS FOR GENE EXTRACTION
Although this paper extracts as many features as possible,
their importance is different for different code and different
application environment.

The firmware code gene extraction algorithm is a feature
weighting algorithm that assigns different weights to features
according to the correlation of each feature and category.
A feature whose weight is less than a certain threshold will
be removed; that is, the correlation between features and
categories in the algorithm is based on the ability to distin-
guish features from close samples. The algorithm randomly
selects a sample X from training set D and then searches
for the nearest neighbor sample from the same class, called
Near-Hit, and searches for the nearest neighbor sample from
the different class, called Near-Miss. The weight of each
feature is updated according to the following rules: if the
distance between X and Near-Hit on a feature is less than
the distance between X and Near-Miss, it indicates that the
feature is beneficial for distinguishing the nearest neighbors
of different classes and increases the weight of the feature.
In contrast, if the distance between X and Near-Hit is greater
than the distance between X and Near-Miss, it indicates that
the feature has a negative effect on distinguishing the nearest
neighbors of different classes and then reduces the weight of
the feature. The above process is repeated p times, and the
average weight of each feature is finally obtained. The larger
the weight of the feature is, the stronger the classification
ability of the feature is.

B. ALGORITHM IMPLEMENTATION
Suppose that a source code S contains m independent func-
tional modules, S = {s1, s2, · · · , si, · · · , sm}. Each mod-
ule may be an independent function or library, or it may
be an independent tool or command. T1 and T2 are two
object codes derived from source code S, where:T1 =
{t11, t12, . . . , t1i, . . . , t1m}, T2 =

{
t21, t22, . . . , t2j, . . . , t2m

}
.

According to the feature extraction method, the orig-
inal feature vector sets VS1 and VS2 are generated,

VOLUME 7, 2019 179597

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

where: VS1 = {v11, v12, . . . , v1i, . . . , v1m}, VS2 ={
v21, v22, . . . , v2j, . . . , v2m

}
.

Each element v1i and v2j in VS1 and VS2 is an
n-dimensional original feature vector. Then, we use a pair of
original feature vectors v1i and v2j in VS1 and VS2 to measure
their similarity according to the numerical and normalized
methods in this paper. The measurement methodis as shown
in formula (9):

Simij=Sim
(
v1i, v2j

)
=

(
Sim

(
v1i [1] , v2j [1]

)
, . . . ,

Sim
(
v1i [n] , v2j [n]

))
(9)

In this manner, we obtain data set D,D =
{
Simij | 1 ≤ i ,

j ≤ m}. Each sample point in D is an n-dimensional simi-
larity vector Simij, which represents the similarity between
the object code modules t1i and t2j, and each dimen-
sion in Simij represents the similarity between the object
code modules t1i and t2j in this dimension feature. D is
divided into a positive sample set D+ and a negative sam-
ple set D−: D+ =

{
Simij | i = j, 1 ≤ i, j ≤ m

}
, D− ={

Simij | i 6= j, 1 ≤ i, j ≤ m
}
. Obviously, D = D+ ∪ D−, and

D+ ∩ D− = ∅. The sampling times is p, and the threshold
of correlation statistics is τ . The algorithm detects and iden-
tifies those features that are statistically related to the current
learning task. When the correlation statistics of these features
are larger than τ , they are the effective correlation features.

The algorithm is as follows:
Where diff (xk , yk) denotes the difference between the cor-

responding dimension features of sample points X and Y :

diff (xk , yk) = |xk − yk | .

As seen from the feature update function (17)-(19),
the algorithm uses the idea of the hypothesismargin [36]–[38]
to evaluate the classification ability of features in each dimen-
sion. After several iterations, the more sensitive to the current
learning task, the greater the weight is; the more insensitive
to the current learning task, the smaller the weight is. Finally,
we select those features whose weights are larger than the
threshold to generate the most sensitive feature subset, which
is the gene vector extracted in this paper.

The firmware code gene extraction algorithm is simple and
efficient. Its time complexity is O(n×p), and it is not affected
by the size of the data set [33]–[35]. Even on small sample
dataset, features with high correlation can be proposed.

C. APPLICATION SCENARIOS
The goal of this paper is to extract the firmware code genes.
Thus, we should apply our method to different scenarios to
verify whether the extracted genes have stability, antivariabil-
ity and heritability.

1) OBJECT CODE GENERATED BY THE SAME SOURCE CODE
Whether the code genes have stability and antivariability will
be the key to verifying the correctness of our method.

Suppose that a source code S can be divided into m inde-
pendent functional modules, S = {s1, s2, · · · , si, · · · , sm}.
Each module may be an independent function or library or

a separate tool or command. We can compile and generate
object codes T1 and T2 by using different platforms, dif-
ferent tools, or different optimization options, where: T1 =
{t11, t12, . . . , t1i, . . . , t1m}, T2 =

{
t21, t22, . . . , t2j, . . . , t2m

}
.

The original feature vector VS1 and VS2 are generated by
feature extraction. By calculating the feature similarity Simij
between any two modules, the data set D, D+ and D− are
generated. Then, we can evaluate the relevant statistics of the
features and finally extract the code gene vector.

2) OBJECT CODE GENERATED BY THE SAME SERIES OR
SIMILAR SOURCE CODE
Whether the code genes have stability and heritability
will also be the key to verifying the correctness of our
method.

Suppose that S1, S2, . . . , Si, . . . , Sm is a series of similar
source codes. We can compile them and obtain the object
binary codes T1, T2, . . . ,Ti,,Tm. The original feature
vector sets are VS1, VS2, . . . ,VS i, . . . ,VSm. By calculating
Simij of the feature similarity between any two object codes,
we generate the data setD,D+ andD−. Then, we can evaluate
the relevant statistics of the features and finally generate the
code gene vector.

VII. EXPERIMENT AND ANALYSIS
In this section, we use the common code in IoT termi-
nal firmware to generate data sets and verify the stability,
antivariability and heritability of the firmware code genes
extracted by FCGES.

A. EXPERIMENTAL THOUGHTS
In the previous similarity-based studies, there is no direct
theoretical answer to whether the basis for comparison is
stable, antivariability and heritability in different architecture,
but only to verify the initial hypothesis with the practical test
results. The purpose of this paper is to extract the firmware
code genewith stability, antivariability and heritability, which
will complement a basic link for the research in this field.
So it is necessary to focus on whether the extracted gene
has these characteristics or not. In this paper, We abandon
the reverse thinking mode of validating the original theoret-
ical hypothesis through practical test results, and replace it
with the simplest and most direct evaluation method; that is,
if the object code pair is generated by the same or similar
source code, the similarity of each dimension of the gene
vector should be at a higher level, and the change cannot be
drastic.
To highlight the comparison of the experimental results,

the steps are simplified. For Scenario (1), we only consider
that the same source code is compiled to different plat-
forms with the same compilation tool and same optimization
options; for Scenario (2), we only consider that the same
series of source codes is compiled to the same platforms with
the same compilation tool and same optimization options.
Each experiment is divided into two stages: one is the extrac-
tion, and the other is the verification.

179598 VOLUME 7, 2019

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

Algorithm 1 Firmware Code Gene Extraction Algorithm
Input Object binary code T1 and T2

Sampling times p
Correlation statistics threshold τ

Output Firmware code gene vector G

(1) Dividing T1 into m independent modules, T1 = {t11, t12, . . . , t1i, . . . , t1m};
(2) Dividing T2 into m independent modules, T2 =

{
t21, t22, . . . , t2j, . . . , t2m

}
;

(3) Extracting code feature vector set VS1 from T1, VS1 = {v11, v12, . . . , v1i, . . . , v1m};
(4) Extracting code feature vector set VS2 from T2, VS2 =

{
v21, v22, . . . , v2j, . . . , v2m

}
;

(5) Generating feature vector similarity data set D, D =
{
Simij | 1 ≤ i, j ≤ m

}
;

(6) Dividing D into positive sample set D+ and negative sample set D−, D+ =
{
Simij | i = j, 1 ≤ i, j ≤ m

}
,

D− =
{
Simij | i 6= j, 1 ≤ i, j ≤ m

}
;

(7) Initializing the every dimension of the weight vector to zero, W = (0, 0, , 0);
(8) For i = 1 to p
(9) A sample X , X ∈ D, is randomly selected from data set D;
(10) A positive sample Z+,Z+ ∈ D+, nearest to X is randomly selected from the positive sample set D+;
(11) A negative sample Z−,Z− ∈ D−, nearest to X is randomly selected from the negative sample set D−;
(12) if (X ∈ D+) then
(13) Near_hit = Z+; Near_miss = Z−;

Procedure (14) else
(15) Near_hit = Z−; Near_miss = Z+;
(16) Update_weight (W , X , Near_hit, Near_miss);
(17) Relevance = W/p;
(18) For i = 1 to n
(19) if (relevancei ≥ τ) then
(20) the dimension i feature is a related feature; fi→ G;
(21) else
(22) the dimension i feature isn’t a related feature;
(23) Return G;
Update_weight(W , X ,Near_hit, Near_miss)
(1) For i = 1 to n
(2) wi = wi − diff (xi,Nearhit)2 + diff (xi,Near_miss)2;

B. EXPERIMENTAL ENVIRONMENT
The experimental environment is as follows. The CPU is
an Intel Core i7-6700@ 3.40 GHz, and the memory is
16.0 GB of DDR4 SDRAM. To reduce the impact of
multithreading scheduling on the experimental results, the
implementation of the gene extraction system adopts a single-
threading approach. The binary object code is compiled to
x86-32-bit, ARM-32-bit and MIPS-32-bit using GCC v4.6.2.
The Python programming language [39] is used to implement
FCGES. IDA Pro [40] is used to disassemble binary code and
write plug-ins to extract code features. A tool provided by
MATLAB R2014b [41] is utilized for feature selection and
gene sublimation.

C. STABILITY AND ANTIVARIABILITY OF FIRMWARE
CODE GENES
As described in Definition 1, a firmware code gene extracted
from the same source code should be stable and resistant to
variability, regardless of the form of the binary code; that is,
such firmware binary code pairs should have high similarity

in each dimension of the code gene vector, and the change
cannot be drastic.

1) EXPERIMENT I
In this experiment, the data set is OpenSSL [42] v1.0.0, which
is compiled to x86-32-bit, ARM-32-bit and MIPS-32-bit
platforms using GCC v4.6.2 with O2. In the firmware code
gene extraction stage, two sub-experiments are included.
One is the evaluation of the binary code from x86 and
ARM, written as x86 × ARM. The other is ARM × MIPS.
In each sub-experiment, we can easily distinguish commands,
tools and libraries from OpenSSL source code, so we can
construct the data set D, positive sample set D+ and nega-
tive sample set D−. The sampling times p = 20, and the
weights of each dimension feature in the two sub-experiments
are calculated as shown in Table 2. We set the threshold
value τ = 0.0150. It can be seen that the weights of the
features Ins_Num, MovIns_Num, MovIns_Rat, AriIns_Rat,
LogIns_Rat, Ins_Ept, MovIns_Ept, AriIns_Ept, LogIns_Ept,
CmpIns_Ept, JumIns_Ept, Var_Num, Indeg_Ave, Out-
deg_Ave, Gra_Clu, and PatEff are lower than the threshold

VOLUME 7, 2019 179599

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

TABLE 2. The weights of features in Experiment I.

value τ in both sub-experiments, and their ability to distin-
guish close samples is weak and unstable. So we believe
that the code genes of OpenSSL v1.0.0 compiled to x86 ×
ARM and ARM × MIPS are composed of the remaining
dimensions.

Intuitively, different architectures have different instruc-
tion sets, and the number of instructions required to com-
plete the same operation varies. Thus, the ability of Ins_Num
to reflect code similarity should not be strong. Data trans-
fer class instructions are used widely in various codes,
and their ability should be weak. Comparing test class
instructions and branch jump class instructions reflects the
jump transfer between basic blocks within the code. It has
certain semantic information, so their instruction number
ability should be relatively strong. However, because the
total number of instructions is considerable, the ability
of the ratio of these two types of instructions will be
reduced. From Table 2, we can see that the results obtained
by our method are basically consistent with the intuitive
analysis.

In the firmware code gene verification stage, we also carry
out two sub-experiments to verify the validity of the method
more accurately. In each sub-experiment, we randomly select
three samples from D+ and D−, and each sample is different.
According to the gene vector generated by FCGES, we cal-
culate the similarity of the gene vector in each dimension.
The results of x86 × ARM are shown in Fig. 4, and the
results of ARM × MIPS are shown in Fig. 5. In the two
figures, the black curves represent positive samples, and the
red curves represent negative samples in the corresponding
data set.

From the experimental results, we can see that the similar-
ity curve of each selected sample is more stable if it belongs
to D+, and the value of each dimension changes between
0.7 and 1, whereas the similarity curve of each selected
sample that belongs toD− has intense oscillation and its value
is unstable. It can be seen that when the same source code
is compiled to different platforms, even though their binary
forms have changed greatly, some attributes hidden behind
the code still remain stable and antivariable.

FIGURE 4. The similarity of gene vector in Experiment I-X86 × ARM.

FIGURE 5. The similarity of gene vector in Experiment I-ARM × MIPS.

2) EXPERIMENT II
In this experiment, the data set is Coreutils [43] v1.0.0, which
is compiled to x86-32-bit, ARM-32-bit and MIPS-32-bit
platforms using GCC v4.6.2 with O2. In the firmware code
gene extraction stage, two sub-experiments are also included.
One is x86×MIPS. The other is ARM×MIPS. In each sub-
experiment, we randomly select 30 common commands from
Coreutils to construct data set D, positive sample set D+ and
negative sample set D−. The sampling times p = 20 and the
weights of each dimension feature in the two sub-experiments

179600 VOLUME 7, 2019

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

TABLE 3. The weights of features in Experiment II.

FIGURE 6. The similarity of gene vector in Experiment II-X86 × MIPS.

are calculated as shown in Table 3. We also set the thresh-
old value τ = 0.0150. It can be seen that the weights
of Ins_Num, MovIns_Num, MovIns_Rat, AriIns_Num, Ari-
Ins_Rat, LogIns_Num, LogIns_Rat, Ins_Ept, MovIns_Ept,
AriIns_Ept, LogIns_Ept, CmpIns_Ept, JumIns_Ept,
Var_Num, Indeg_Ave, Outdeg_Ave, Gra_Clu and PatEff are
lower than τ in both sub-experiments. Their ability to distin-
guish close samples is weak and unstable. Thus, we believe
that the firmware code genes of Coreutilsv1.0.0 compiled
to x86 × ARM and ARM × MIPS with GCC v4.6.2 are
composed of the remaining dimensions.

From Table 3, it can be seen that, in this experiment,
AriIns_Num and LogIns_Num are eliminated because their
weights are lower than τ . This may be related to the dif-
ferent functions between OpenSSL and Coreutils. OpenSSL
is an open-source software library package, which includes
three parts: the SSL protocol library, application program
and cryptographic algorithm library. The code contains a
large number of arithmetic and logic operations, so its gene
vector contains these two dimensions. Coreutils is a software
package under GNU, which contains common commands of
Linux. Compared with OpenSSL, the number of arithmetic
and logic operations is not much different from other code.

In the firmware code gene verification state, Experiment II
also includes two sub-experiments, as in Experiment I. The
results of x86 ×MIPS are shown in Fig. 6, and the results of
the ARM ×MIPS are shown in Fig. 7.

FIGURE 7. The similarity of gene vector in Experiment II-ARM × MIPS.

Unfortunately, the curves in Fig. 6 are not as perfect as
those in Fig. 4, Fig. 5 and Fig. 7. In Fig. 6, a red curve
also shows the stability that a black curve should have; that
is, the experimental results of a negative sample in the data
set show the same performance as that of a positive sample.
After analysis, we found that this sample is generated by the
commands ls and dir. In addition, ls and dir have very similar
functions. However, in contrast, this false positive proves the
effectiveness of our method.

D. STABILITY AND HERITABILITY OF FIRMWARE
CODE GENES
As described in Definition 1, the firmware code gene
extracted from similar or identical series of source code
should be stable and heritable, regardless of the form of the
binary code; that is, such firmware binary code pairs should
have high similarity in all dimensions of the code gene vector,
and the changes cannot be drastic.

1) EXPERIMENT III
In this experiment, the data set is OpenSSL v1.0.0 and v1.0.1,
which are compiled to ARM-32 using GCC v4.6.2 with O2.
In the firmware code gene extraction stage, we construct data
set D, positive sample set D+ and negative sample set D−

as in Experiment I. The sampling times p = 20, and the
weights of each dimension feature are calculated, as shown
in Table 4. We also set the threshold value τ = 0.0150. It can
be seen the weights of Ins_Num,MovIns_Num,MovIns_Rat,

VOLUME 7, 2019 179601

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

TABLE 4. The weights of features in Experiment III.

AriInstruc_Rat, LogIns_Rat, Ins_Ept, MovIns_Ept, Ari-
Ins_Ept, LogIns_Ept, CmpIns_Ept, JumIns_Ept, Var_Num,
Indeg_Ave, Outdeg_Ave, Gra_Clu, and PatEff are lower
than τ , and their ability to distinguish close samples is weak
and unstable. Thus, we believe that the firmware code genes
of OpenSSL v1.0.0 and v1.0.1 compiled on ARM-32-bit with
GCC v4.6.2 are composed of the remaining dimensions.

OpenSSL v1.0.0 and v1.0.1 are two very close versions,
and their corresponding codes are very similar. Table 4 con-
firms our conjecture. It can be seen that the dimension of the
gene vector extracted in this experiment is the same as that
in Experiment I. This unification of horizontal and vertical
comparison also proves the correctness of our method from
another aspect.

In the firmware code gene verification stage, we carry out
two sub-experiments as in the previous experiment to make
the experiment more rigorous. The experimental results are
shown in Fig. 8.

FIGURE 8. The similarity of gene vector in Experiment III.

The experimental curves are similar to those in Experi-
ment I. It can be seen that when the same series of source
codes are compiled to the same platform, even though their
binary representation is different, some attribute information
hidden behind the code remains stable and heritable.

2) EXPERIMENT IV
In this experiment, the data set used is BusyBox [44]
v1.20.0 and v1.21.1, which are compiled to the x86 platform
with GCC v4.6.2. In the firmware code gene extraction
stage, we also select 30 common commands from Busy-
Box v1.20.0 and v1.21.1 for analysis and construct data setD,

positive sample set D+ and negative sample set D−. The
sampling times p = 20, and the weights of each dimension
feature are calculated as shown in Table 5. We also set the
threshold value τ = 0.0150. It can be seen that the weights
of Ins_Num, MovIns_Num, MovIns_Rat, AriIns_Num, Ari-
Ins_Rat, LogIns_Num, LogIns_Rat, Ins_Ept, MovIns_Ept,
AriIns_Ept, LogIns_Ept, CmpIns_Ept, JumIns_Ept,
Var_Num, Indeg_Ave, Outdeg_Ave, Gra_Clu and PatEff are
lower than τ , and their ability to distinguish close samples
is weak and unstable. Thus, we believe that the firmware
code genes of BusyBoxv1.20.0 and v1.21.1 compiled on
x86-32-bit with GCC v4.6.2 are composed of the remaining
dimensions.

The version distance between BusyBox v1.20.0 and
v1.21.1 is obviously larger than that of Experiment III. As
seen from Table 5, the firmware code genes extracted are
the same as those extracted from Experiment III, except for
the two dimensions of AriIns_Num and LogIns_Num. The
relevant reasons have been analyzed in Experiment II. In
addition, synthesizing the results of four experiments, we also
find that, although the data sets and instruction architec-
tures are different, the extracted firmware code genes by our
method overlap in many dimensions.

TABLE 5. The weights of features in Experiment IV.

In the firmware code gene verification stage, as in the
previous experiments, we calculated the similarity of the gene
vector in each dimension. The results are shown in Fig. 9.
To avoid the situation in Experiment II, we try to choose
commands that have different functions when constructing
the data set in this experiment. From the experimental results,
we can see that the similarity curves of positive samples and
negative samples are consistent with our expectations. It can
be seen that when the same series of source code is compiled
to the same platform, even though the binary representations
are different, some attribute information hidden behind the
code remains stable and heritable.

E. ESSENTIALITY OF FIRMWARE CODE GENES
In fact, the four experiments have explained the essentiality
of firmware code genes to some extent, because stability,
antivariability and heritability are inherent manifestations.
However, this essentiality is premised on the following:

(1) The firmware code genes in this paper are sublimated
from the original feature vector, that is, whether the original

179602 VOLUME 7, 2019

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

FIGURE 9. The similarity of gene vector in Experiment IV.

feature vector is complete or not will directly determine the
quality of the genes. If the high-weight features are not taken
into account in the feature extraction stage, the quality of the
genesis certainly not high, or perhaps even the gene cannot
be generated. This is why we should extract as many features
as possible in the feature extraction section.

(2) The firmware code genes in this paper are also related to
the threshold value τ . If τ is set too low, some low-weight fea-
tures will be included. These features are weak in reflecting
the nature of the code, have poor stability and low resistance
to variability and inheritance, and may be misreported when
identifying the code. If τ is set too high, some features that are
able to reflect the stability, antivariability and heritability will
be excluded. It is likely that omissions will occur. According
to our research on the security detection of IoT terminals
based on firmware code genes, this paper sets τ = 0.015.
(3) The firmware code gene extraction algorithm cannot

eliminate redundant features, so there may be redundant com-
ponents in our gene vector. Redundant dimensions need to be
avoided in the process of extracting original features.

Although the data sets and platforms of the four experi-
ments are different, the gene vectors obtained through our
system overlap in many dimensions. This not only further
validates the essence of the extracted genes but also shows
that some gene dimensions have a common ability to dis-
tinguish close samples at the binary code level in different
source codes and different platforms. This makes it possible
to analyze the similarity and homology of binary code across
platforms based on firmware code genes.

VIII. SUMMARY
According to the heterogeneous, closed-source and high-
code-reuse-rate characteristics of IoT terminal firmware, this
paper proposes a firmware code gene extraction technology
based on the idea of the hypothesis margin. The experi-
mental results show that the firmware code genes extracted
by FCGES are intrinsic, stable, antivariable and heritable.
However, the related research work is still far from perfect,
and some work needs to be completed in future research.

(1) To highlight the experimental purpose, the experimen-
tal process was simplified. For example, without consider-
ing the impact of compiler tools and optimization options.

Thus, the similarity curves of the experiments seem perfect.
However, in the practice of IoT terminal security detection
based on the firmware code gene, we find that the experimen-
tal results are not as perfect as we imagine. This is mainly
due to different compilers, different optimization options,
tailorable operating environments, inline functions, dynamic
link libraries and other reasons, but firmware code genes
still show superiority over traditional similarity studies. The
purpose of this paper is to reveal the existence of the firmware
code genes rather than security detection based on firmware
code genes; therefore security detection has exceeded the
scope of this article, related content will be discussed in the
following articles.

(2) Although this paper proposes a technical framework
for extracting firmware code genes of IoT terminal firmware,
this framework can extract firmware genes from binary code
with different granularities. In the initial steps of original
feature extraction, only 41-dimensional features, such as the
basic attribute information of firmware code and structural
attribute information of CFG, are extracted. In fact, for dif-
ferent firmware and different application scenarios, these
41 features may not be perfect. For example, the call graph
information reflecting the function call relationship is not
extracted in this paper. It need to be continuously improved
in future research.

(3) The object of this study is firmware binary code, but to
highlight the discussion of firmware code genes, the ‘‘binary
code’’ is the binary code that has been unpacked, not the
firmware binary image before unpacking.

(4) We have also performed some research on the secu-
rity detection of IoT terminal firmware based on firmware
code genes. However, due to space limitations, this paper
has focused on the introduction of firmware code gene
extraction technology, mainly for complementing the basic
link for the firmware security research based on similarity
theory. Research on the security detection of IoT terminal
firmware based on firmware code genes will be introduced
in subsequent papers.

REFERENCES
[1] White Paper on Internet of Things Security, China Inst. Inf. Commun.,

Beijing, China, 2018.
[2] (2018). In-Depth Analysis Report on Internet of Things Security

and Applications. [Online]. Available: https://wenku.baidu.com/view/
40b64e8329ea81c758f5f61fb7360b4c2e3f2ad8.html

[3] C. Qing, L. Zhongjin, and W. Mengtao, ‘‘VNDS: An algorithm for cross-
platform vulnerability searching in binary firmware,’’ J. Comput. Res.
Develop., vol. 53, no. 10, pp. 2288–2298, 2016.

[4] D. D. Chen, M.Woo, and D. Brumley, ‘‘Towards automated dynamic anal-
ysis for linux-based embedded firmware,’’ in Proc. NDSS. 2016, pp. 1–16.

[5] Thoughts on a Vulnerability in Industrial Control System. Accessed:
May 7, 2019. [Online]. Available: https://mp.weixin.qq.com/s/
LZnvDQ9lSqgfd8LvKKgteA

[6] Talking About the Safety of Camera. Accessed: May 7, 2019. [Online].
Available: https://mp.weixin.qq.com/s/xY6W-zq2dzgeH4N6t6-ouQ

[7] J. Zaddach, L. Bruno, and A. Francillon, ‘‘AVATAR: A framework to
support dynamic security analysis of embedded systems’ Firmwares,’’ in
Proc. NDSS, 2014, pp. 1–16.

[8] M. Muench, D. Nisi, and A. Francillon, ‘‘Avatar 2: A multi-target orches-
tration platform,’’ in Proc. Workshop Binary Anal. Res. (Colocated NDSS
Symp.), Feb. 2018, Art. no. 18.

VOLUME 7, 2019 179603

X. Zhu et al.: Firmware Code Gene Extraction Technology for IoT Terminal

[9] A. Costin, A. Zarras, A. Francillon, ‘‘Automated dynamic firmware anal-
ysis at scale: A case study on embedded Web interfaces,’’ in Proc. 11th
ACM Asia Conf. Comput. Commun. Secur., 2016, pp. 437–448.

[10] A. Danese, G. Pravadelli, and V. Bertacco, ‘‘Work-in-Progress: DOVE:
Pinpointing firmware security vulnerabilities via symbolic control flow
assertionmining,’’ inProc. Int. Conf. Hardw./Softw. Code Sign Syst. Synth.,
2017, pp. 1–2.

[11] G. Hernandez, F. Fowze, and D. J. Tian, ‘‘Firmusb: Vetting USB device
firmware using domain informed symbolic execution,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 2245–2262.

[12] L. Sha, F. Xiao, and W. Chen, ‘‘IIoT-SIDefender: Detecting and defense
against the sensitive information leakage in industry IoT,’’ World Wide
Web, vol. 21, no. 1, pp. 59–88, 2018.

[13] O. Or-Meir, N. Nissim, L. Rokach, and Y. Elovici, ‘‘Dynamic malware
analysis in the modern era—A state of the art survey,’’ ACMComput. Surv.,
vol. 52, no. 5, 2019, Art. no. 88.

[14] F. Gauthier, T. Lavoie, and E. Merlo, ‘‘Uncovering access control weak-
nesses and flaws with security-discordant software clones,’’ in Proc. Annu.
Comput. Secur. Appl. Conf. (ACSAC), 2013, pp. 209–218.

[15] S. H. H. Ding, B. C. M. Fung, and P. Charland, ‘‘Asm2Vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 472–489.

[16] A. Costin, J. Zaddach, and A. Francillon, ‘‘A large-scale analysis of the
security of embedded firmwares,’’ in Proc. Usenix Secur. Symp., 2014,
pp. 95–110.

[17] J. Pewny, B. Garmany, and R. Gawlik, ‘‘Cross-architecture bug search
in binary executables,’’ in Proc. IEEE Symp. Secur. Privacy, May 2015,
pp. 709–724.

[18] Y. David, N. Partush, and E. Yahav, ‘‘Similarity of binaries through re-
optimization,’’ in Proc. 38th ACM SIGPLAN Conf. Program. Lang. Design
Implement., 2017, pp. 79–94.

[19] Q. Feng, R. Zhou, and C. Xu, ‘‘Scalable graph-based bug search for
firmware images,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2016, pp. 480–491.

[20] D. Zhao, H. Lin, and L. Ran, ‘‘CVSkSA: Cross-architecture vulnerability
search in firmware based on kNN-SVM and attributed control flow graph,’’
Softw. Qual. J., vol. 27, pp. 1–24, Feb. 2019.

[21] X. Xu, C. Liu, and Q. Feng, ‘‘Neural network-based graph embedding for
cross-platform binary code similarity detection,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2017, pp. 363–376.

[22] P. Shirani, L. Wang, and M. Debbabi, ‘‘BinShape: Scalable and robust
binary library function identification using function shape,’’ in Proc.
Int. Conf. Detection Intrusions Malware, Vulnerabil. Assessment. Cham,
Switzerland: Springer, 2017, pp. 301–324.

[23] L. Nouh, A. Rahimian, D. Mouheb, M. Debbabi, and A. Hanna, ‘‘BinSign:
Fingerprinting binary functions to support automated analysis of code
executables,’’ in Proc. IFIP Int. Conf. ICT Syst. Secur. Privacy Protection.
Cham, Switzerland: Springer, 2017, pp. 341–355.

[24] H. Huang, A. Youssef, and M. Debbabi, ‘‘BinSequence: Fast, accurate and
scalable binary code reuse detection,’’ in Proc. ACM Asia Conf. Comput.
Commun. Secur. (ASIACCS). ACM Press, 2017, pp. 155–166.

[25] S. Mukherjee, The Gene: An Intimate History. Beijing, China:
CITIC Press Corporation, 2018.

[26] H. Jin et al., ‘‘Detection and classification of Android malware based on
malware gene,’’ Appl. Res. Comput., vol. 36, no. 6, pp. 1813–1818, 2019.

[27] Written After the Sub-Forum of ‘Software Genetics Technology’ (I).
Accessed: Jun. 7, 2019. [Online]. Available: https://www.sohu.com/
a/228476725_468696

[28] Written After the Sub-Forum of ‘Software Genetics Technology’ (II).
Accessed: Jun. 7, 2019. [Online]. Available: http://www.sohu.com/
a/228946546_468696

[29] CCF Held Seminar on Software Gene in ZhengZhou.
Accessed: Jun. 7, 2019. [Online]. Available: https://www.ccf.org.cn/
c/2018-12-06/657463.shtml

[30] K. R. Irvine and L. B. Das, Assembly Language for X86 Processors.
Upper Saddle River, NJ, USA: Prentice-Hall, 2011.

[31] D. Sweetman, See MIPS Run Linux. Amsterdam, The Netherlands:
Elsevier, 2010.

[32] G. Lei, Development of Embedded Linux System Based on ARM. Beijing,
China: Tsinghua Univ. Press, 2014.

[33] K. Kira and L. A. Rendell, ‘‘The feature selection problem: Traditional
methods and a new algorithm,’’ in Proc. AAAI, San Jose, CA, USA, vol. 2,
Jul. 1992, pp. 129–134.

[34] Z. Zhihua,Machine Learning. Beijing, China: Tsinghua Univ. Press, 2016.
[35] M. Robnik-Sikonja and I. Kononenko, ‘‘Theoretical and empirical analysis

of ReliefF andRReliefF,’’Mach. Learn., vol. 53, nos. 1–2, pp. 23–69, 2003.
[36] R. Gilad-Bachrach, A. Navot, and N. Tishby, ‘‘Margin based feature

selection-theory and algorithms,’’ in Proc. 21st Int. Conf. Mach. Learn.,
2004, Art. no. 43.

[37] M. Yang, F. Wang, and P. Yang, ‘‘A novel feature selection algorithm based
on hypothesis-margin,’’ JCP, vol. 3, no. 12, pp. 27–34, 2008.

[38] M. Yang and P. Yang, ‘‘Hypothesis-margin model incorporating structure
information for feature selection,’’ in Proc. 2nd IEEE Int. Symp. Electron.
Commerce Secur., May 2009, pp. 634–639.

[39] A. Downey, P. Wentworth, and J. Elkner, How to Think Like a Computer
Scientist: Learning With Python, 2nd ed. Beijing, China: Posts and Tele-
com Press, 2016.

[40] C. Eagle, The IDA Pro Book. Beijing, China: Posts and Telecom Press,
2012.

[41] W. Xin,MATLAB R2014a From Entry to Mastery. Beijing, China: Publish-
ing House of Electronics Industry, 2015.

[42] W. Zhihai, T. Xinhai, and S. Hanhui, OpenSSL and Network Informa-
tion Security: Foundation, Structure and Instructions. Beijing, China:
Tsinghua Univ. Press, 2007.

[43] Coreutils-GNU Core Utilities. Accessed: Aug. 25, 2019. [Online]. Avail-
able: http://www.gnu.org/software/coreutils

[44] C. Hallinan, Using BusyBox (Digital Short Cut). London, U.K.: Pearson,
2006.

XINBING ZHU is currently pursuing the Ph.D.
degree with the State Key Laboratory of Math-
ematical Engineering and Advanced Computing,
China. His research interests include the IoT and
information security.

QINGBAO LI is currently a Professor with the
State Key Laboratory of Mathematical Engineer-
ing and Advanced Computing, China. His research
interests include information security and trusted
computing.

PING ZHANG is currently a Professor with
the State Key Laboratory of Mathematical Engi-
neering and Advanced Computing, China. Her
research interests include information security and
advanced computing.

ZHIFENG CHEN is currently pursuing the Ph.D.
degree with the State Key Laboratory of Math-
ematical Engineering and Advanced Computing,
China. His research interests include networks and
information security.

179604 VOLUME 7, 2019

	INTRODUCTION
	MOTIVATION
	CONTRIBUTIONS
	OUTLINE

	RELATED WORKS
	DYNAMIC ANALYSIS
	STATIC ANALYSIS

	OVERVIEW OF THE FIRMWARE CODE GENE
	BIOGENE
	FIRMWARE CODE GENE
	WORKFLOW

	CROSS-PLATFORM FIRMWARE CODE FEATURE EXTRACTION
	IDEAS FOR FEATURE EXTRACTION
	CROSS-PLATFORM FIRMWARE CODE FEATURE EXTRACTION
	BASIC ATTRIBUTE INFORMATION OF CODE
	STRUCTURAL ATTRIBUTE INFORMATION OF CFG

	NUMERICALIZATION AND NORMALIZATION
	NUMERICAL TYPE FEATURE
	SET-VALUED TYPE FEATURE
	SEQUENTIAL TYPE FEATURE

	CROSS-PLATFORM FIRMWARE CODE GENE EXTRACTION
	IDEAS FOR GENE EXTRACTION
	ALGORITHM IMPLEMENTATION
	APPLICATION SCENARIOS
	OBJECT CODE GENERATED BY THE SAME SOURCE CODE
	OBJECT CODE GENERATED BY THE SAME SERIES OR SIMILAR SOURCE CODE

	EXPERIMENT AND ANALYSIS
	EXPERIMENTAL THOUGHTS
	EXPERIMENTAL ENVIRONMENT
	STABILITY AND ANTIVARIABILITY OF FIRMWARE CODE GENES
	EXPERIMENT I
	EXPERIMENT II

	STABILITY AND HERITABILITY OF FIRMWARE CODE GENES
	EXPERIMENT III
	EXPERIMENT IV

	ESSENTIALITY OF FIRMWARE CODE GENES

	SUMMARY
	REFERENCES
	Biographies
	XINBING ZHU
	QINGBAO LI
	PING ZHANG
	ZHIFENG CHEN

