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ABSTRACT As a medium of information transmission, text is widely existed in natural scenes, showing
diversity in orientation, scale, font, color and shape. Accurate detection of scene text is a prerequisite for
subsequent recognition. Though many previous methods have worked well on horizontal and multi-oriented
text detection datasets, detecting arbitrary shape scene text still remains as a challenging problem. To solve
the problem, this paper proposes an arbitrary shape scene text detection method. Based on Mask R-CNN,
our method replaces the original `1-smooth loss with the proposed IoU-related loss and adds a text scoring
branch to align the confidence score with the text mask IoU to make the model highly relevant to IoU,
achieving the goal of improving detection performance by improving IoU directly in a simple but effective
way. The proposed method is evaluated on four public datasets: CTW-1500, Total-Text, ICDAR2015 and
ICDAR2017-RCTW. For curved text detection datasets CTW-1500 and Total-Text, we have reached 79.2%
and 81.1% H-mean respectively, showing that the proposed method has achieved competitive performance
in arbitrary scene text detection.

INDEX TERMS Scene text detection, arbitrary shape, computer vision, intersection-over-union, semantic
segmentation.

I. INTRODUCTION
Scene text detection is an important branch of object detec-
tion, also an attracting task in computer vision, as it can be
widely used in many applications as image search, automatic
transmission, blind person assistance, real-time translation
and so on [1], [2]. Accurate text localization is a crucial
premise for subsequent recognition task. However, there are
a series of challenges when detecting text in the wild. Firstly,
scene text exhibits much higher diversity and variability. For
instance, text in the wild can be multi-lingual with drastic
scale changes, and has different fonts, colors, shapes and
orientations, which adds difficulty to text detection and recog-
nition. Secondly, scene text detection occasionally suffers
from false positive error due to the similarity between text
instance and background texture, resulting in a decrease in
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detection performance. For example, patterns such as fences,
tree leaves, curtain texture or bricks make it hard to distin-
guish from text instance. Thirdly, imperfect image quality is
also a distracting factor. Unlike scanned scripts in documents,
manually captured scene text can be distorted and out of
focus, which affects the detection effect seriously. Moreover,
due to different lighting conditions and shooting angles, man-
ual collection inevitably introduces noise and occlusion.

Early studies like connected component(CC) based [3]–[5]
or sliding window based [6]–[8] approaches used manually
designed features and traditional classifiers for text detection,
but they were not well adapted to the diversity and variabil-
ity of scene text. Benefitted from the introduction of deep
learning, the detection performance has been significantly
improved. With the development of deep learning based
approaches, the research focus of scene text detection has
shifted from horizontal scene texts to more challenging tasks
such as incidental multi-oriented scene texts [9], curved or
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arbitrary shape scene texts [10], [11] and multi-lingual scene
texts [12].

Some Faster R-CNN based methods [13]–[15] achieve
competitive performance on multi-oriented datasets, but are
not ideal when dealing with arbitrary shape text detec-
tion challenge. Although they can detect most of the text
instances, there remains needless overlap and redundant
background noise, which are very harmful to detecting
performance. Moreover, for text detection task, the ulti-
mate goal of improving evaluation scores is to improve the
Intersection-over-Union(IoU) between proposals and corre-
sponding ground truth. Thesemethods abovementioned focus
more on changing the scale, aspect ratio, rotation angle and
shape of anchor, or changing the network framework, or intro-
ducing new modules to achieve better scores, while there still
remains two problems. The first on the list is that, there is
not a strong corelation between minimizing `1-smooth loss
and improving the IoU value between the proposed and the
ground truth bounding box. The second on the list is that
there is not a strong corelation between the classification
confidence score and the text maskIoU value, so proposed
text mask with high IoU value but low confidence score
would be filtered by non-maximum suppression(NMS).

To overcome the shortcomings mentioned above, we pro-
pose an arbitrary shape scene text detection method based
on generalized object detection structure Mask R-CNN [16].
Without too many changes to the model structure, we replace
the loss function of box regression branch in RPN and
box regression branch in Mask RCNN heads to make a
strong correlation between loss and IoU, and add text scoring
branch, which predicts the IoU of text mask provided by
mask branch. The predicted IoU represents the quality of the
mask. We use this predicted IoU to multiply the classification
confidence score to get the final confidence score, so as to
align it with the mask quality.

Our contributions are summarized as follows:
1) We propose an IoU related scene text detector for arbi-

trary shape text detection task. A text scoring branch
is added as an ROI head of Mask R-CNN to align the
confidence score with the text mask quality.

2) We propose a generalized completeness-aware IoU
related loss function in replace of `1-smooth loss in
regression branches.

3) We conduct experiments on several public arbi-
trary shape, multi-oriented and multi-lingual scene
text datasets, including CTW-1500, Total-Text,
ICDAR2015 and ICDAR2017-RCTW, to prove the
superiority of our method over previous ones.

The rest of the paper is organized as follows. In Section II,
we review some of the prior proposed methods in scene
text detection; Section III introduces the scene text detec-
tion framework and the loss function we propose; and in
Section IV, experimental details and detection results on three
public datasets are shown. Section V is our final conclusion
and our prospective future work.

II. RELATED WORKS
Before deep learning was widely used, researchers used
traditional bottom-up approaches for text detection tasks,
which were broadly classified into two categories: connected
components(CC) analysis based approaches [3]–[5] and slid-
ing window based approaches [6]–[8]. CC analysis based
approaches include edge detection and text-level detection.
The former detects edge or corner of text instance to obtain
text candidate region, which uses operators such as Canny,
Sobel, or K-means clustering method. The latter detects con-
nected region to get text candidate region, and the repre-
sentative methods include stroke width transform(SWT) [17]
and maximally stable extremal regions(MSER) [5]. Sliding
window based approach scans the entire image by a sliding
window, regards the region covered by each detection win-
dow as a text candidate region, then extracts the manully
designed features within. The confidence of the candidate
region is obtained by a well-trained classifier, by comparing
the confidence with the threshold, the candidate region is
classified into text region or background.

With the continuous development of deep learning,
approaches [13]–[15], [18]–[27] based on deep learning have
gradually demonstrated superiority in text detection. These
methods are divided into three categories: region proposal
based, segmentation based and hybrid methods. Region pro-
posal based methods regress bounding box of text instance
as the final detection result, which are divided into one-stage
methods and two-stage methods. One-stage methods directly
predict the bounding box of text region, mostly based on
the general object detection framework SSD [28], including
Textboxes [20], Textboxes++ [21], RRD [22], SegLink [23],
etc. Two-stage methods first generate region proposals from
feature maps, and then classify and regress these proposals
to get final bounding boxes. Most of them are based on
the general object detection framework Faster R-CNN [29],
including RRPN [13], R2CNN [14], SLPR [15], etc. Seg-
mentation based methods treat text detection as a general-
ized segmentation task, using typical semantic segmentation
methods to perform pixel-level text/background annotation.
PixelLink [24] adds eight-directions link prediction as the
same time as the text/background classification, and gen-
erates the bounding box directly from the link. FTSN [25]
uses multi-scale fused feature map and uses multi-object joint
training of pixel prediction and edge detection. Inceptext [26]
proposes the Inception-Text module and deformable PSROI
module to detect multi-oriented text. Reference [27] exploits
bootstrapping for data augmentation and semantics-aware
text border segments, in order to get complete and accurate
text lines. Hybridmethods useMask R-CNN framework [16],
which combines object detection and segmentation tasks and
achieves better results without any other tricks.

Although more and more methods have achieved advanced
performance in multi-oriented text detection tasks, they
are not ideal for arbitrary shape text detection. Reference
[10] proposes a curved text dataset CTW-1500, which uses
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FIGURE 1. The architecture of our method. Given an image as input, the Feature Pyramid Network (FPN) extracts features from different layers and
produces feature maps of different size. Region Proposal Network (RPN) uses features from P2 to P6, in which P6 is the result of P5 upsampling. While
RoIAlign needs proposals from RPN and features from P2 to P5. Then three different heads are connected to RoIAlign. Box head predicts text/background
confidence scores and coordinates of the text proposals. Mask head predicts pixel-level text mask. Text IoU head predicts IoU of text masks provided by
mask head. It is worth noting that the `1-smooth loss in box reg process marked in orange is replaced by the IoU-related loss proposed in our method.

14 points to annotate the polygon ground truth, and proposes
curve text detector (CTD) and recurrent trans-verse and longi-
tudinal offset connection (TLOC) algorithm to detect curved
text instances. TextSnake [30] concatenates a series of disks
to describe text instances, and uses FCN+FPN network to
predict text region (TR), text center line (TCL), angle and
radius. In LOMO [31], direct regression (DR) module gen-
erates text proposals firstly, then iterative refinement mod-
ule (IRM) refines the quadrangle proposals neatly close to
ground truth by regressing the coordinate offsets once ormore
times. Finally, shape expression module(SEM) regresses the
geometry attributes of text instances. ATRR [32] is the first
to use adaptive number of pairwise points to represent text,
and uses RNN+LSTM to detect arbitrary shape text. Com-
pared with Mask R-CNN based methods, ATRR needs less
computation.

In previous Mask R-CNN based methods, there are two
problems that are often ignored: One is that there is not a
strong corelation between minimizing `1-smooth loss and
improving the IoU value between the proposed bounding
box and the corresponding ground truth. The other is that
there is not a strong corelation between the classification
confidence score and the text mask IoU value. Text detection
is a sub-area of object detection. Improving its detection
performance is to improve the IoU between the detection area
and the corresponding ground truth, because the determining
factor during calculating the recall and precision in the eval-
uation stage is IoU. Therefore, our method has made corre-
sponding adjustments based on Mask R-CNN for the above
mentioned problems: For the first problem, we replace the
`1-smooth loss with the proposed IoU-related loss function.
During the backpropagation of the neural network, we can
directly improve the IoU between predicted bounding box
and the corresponding ground truth by minimizing this loss.
For the second problem, we add the text scoring branch which

predicts the IoU between text mask and the corresponding
ground truth, and use this IoU as a determining factor of the
confidence score in the final evaluation stage. Our method is
simple but effective, and the performance is improvedwithout
introducing other modules to increase model computation.

III. THE PROPOSED METHOD
A. NETWORK ARCHITECTURE
The architecture of our method is shown in Fig.1. Based on
Mask R-CNN benchmark, our text detection model is divided
into 4 parts: the Feature Pyramid Network(FPN), the Region
Proposal Network(RPN), the RoIAlign and theMask R-CNN
heads.

In convolutional neural network, deep features contain
more semantic information, while shallow features contain
more location information. Therefore, it is necessary to use
both deep and shallow features to meet the needs of classifi-
cation and localization. FPN is the backbone of the proposed
model to improve the problem ofmulti-scale object detection.
It contains three parts: a bottom-up connection, a top-down
connection and a lateral connection, as shown in the dashed
box labeled FPN in Fig.1. The bottom-up connection uses
feature maps divided into 5 stages according to its size. Each
stage takes the last residual block of Resnet-50, together
form {C2, C3, C4, C5}, whose stride relative to the original
image is {4,8,16,32}. In order to save memory, conv1 of
stage 1 is discarded. The top-down pathway upsamples from
higher-level and semantically stronger feature maps, so as to
get higher resolution features. The lateral connection fuses
the upsampled result with the same-sized feature map gen-
erated from the bottom-up connection. Specifically, after the
conv1×1 operation performed for each stage in {C2, C3, C4,
C5}, they are summed with upsampled feature maps. Then
conv3×3 is performed to eliminate the aliasing effect of the
upsampling process. As a result, we get a set of feature maps,
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denote as {P2, P3, P4, P5}. P6 is added into the feature pyra-
mid in order to get a larger anchor scale, where P6 is the result
of stride two upsampling ofP5. In summary, Resnet-FPN uses
feature maps of {P2, P3, P4, P5, P6} as input of RPN, while
{P2, P3, P4, P5} as input of RoIAlign.
The RPN part generates anchors of different scales on the

feature maps of {P2, P3, P4, P5, P6}. During training, after
classification and bounding box regression, 2000 proposals
are selected as another input of RoIAlign. This process is the
first stage of the two-stage object detection model.

The RoIAlign part is an improvement on the RoI Pooling
of Faster R-CNN [29]. It solves the problem that the latter
feature map is not pixel-aligned with the original image
and affects the detection accuracy [16]. RoIAlign is used to
extract the RoI features of the proposals predicted by RPN,
and normalize the size of the RoI features to the size of the
Mask R-CNN heads’ input, thus speeding up the training and
inference process.

Mask R-CNN heads are the second stage of the two-stage
object detection model. In addition to the bounding box clas-
sification and regression in Faster R-CNN, the mask head is
added to predict the binary mask of text area. The text IoU
head is also added to predict the IoU between text mask and
corresponding ground truth as the text IoU score to affect the
final confidence score. A detailed description of the text IoU
head is shown in text scoring branch section.

The above four parts are combined to form a multi-task
text detection model including text/background classifica-
tion, bounding box regression, semantic segmentation and
IoU regression.

B. GENERALIZED COMPLETENESS-AWARE IoU LOSS
The loss function used in the bounding box regression process
in previous Mask R-CNN based methods is `1-smooth loss,
which is calculated as follow:

smoothL1 =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(1)

where x is the absolute value between the predicted bounding
box regression and the ground truth regression. During back-
propagation, the neural network indirectly achieves the goal
of improving IoU by reducing this loss so that the predicted
bounding box is closer to the ground truth. However, IoU
is the metric that compares the similarity of two arbitrary
two-demensional shapes. Using loss function such as `1-
smooth loss does not directly improve IoU, because when two
shapes overlap in different ways, `1 or `2-norms values can
be the same, while the value of IoUmay not be the same [33].
In order to improve the IoU directly, [33] proposed GIoU loss
and used it as the loss function in replace of `1-smooth loss.
Inspired by [33], we made two improvements and apply it to
our network:

1) We proposed generalized completeness-aware IoU,
which makes the predicted box recall the ground truth
as completely as possible;

Algorithm 1 Generalized Completeness-Aware IoU Loss
Input: Predicted Bp and ground truth Bg bounding box

coordinates:
Bp = {xp1 , y

p
1, x

p
2 , y

p
2}, Bg = {xg1 , y

g
1, x

g
2 , y

g
2}.

Output: LGCAIoU
1: For the predicted box Bp, ensuring xp2 > xp1 and yp2 > yp1:

x̂p1 = min(xp1 , x
p
2 ), x̂

p
2 = max(xp1 , x

p
2 ),

ŷp1 = min(yp1, y
p
2), ŷ

p
2 = max(yp1, y

p
2),

2: Calculating area of Bg: Ag = (xg2 − x
g
1 )× (yg2 − y

g
1).

3: Calculating area of Bp: Ap = (x̂p2 − x̂
p
1 )× (ŷp2 − ŷ

p
1).

4: Calculating intersection I between Bg and Bp:
xI1 = max(x̂p1 , x

g
1 ), x

I
2 = min(x̂p2 , x

g
2 ),

yI1 = max(ŷp1, y
g
1), y

I
2 = min(ŷp2, y

g
2),

I =
{
(xI2 − x

I
2 )× (yI2 − y

I
1 ) if x

I
2 > xI1 , y

I
2 > yI1

0 otherwise.
5: IoU = I

U , where U = Ap + Ag − I.
6: CAIoU = IoU × ratio, where ratio = I

Ag .
7: Finding the coordinate of smallest enclosing box Bc:

xc1 = min(x̂p1 , x
g
1 ), x

c
2 = max(x̂p2 , x

g
2 ),

yc1 = min(ŷp1, y
g
1), y

c
2 = max(ŷp2, y

g
2),

8: Calculating area of Bc: Ac = (xc2 − x
c
1)× (yc2 − y

c
1).

9: GCAIoU = CAIoU − Ac−U
Ac .

10: LGCAIoU = 1− GCAIoU .

2) we applied the proposed LGCAIoU to the bounding box
regression process in both RPN and Mask R-CNN
heads.

The calculation of our proposed generalized completeness-
aware IoU loss is shown in Alg.1. First we calculate the
area of the predicted bounding box and the ground truth box
together with their IoU . Next, multiply the IoU by a ratio to
get the CAIoU , as shown in Alg.1(6). This multiplier is the
ratio of the intersection and the ground truth box area, which
is used to perceive whether the predicted box can recall the
complete ground truth box. As shown in Fig.2, CAIoU has a
greater penalty for predicted boxes that do not recall ground
truth boxes completely. The introduction ofCAIoU makes the
predicted box shift towards the direction of complete recall,
which means that the cutting behavior can be suppressed.
After that, we seek the smallest enclosing bounding box of
the predicted box and the ground truth, calculate its area, and
calculate GCAIoU , as shown in Alg.1(7-9). The introduction
of GCAIoU is to solve the problem that the value of CAIoU
and the gradient is zero in the case of non-overlapping. As can
be seen from Fig.2, the value of GCAIoU is still smaller than
IoU andGIoU , proving thatGCAIoU is more universal while
being capable of compleness awareness. Finally, we use the
proposed LGCAIoU in the bounding box regression process as
a loss.
GCAIoU is a metric closely related to IoU. Using this

metric as the loss of box regression branch is an optimal
choice to directly improve IoU. Applying LGCAIoU to the
regression branch in RPN can make the filtered proposals
recall more content of the ground truth. To our knowledge,
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FIGURE 2. A set of examples of predicted bounding box and
corresponding ground truth. For the left three cases, the predicted
bounding box does not recall the ground truth completely, so as a penalty,
the value of CAIoU and GCAIoU are smaller than IoU and GIoU. While for
the far right case, the value of CAIoU and GCAIoU are the same as IoU and
GIoU due to the complete recall. Black: detection. Red: ground truth. Grey:
Intersection between them. Blue: the smallest enclosing box of them.

few works focus on the optimization of the RPN part. Our
method improves the quality of the RPN proposals in a simple
but effective way. Applying LGCAIoU to the box regression
branch of Mask R-CNN heads can further improve the per-
formance of regression.

C. TEXT SCORING BRANCH
During the evaluation phase in current Mask R-CNN based
methods, classification confidence score predicted by classi-
fication branch of box head in Mask RCNN heads plays an
important role to filter redundant bounding boxes. However,
since this score is not directly related to the quality of the text
mask, high mask IoU but low classification confidence boxes
are filtered out, thus retaining suboptimal boxes. To overcome
this problem, inspired by [34], the text scoring branch is
introduced to adjust the final confidence score to align it with
the quality of the text mask.

The architecture of text scoring branch is shown in Fig.3.
The input of Text IoU head is the concat of RoI features from
RoIAlign and text masks predicted by mask head. During
concatenating, a stride two maxpooling layer with a size-two
kernel is used to keep the size of text mask to be the samewith
RoI feature. The Text IoU head includes four convolutional
layers and three fully connected layers. The output of the last
fully connected layer is the predicted IoU between text mask
and ground truth. This IoU value is then multiplied by the
confidence score predicted by classification branch to obtain
the final score, denoted as stext = scls ·stextIoU. Thus, this score
can represent the quality of the text mask for the subsequent
filtering process.

D. MULTI-TASK LOSS FUNCTION
Our proposed method is a multi-task text detection model
consisting of text/background classification, bounding box
regression, semantic segmentation and IoU regression.
We define its multi-task loss function as follows:

L = Lcls + λ1Lbox + λ2Lmask + λ3LtextIoU (2)

where λ1, λ2 and λ3 are the weights of the bounding
box regression loss, the semantic segmentation loss and
the TextIoU loss, respectively. We use Softmax loss as the

FIGURE 3. The architecture of text scoring branch. We concat the RoI
feature and the predicted text mask as the input of Text IoU head. After 4
convolutional layers and 3 FC layers, the output of Text IoU head is the
predicted IoU between text mask and corresponding ground truth.

classification loss, which is calculated as follow:

Lcls(pi, p∗i ) =
1
i

∑
i

−log
[
p∗i pi + (1− p∗i )(1− pi)

]
(3)

where i is the index of the anchors, pi is the predicted proba-
bility of detection, p∗i is the probability of ground truth which
is 0 or 1 otherwise.

The bounding box regression loss is our proposed LGCAIoU ,
which is calculated in Alg.1.

Following Mask R-CNN, the loss of semantic segmen-
tation is the average binary cross-entropy loss defined as
follow:

Lmask = −
1
m2

∑
1≤i,j≤m

[ŷ∗ijlogyij + (1− ŷ∗ij)log(1− yij)] (4)

where ŷ∗ij is the label of a cell (i, j) in the ground truth mask
for the RoI region size of m× m, yij is the predicted value of
the same cell.

Following [34], we use `2 loss for regressing TextIoU,
which is calculated as follow:

LtextIoU (ti, t∗i ) =
1
i

∑
i∈{y,h}

∣∣ti − t∗i ∣∣2 (5)

where ti is the predicted IoU of text mask, t∗i is the ground
truth mask IoU.

IV. EXPERIMENTS AND ANALYSIS
A. DETAILS
We choose Pytorch as our deep learning framework to imple-
ment our method. We use Resnet-50 for feature extrac-
tion, synthetic data [35] for pretraining the model, and
provided training data from CTW-1500 [10], Total-Text
[11], ICDAR2015 [9] and ICDAR2017-RCTW [12] for
fine-tuning our model.

The maximum iteration number is 60 epochs for each
dataset on two Nvidia Titan X GPUs. We set the initial
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learning rate to 10−2 and reduced to 10−3 and 10−4 on the
40th and 50th epoch, respectively. The weight of text scoring
branch was set to 3.0 so as to make a balance between all
branches. To prove the superiority of our method, we did
not use tricks such as online hard example mining(OHEM)
and data augmentation strategies. In order to save computing
resources and improve efficiency, our training images were
rescaled to fixed size with the width of less than 1280 pixels
and the height of less than 720 pixels.

B. LABELS
In the RPN training process, whether the label of anchor is
positive or negative is determined by the IoU between the
anchor and the corresponding ground truth.

A positive label is defined as:

1) An anchor that has an IoU overlap higher than 0.7 with
any ground truth box;

2) An anchor with the highest IoU overlap with a ground
truth box.

While a negative label is defined as: An anchor has an IoU
overlap less than 0.3 with all ground truth boxes.

For anchors with IoU between 0.3 and 0.7, they would be
discarded rather than feeding to the heads.

C. DATASETS
Our proposed method is evaluated on three public datasets.
The first two are arbitrary shape text datasets, while the latter
one is a multi-oriented text dataset.

CTW-1500 [10]: It is the first curve text dataset that
pioneered the field of arbitrary shape text detection. It con-
tains 1000 scene images for training and 500 for testing,
with 10,751 bounding boxes (3,530 are curve bounding
boxes). Text instances are annotated by a polygon consisting
of 14 points.

Total-Text [11]: It is a scene text dataset collected with
multi-lingual curved text. It contains 1255 scene images for
training and 300 for testing, with 9,330 annotated words.
The orientations of text in this dataset is multivariate, includ-
ing horizontal, multi-oriented and curved. Text instances are
annotated by adaptive number of points and are labeled at
word level.

ICDAR2015 [9]: It is a popular incidental scene text
dataset which contains 1000 scene images for training and
500 for testing. In contrast to the two datasets mentioned
above which are well-captured, images in ICDAR2015 are
captured without any specific prior action, so some of them
are distorted and out of focus. Text instances are annotated
by the upper left and lower right corners of multi-oriented
bounding boxes.

ICDAR2017-RCTW [12]: It is a large-scale scene text
dataset focused on reading Chinese text in the wild which
contains 8034 scene images for training and 4229 for testing.
It fills the gap of Chinese scene text detection. Text instances
are annotated by the upper left and lower right corners of
horizontal or vertical bounding boxes.

To evaluate the results of our proposed model on multi-
ple public datasets, we use ICDAR2015 IoU metric, which
follows Pascal VOC [36]. This metric includes precision,
recall, and H-mean, where H-mean is the harmonic mean of
precision and recall.

D. RESULTS ON CTW-1500
Our proposed method is tested on curved text dataset CTW-
1500, and the visualization of detection results is shown
in Fig.4(a). As can be seen from the two sets of comparison
figures on the left, due to the introduction of text scoring
branch, our method can suppress false positives such as the
texture in the middle of the airplane and the texture on the
top of the yellow board. Zoom in to view small-scale text
detection results. From the two figures in the middle, we can
see that our method can distinguish adjacent text lines very
well. And from the twofigures on the right, ourmethod iswell
adapted to text instances of different scales. The comparison
of our method with others is shown in Table 1. We achieved
78.5% precision, 79.9% recall and 79.2% H-mean.

TABLE 1. Results on CTW-1500 dataset.

E. RESULTS ON TOTAL-TEXT
Total-Text is another curved text dataset with well-captured
streetscapes that contains text instances of different scales,
orientations and languages. The visualization of detection
results on Total-Text is shown in Fig.4(b). As we can see
from the figure, text instances with large bend angles and
irregular shapes are well detected. We compare our detection
result with other advanced methods in the past three years
in Table 2. We achieved 82.1% precision, 80.0% recall and
81.1% H-mean, which is a competitive result on Total-Text
dataset. Similar to the results on CTW-1500 dataset, although
our method does not achieve the highest precision and recall,
the two are still higher than most of other methods.

F. RESULTS ON ICDAR2015
To verify the scalability and robustness of our method,
we also test on the multi-oriented scene text dataset
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FIGURE 4. Visualization of detection results on different datasets. (a) Results on CTW-1500; (b) results on Total-Text; (c) results on ICDAR2015.
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TABLE 2. Results on total-text dataset.

TABLE 3. Results on ICDAR2015 dataset.

ICDAR2015. Images in this dataset are streetscapes that are
not well focused. Since our method can solve the problem of
detecting arbitrary shape text, it can detect multi-oriented text
represented by rectangular boxes as well. The visualization
of the detection results is shown in Fig.4(c). Zoom in to view
small-scale text detection results. We achieved 71.8% preci-
sion, 89.2% recall and 79.6% H-mean as shown in Table 3.
The recall and H-mean are higher than other representative
methods among them.

G. RESULTS ON ICDAR2017-RCTW
As the scale of the previous three datasets are small, for the
complete comparison of our proposed method, we also test
on large-scale dataset such as ICDAR2017-RCTW. Images
in this dataset focus on reading Chinese text in the wild. The
visualization of the detection results is shown in Fig.5. Zoom
in to get better view. We achieved 71.9% precision, 55.3%
recall and 62.5% H-mean as shown in Table 4.

H. GCAIoU SUPERIORITY STUDY
The LGCAIoU proposed in this paper is based on the improve-
ment of [33]. Therefore, in order to verify the superiority of
LGCAIoU , we set up two sets of comparative experiments.

The first set of experiments is the H-mean compari-
son of three losses including the `1-smooth loss used in
the Mask RCNN framework, the LGIoU proposed in [33]
and the LGCAIoU in this paper, as shown in Table 5. It is
worth noting that IC15 in the table is an abbreviation

FIGURE 5. Visualization of detection results on ICDAR2017-RCTW.

TABLE 4. Results on ICDAR2017-RCTW dataset.

TABLE 5. H-mean comparison of three losses.

TABLE 6. H-mean comparison of whether LGCAIoU is applied to RPN.

for ICDAR2015 dataset, and IC17 for ICDAR2017-RCTW
dataset. The results show that the loss function proposed in
this paper gets better performance than `1-smooth loss and
LGIoU on both large-scale and small-scale datasets, which
proves the superiority of LGCAIoU .
The second set of experiments is the H-mean comparison

of whether LGCAIoU is applied to the RPN part. As can be seen
in Table.6, applying LGCAIoU to RPN has greatly improved
the performance of the model.

I. ABLATION STUDY
In order to verify the effectiveness of our proposed LGCAIoU
and text scoring branch, we set a series of ablation
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TABLE 7. H-mean on different combination of LGCAIoU and text scoring
branch.

experiments about their different combinations, as shown
in Table 4. It is worth noting that the TS in the table is
an abbreviation for text scoring. As can be seen from the
table, for small-scale datasets, the introduction of LGCAIoU
and the addition of the text scoring branch all contribute to
the improvement of the model performance. Where LGCAIoU
improves the quality of the anchors and predicted bound-
ing box during backpropagation, while text scoring branch
improves the performance by aligning the text mask qual-
ity with the evaluation scores. The former has a superior
improvement over the latter, and the combination of the two
can achieve the best results. However, for large-scale dataset,
although the introduction of both LGCAIoU and Text Scoring
branch can improve the performance of the model respec-
tively, the best result is not obtained by the combination of
the two, but by the separate Text Scoring branch.

V. CONCLUSION AND FUTURE WORKS
In this paper, we proposed an IoU-related arbitrary shape
text detection model. Based on Mask R-CNN bench-
mark, we replaced `1-smooth loss by a generalized
completeness-aware IoU as a distance which can be com-
puted and be used as box regression loss. In addition,
we added text scoring branch as a ROI head to predict text
mask IoU for final evaluation stage. Our text detection model
can adapt to multi-oriented and arbitrary shape text detection
tasks and achieves competitive results on multiple public
datasets.

In the future, the proposed method can be improved in
three aspects. First, we need to figure out how to make the
IoU score predicted by text scoring branch affect the quality
of the mask predicted by the mask head. Second, we plan
to improve the model for more challenging public datasets,
such as multilingual datasets. Finally, we consider to refine
the model for end-to-end detection and recognition task.
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