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ABSTRACT The large-scale penetration of renewable energy, such as wind power, brings a lot of economic
and environmental benefits to the grid, and it also causes hidden dangers in the reliability and security of the
power system due to its uncertainty. As an effective demand-side management method, demand response has
unique advantages in smoothing wind power fluctuations and mitigating grid pressure. This paper proposes a
new model for the demand response aggregator (DRA) that includes both combined heat and power systems
(CHPS) and energy storage devices. DRA can interact with the Independent system operator (ISO) through
combined heat and power (CHP) units, energy storage devices, and the heat buffer tank to benefit from the
electricity market and the thermal market simultaneously. At the same time, wind power producers (WPP)
are modeled to turn wind power that was initially passively consumed into active market participants. The
problem is modeled using an improved weighted method, which aims to take the diverse objectives of
multiple market participants into account. The proposed model is tested on the modified IEEE RTS-24 test
system to analyze the optimal scheduling strategies of each participant in the power market.

INDEX TERMS Combined heat and power, demand response, electricity market, electricity storage, wind
power producer.

NOMENCLATURE
Most of the symbols and notations used throughout this paper
are defined below for quick reference. Others are defined
following their first appearances, as needed.

A. ABBREVIATIONS & INDICES
ISO Independent system operator
Genco Generator company
WPP Wind power producer
DRA Demand response aggregator
DRPs Demand response programs
CHP Combined heat and power
CHPS Combined heat and power system
FOR Feasible operation region of the CHP unit
i Index of Genco & CHP unit
j Index of WPP

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

t Index of time
k Index of the boiler unit
ω Index of scenario
n,m Index of node

B. PARAMETERS
NG Number of Gencos
NW Number of wind power producers
Nchp Number of CHP units
Nb Number of boil units
T Length of time
Ai,Bi,Bi Cost function coefficients of

generator i
TUi/TDi Minimum up/down time of

generator i
RUi/RDi Ramp up/down rate of generator i
cstartupi/cshutdowni Startup/shutdown cost of generator i
Ccapital
j Capital cost of WPP j
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CM&O
j Maintenance and operation costs of

WPP j
Pmaxj,wind Maximum capacity of WPP j
d0t Original load demand at time t
dContractt Contract for consumers participating

in incentive-based DRP
λ0t Original electricity price at time t
Incmax/Penmax Maximum amount of unit

incentive/Penalty
K1,K2 Dissatisfaction coefficients of

consumers
θ Participation coefficients of

consumers integrated with DRPs
E Price elasticity of demand
PCHPi,A ,PCHPi,B , Electricity output of CHP unit i at four
PCHPi,C ,PCHPi,D marginal points of the FOR
HCHP
i,A ,HCHP

i,B , Heat output of CHP unit i at four
HCHP
i,C ,HCHP

i,D marginal points of the FOR
M An adequately large number
ai, bi, ci, di, ei, fi Cost function coefficients of the

CHP unit
ψk,t Cost function coefficients of the

boiler unit
Hb,min
k /Hb,max

k Minimum/maximum heat output
of the boiler unit

Rupi ,R
down
i Ramp up/down rate of CHP unit i

UT i/DT i Minimum up/down time of CHP unit i
βloss/βgain Heat generation loss/excess for the

CHP unit during startup/shutdown
period

Bmin/Bmax Minimum/maximum heat buffer tank
capacity

η Heat loss rate for the heat buffer tank
Bchargemax /Bdischargemax The maximum charge(discharge) rate

of the heat buffer tank
HD
t Heat demand at time t

M char/Mdis Charge/discharge rate of the energy
storage device

ηchar/ηdis Charging and discharging inefficiency
of the energy storage device

Smin/Smax Minimum/maximum capacity of the
energy storage device

ht Thermal price at time t
τt Unit income of heat buffer tank for

selling heat to the ISO
TBn,m Susceptance of transmission line

connecting buses n and m
PFn,m Capacity of transmission line

connecting buses n and m

C. DECISION VARIABLES
Pgencoi,t Scheduled output of Genco i at time t
λt Electricity price at time
xi,t Binary variable for commitment status of

generator i at time t

yi,t Binary variable for startup status of
generator i at time t

zi,t Binary variable for shutdown status of
generator i at time t

Pwindj,t Scheduled output of WPP j at time t
1j,t,ω Total deviations of wind power
1+j,t,ω/1

−

j,t,ω Positive/negative deviations of wind power
σ+j,t/σ

−

j,t unit income for positive/negative
deviations of wind power

Pj,t,ωwind Output of WPP j at time t in scenario ω
dt Load demand at time t after

implementing DRPs
1dt Load change at time t after

implementing DRPs
Inct Incentive to the customer at time t for

each MWh load reduction
γt The total incentive for taking part in

incentive-based DRP at time t
Pent Penalty of the customer at time t for

each MWh load reduction deviated from
the contract level

µt The total penalty for taking part in
incentive-based DRP at time t

C Dissatisfaction cost function of consumers
PCHPi,t Produced power from CHP unit i at time t
HCHP
i,t Produced heat from CHP unit i at time t

Vi,t Binary variable for commitment status
of CHP unit i at time t

Vk,t Binary variable for commitment status
of boiler unit k at time t

Hb
k,t Produced heat from boiler unit k at time t

SU i,t Binary variable for startup status of CHP
unit i at time t

SDi,t Binary variable for shutdown status of
CHP unit i at time t

SU k,t Binary variable for startup status of
boiler unit k at time t

SDk,t Binary variable for shutdown status of
boiler unit k at time t

zct Charge amount of the energy storage
device

zd t Discharge amount of energy storage
device at time t

zd tsch the part of the electricity stored in the
energy storage device for the load

st Available electricity in the energy storage
device at time t

σt unit income of CHP unit for selling
electricity to the ISO

Utilityt Utility function of DRA at time t
θn,t Hour-t phase angle of node n

I. INTRODUCTION
Renewable energy, such as wind power and solar energy
are environmentally friendly and economically convenient.
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Therefore, countries around the world are vigorously pro-
moting the construction of renewable energy power plants.
The European Union, the United States, and China have
respectively set the goal of achieving 100%, 80%, and 60%
of renewable energy generation by 2050.

Although renewable energy generation has significant
advantages, it also has deficiencies such as volatility and
uncertainty, which will impact the reliability and security of
power systems. The rational use of load-side resources such
as demand response can help alleviate a series of problems
brought about by the large-scale penetration of renewable
energy.

Demand response program (DRP) according to the U.S.
Department of Energy (DOE) is described as residential,
industrial and commercial customers’ proficiency to change
energy-consumption schemes as a reaction to changes in the
electricity price over time, or to incentive fees in order to
fulfill reasonable prices and system reliability [1].

DRPs under this definition can be categorized into two
groups: time-based and incentive-based. Time-based DRPs
include Time of use (TOU), Real-time price (RTP), and
Critical peak price (CPP). Incentive-based DRPs include
programs such as Direct load control (DLC), Emergency
demand response program (EDRP), and Interruptible/ curtail-
able (I/C) service.

Massively dispersed loads have made power dispatch
more difficult. To integrate and utilize load-side resources,
demand response aggregators (DRA) have emerged. As a link
between customers and power markets, DRAs have a critical
role in integrating and dispatching demand-side resources
and participating in power markets. Researches on optimal
operating strategies of DRAs to seek maximum profit while
maintaining reliable and secure operation of the power system
have attracted much attention.

Day-ahead energy schedule models of DRAs have been
proposed in [2], [3], therein [2] models the detailed proce-
dure of load shifting and curtailing, and [3] takes the finan-
cial risk caused by several uncertainties into account using
the Conditional Value-at-Risk (CVaR) measure. However,
both [2] and [3] have not considered the increment of con-
sumers’ dissatisfaction caused by load curtailment. In [4], [5],
strategies of DRAs simultaneously participating in day-ahead
and real-time markets have been analyzed. Reference [4]
takes the uncertainty of electricity price into account through
stochastic programming and [5] applies the information-gap
decision theory (IGDT) in the self-scheduling problem to
consider the uncertainties of electricity price and users’
behaviors, which avoids computational burdens caused by
stochastic programming approaches in [4].

The development of energy storage technology has pro-
moted the popularization of storage devices on the demand
side. Reference [6] proposes a game-theoretic structure
between customers equipped with energy storage devices.
Competition between DRAs to sell aggregated energy stored
in storage devices directly to other aggregators in a mar-
ket is modeled in [7]. Reference [8] proposes a networked

Stackelberg competition, according to [7]. Although the
energy storage devices in [6]–[8] can discharge electricity to
the load, they do not consider the interactions between the
energy storage device and the power system.

As the fastest-developing renewable energy in recent
years, wind power installed capacity has proliferated, and
researches on high wind power penetration earn a lot of
attention [9]–[11]. Reference [12] emphasizes the importance
of wind power producer (WPP) participating in the electricity
market. [13] has analyzed the optimal offering strategies of
WPPs in electricity markets. Optimal coordination of wind
and thermal power has been addressed in several reports, such
as [14]. Reference [15] focuses on optimal bidding strategy
for pairing of wind and demand response resources. However,
WPP plays the role of passive producers in [13], [14], which
means that wind power is considered as energy to be con-
sumed instead of an active market participant to make sure
of the balance between supply and demand. In [15], there
is no difference between WPP and traditional generators in
clearing the market. WPP can also use demand response
resources to decrease economic losses triggered by wind
power fluctuations in [15].

Combined heat and power systems (CHPS) can produce
electricity and heat simultaneously, which is economical and
environmentally friendly. The efficiency of the combined
heat and power (CHP) unit can achieve 70-85%, and it
is becoming a hot spot in the current research. The CHP
units can be categorized into six major technologies: fuel
cells, micro-turbines, small steam turbines, sterling engines,
reciprocating engines and small gas turbines [16]. The heat
and electricity output of CHP units are non-separable and
depend on each other with the constraint of the feasible
operation region (FOR). The economic dispatch of the CHP
unit is addressed in [17]. The schedule of electricity mar-
ket considering demand response resources and CHPS is
addressed in [18]–[22]. However, [18]–[21] do not model
detailed DRPs, and [22] only takes time-based DRPs into
account and uses a simple linear function to depict the rela-
tion between demand and electricity price. Reference [23]
considers interconnected power distribution network and dis-
trict heating network infrastructures through CHP units and
heat pumps. The pricing method of heat and electricity is
discussed in [24], [25].

To the best of our knowledge, there is no study of modeling
DRA considering CHPS and energy storage devices simulta-
neously. CHPS and energy storage devices have developed
rapidly in recent years, and they have become more and
more widespread in the demand side. They can not only
reduce generation costs, enhance power supply reliability and
stability, but also increase the impact of the demand side in
the power market.

Modeling DRA considering CHPS and energy storage
device at the same time has many advantages. It can increase
the flexibility of the demand side participating in the elec-
tricity market as well as enable DRAs to participate in the
thermal market and earn profit.
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This paper establishes a day-ahead power market frame-
work with multiple market participants, including traditional
generator company (Genco), WPP, and DRA with CHPS
and energy storage devices. These market participants have
different objective functions, that is, to maximize their profit.
As the supreme leader in the power market, the Independent
system operator (ISO) must take each part’s interest into
account when clearing the market to achieve the maximum
of overall benefit. Therefore, it is necessary to establish a
multi-objective optimization model based on each market
participant’s profit function and obtain the optimal strategy
of each market participant under the premise of maximizing
the overall benefit.

In summary, the main contributions of this paper are as
follows:

a Modeling DRA considering CHPS and energy storage
devices simultaneously; thus, DRA can participate in
both the electricity market and the thermal market.

b Establishing a multi-objective day-ahead power market
frameworkwithmultiplemarket participants, including
Gencos, WPP, and DRA. WPP plays the role of active
market participant, and there is no difference between
WPP and traditional generators in clearing the market.

c Proposing an improved weighted method to solve the
multi-objective optimization problem. The improved
weighted method combines the Analytic Hierarchy
Process and Entropy method to make the weighted
coefficients more comprehensive.

In the remainder of this paper, Section II presents themodel
used in this work. The case studies are detailed in Section III.
The paper is concluded in Section IV.

II. FORMULATION
A. TRADITIONAL GENCOS
Traditional Gencos rely mainly on coal-fired units for power
generation. Although they will cause serious environmental
pollution, it is still necessary to rely on traditional Gencos to
maintain the stability and reliability of the power system in
the current stage. The objective of Genco is formulated as (1):

max (Genco profit) = max(
∑NG

i=1

∑T

t=1
Pgencoi,t ∗ λt
−Cgencosti,t ) (1)

The first term in (1) denotes the income obtained from
participating in the day-ahead electricity market. The second
term represents the operation cost of generators. The opera-
tion cost function of generator i at time t is formulated as (2):

Cgencosti,t = Ai ∗
(
Pgencoi,t

)2
+ Bi ∗

(
Pgencoi,t

)
+ Ci ∗ xi,t

+ Cstartupi,t + Cshutdowni,t (2)

The objective function should be maximized, considering
the following constraints:

xi,t − xi,t−1 = yi,t − zi,t (3)

yi,t + zi,t ≤ 1 (4)

yi,t +
∑TUi−1

l=1
zi,t+l ≤ 1 (5)

zi,t +
∑TDi−1

l=1
yi,t+l ≤ 1 (6)

xi,t · xi,t−1 ·
(
Pgencoi,t − Pgencoi,t−1

)
≤ RUi (7)

xi,t · xi,t−1·
(
Pgencoi,t−1 − Pgencoi,t

)
≤ RDi (8)

Pmini · xi,t ≤ Pgencoi,t ≤ P
max
i · xi,t (9)

Cstartupi,t = cstartupi ∗ yi,t (10)

Cshutdowni,t = cshutdowni ∗ zi,t (11)

Constraints (3) and (4) impose restrictions on the genera-
tor’s commitment status, startup status, and shutdown status.
Constraints of minimum up and down times are expressed
in (5) and (6). Constraints of ramp-up/down rate are denoted
in (7) and (8). (9) represents the output limits of generators
and (10)-(11) indicate the constraints of startup and shutdown
cost.

B. WPP
In the model of this paper, WPP plays the role of an active
participant in the electricity market, and there is no differ-
ence between WPP and traditional generators in clearing the
market. Due to the uncertainty of wind power, the available
wind power output may deviate from the planned output.
If the actual output of wind power is less than the planned
output, WPP will face a penalty; if the actual output of wind
power is greater than the planned output, WPP can sell the
excess wind power to ISO for profit. The objective of WPP is
formulated as (12).

max (WPP Profit)

= max(
NW∑
j=1

T∑
t=1

Pwindj,t ∗ λt

+E
(
σ+j,t ∗1

+

j,t,ω − σ
−

j,t ∗1
−

j,t,ω

)
− Ccapital

j

−CM&O
j ∗ Pwindj,t ) (12)

The first term in (12) represents the income obtained from
submitting the wind power output plan to the ISO. The second
term denotes the expectation of income earned from the wind
power deviations. The last two terms express maintenance
and operation costs.

Constraints are as follows [27]:

0 ≤ Pwindj,t ≤ Pmax
j,wind (13)

1j,t,ω = Pj,t,ωwind − Pwindj,t (14)

1j,t,ω = 1
+

j,t,ω −1
−

j,t,ω (15)

0 ≤ 1+j,t,ω ≤ Pj,t,ωwind (16)

0 ≤ 1−j,t,ω ≤ P
max
j,wind (17)

Constraints (13) impose restrictions on wind power output.
Constraints of positive and negative wind power deviations
are represented in (14-17). The maximum positive deviation
occurs when the wind power output plan is zero, and the
actual wind power output is not zero; the maximum negative
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deviation occurs when the wind power output is scheduled at
the maximum installed capacity, but the actual wind power
output is zero.

C. DEMAND RESPONSE AGGREGATOR (DRA)
As a bridge between consumers and ISO, DRA plays a vitally
important role in the rational planning of load curves and
the consumption of renewable energy. This paper assumes
that a fraction of consumers own CHPS and energy storage
devices. CHPS includes the CHP unit, boiler unit, and heat
buffer tank. With the rapid development of the smart grid,
CHPS and storage devices will be more and more popular in
the demand side.

1) MODELING OF DEMAND RESPONSE PROGRAMS
DRPs can be divided into time-based and incentive-based
programs. This paper considers load participating in TOU and
I/C programs at the same time.

The modeling process of incentive-based programs is
shown first. Suppose that the customer changes his demand
from d0t (initial value) to dt after implementing the load
curtailing. The amount of load change is expressed in (18):

1dt = dt − d0t (18)

ISO will provide incentives for DRAs participating in load
curtailment:

γt = Inct
(
d0t − dt

)
∀t ∈ T (19)

Before the market-clearing, ISO will sign a contract with
the DRA on the amount of load reduction. If the amount
of load reduction does not meet the contract requirement,
the DRA will be faced with a penalty. The total penalty at
time t is denoted in (20):

µt = Pent
(
dContractt −

(
d0t − dt

))
∀t ∈ T (20)

It is to be noted that both Inct and Pent in (19) and (20)
are decision variables, and they must be constrained to (21)
and (22).

0 ≤ Inct ≤ Incmax (21)

0 ≤ Pent ≤ Penmax (22)

The reduction of the load will affect the living qual-
ity of consumers, increasing consumer dissatisfaction.
Equation (23) establishes an expression for consumer’s dis-
satisfaction function [28]:

c = K11dt2 + K21dt − K21dtθ (23)

K1 andK2 are dissatisfaction coefficients. θ is the customer
type and is used to depict the enthusiasm of consumers to par-
ticipate in DRPs. θ is normalized in the interval 0 ≤ θ ≤ 1,
thus θ = 1 for the most willing consumer and θ = 0 for the
least willing.

As for the time-based DRP, this paper uses the concept
of price elasticity in economics to obtain the relationship
between load and change in the electricity price.

Price elasticity, that is, the elasticity of demand to price,
refers to the sensitivity of the corresponding change in the
demand for a product when the price of a product changes,
as shown in equation (24).

E =
λ0

d0
·
∂d
∂λ

(24)

The price elasticity of i time compared to j time can be
derived from equation (24), as shown in (25):

E (i, j) =
λ0j

d0i
·
∂d (i)
∂λ (j)

(25)

Price elasticity can be divided into self-price elasticity and
cross-price elasticity. The self-price elasticity coefficient is
usually a negative value, and the cross-price elasticity coeffi-
cient is often a positive value, as shown in (26):{

E (i, j) 6 0 if i = j
E (i, j) > 0 if i 6= j

(26)

The model of load fluctuating with the change of the elec-
tricity price, incentive and penalty is derived in [29], as can
be seen in (27):

dt = d0t · {1+ E(t, t) ·
[
λt − λ

0
t

λ0t
+

Inct + Pent
λ0t

]

+

24∑
j=1
j 6=i

E (t, j) ·

[
λj − λ

0
j + Incj + Penj

]
λ0j

} (27)

2) MODELING OF CHPS
CHPS includes CHP units, boiler units, and the heat buffer
tank. There are two types of FOR for the CHP unit, as shown
in Fig.1 and Fig.2 separately.

From Fig.1, it can be seen that the FOR is enclosed by the
boundary curve ABCD, and it is constrained by three oper-
ational factors: maximum fuel consumption, minimum fuel
consumption, and maximum heat extraction. The minimum
and maximum fuel consumption is set at the amount that
meets the 40-50% and 115% of rated power under normal
conditions, respectively.

FIGURE 1. Power-heat feasible region for a CHP unit type 1.

VOLUME 7, 2019 181217



C. Li et al.: Multi-Objective Day-Ahead Scheduling of Power Market Integrated With WPP

FIGURE 2. Power-heat feasible region for a CHP unit type 2.

The FOR of the type 2 CHP unit shown in Fig.2 is sur-
rounded by the polygon ABCDEF, which is a non-convex
feasible domain. For the sake of simplicity, only the FOR
shown in Fig.1 is considered. In fact, for the non-convex FOR
shown in Fig.2, it can be processed by themethod of [17]. The
main idea of this method is to solve the problem by splitting
the non-convex feasible domain into two convex sub-regions
by introducing integer auxiliary variables.

Equations (28-32) model the FOR of the type 1 CHP unit,
as shown in Fig.1 [21]:

PCHPi,t − P
CHP
i,A −

PCHPi,A − P
CHP
i,B

HCHP
i,A − H

CHP
i,B

(
HCHP
i,t − H

CHP
i,A

)
≤ 0

(28)

PCHPi,t − P
CHP
i,B −

PCHPi,B − P
CHP
i,C

HCHP
i,B − H

CHP
i,C

(
HCHP
i,t − H

CHP
i,B

)
≥ −

(
1− Vi,t

)
×M (29)

PCHPi,t − P
CHP
i,C −

PCHPi,C − P
CHP
i,D

HCHP
i,C − H

CHP
i,D

(
HCHP
i,t − H

CHP
i,C

)
≥ −

(
1− Vi,t

)
×M (30)

0 ≤ HCHP
i,t ≤ H

CHP
i,B × Vi,t (31)

0 ≤ PCHPi,t ≤ P
CHP
i,A × Vi,t (32)

∀i ∈ Nchp, t ∈ T

In which, M is an adequately large number, and indices A,
B, C, and D represent four vertices of the FOR.

The operating cost of the CHP unit i at hour t is shown
in (33).

CCHP
i,t = ai × PCHP

2

i,t + bi × PCHPi,t + ci + di × H
CHP2
i,t

+ ei × HCHP
i,t + fi × H

CHP
i,t × P

CHP
i,t (33)

Equation (34) denotes the operating cost of the boiler
unit k at hour t:

CB
k,t = ψk,t × H

b
k,t (34)

In which,Hb
k,t refers to the produced heat from boiler unit k

at time t and ψk,t is the cost function coefficient of the boiler
unit.

CHP units and boiler units should obey the constraints as
follows:

SUh,t = Vh,t ×
(
1− Vh,t−1

)
, h ∈ i, k (35)

SDh,t =
(
1− Vh,t

)
× Vh,t−1, h ∈ i, k (36)

PCHPh,t+1 − P
CHP
h,t ≤ R

up
i , h ∈ i (37)

PCHPh,t − P
CHP
h,t+1 ≤ R

down
i , h ∈ i (38)

Hb,min
k × Vk,t ≤ Hb

k,t ≤ H
b,max
k × Vk,t (39)

SUh,t +
∑UT h−1

l=1
SDh,t+l ≤ 1, h ∈ i (40)

SDh,t +
∑DT h−1

l=1
SUh,t+l ≤ 1, h ∈ i (41)

Constraints (35) and (36) impose restrictions on the
startup status and shutdown status of CHP units and boiler
units. Constraints of ramp-up/down rate are denoted in (37)
and (38). (39) represents the heat output limits of boiler units.
Constraints of minimum up and down times are expressed
in (40) and (41).

The heat generated by the CHP unit and the boiler unit is
absorbed by the heat buffer tank. The total heat generated by
the CHP unit and the boiler unit is as shown in (42):

H t =
∑NCHP

i=1
HCHP
i,t +

∑Nb

k=1
Hb
k,t (42)

Considering the heat loss βloss and gain βgain during startup
and shutdown periods, the heat actually absorbed by the heat
buffer tank is as shown in (43):

Ht = H t − βlossSUh,t + βgainSDh,t , h ∈ i, k (43)

Hence, the available heat in the heat buffer tank, Bt ,
considering the heat loss rate η, could be calculated as:

Bt = (1− η)Bt−1 + Ht − HD
t (44)

The capacity constraints and ramp up/down rate constraints
of the heat buffer tank are as shown in (45)-(47).

Bmin ≤ Bt ≤ Bmax (45)

Bt − Bt−1 ≤ Bchargemax (46)

Bt−1 − Bt ≤ Bdischargemax (47)

3) MODELING OF ENERGY STORAGE DEVICES
This paper considers the interaction of energy storage devices
with ISO. The energy storage device can not only purchase
and store the electricity during the valley or off-peak period
but also supply power to the load or sell electricity to ISO
during the peak period of the electricity price. Its operational
constraints are shown in (48)-(50):

zct ≤ min
{
M char , Smax − st

}
∀t ∈ T (48)

zd t ≤ min
{
Mdis, st

}
∀t ∈ T (49)

st+1 − st − ηcharzct +
1
ηdis

zd t = 0 ∀t ∈ T (50)
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4) OBJECTIVE FUNCTION OF DRA
After the implement of DRPs, the load can be partially pow-
ered by the CHPS and the energy storage device. The CHPS
and energy storage device can sell excess electricity to ISO.

In addition to the electricity demand, the consumers stud-
ied in this paper have heat demand. The CHPS can supply
heat to the consumers, and sell excess heat to ISO for profit.

Therefore, the DRA can interact with ISO through the
CHPS and the energy storage device, that is, the DRA can
participate in the electricity market as well as participate in
the thermal market. The objective function of the DRA is as
shown in (51).

max(DRA profit) = max
T∑
t=1

{(Utilityt + γt − µt − ct − λt

∗

(
dt − PCHPi,t,sch − zd tsch

)
− ht

∗

(
HD
t − Htsch

)
+ Htsell ∗ τt )

+

NCHP∑
i=1

(
PCHPi,t −P

CHP
i,t,sch−P

CHP
i,t,chu

)
∗ σt

+

NS∑
i=1

(zd t − zd tsch) ∗ σt − zct ∗ λt )}

(51)

In which, Utilityt is the utility function of consumers at
time t, that is, the value that can be created by consuming
the corresponding load. For commercial load, this value is
equal to the commodity revenue that can be generated by
consuming the corresponding load. In this paper, it is assumed
that the utility function and the consumed load satisfy the
quadratic function relationship, as shown in (52).

Utilityt = d2t + dt (52)

PCHPi,t,sch denotes the part of the electricity generated by
the CHP unit for the load. PCHPi,t,chu denotes the part of the
electricity generated by the CHP unit for the energy storage
device. Htsch represents the part of the heat stored in the heat
buffer tank for the load. Htsell represents the part of the heat
stored in the heat buffer tank for sell. σt indicates the unit
income that can be obtained by the CHP unit and the energy
storage device to sell electricity to ISO. τt means the unit
income that can be acquired by the heat buffer tank to sell
heat to ISO.

D. SUPPLEMENTARY CONSTRAINTS
Constraints of power flow and power balancing of the net-
work are also included in the proposed model, which can be
seen as follows:

−π ≤ θn,t ≤ π (53)

−PFn,m ≤ TBn,m(θn,t − θm,t) ≤ PFn,m (54)
NG∑
i=1

Pgencoi,t+
NW∑
j=1

Pwindj,t+
NS∑
i=1

zd tsch+
NCHP∑
i=1

PCHPi,t,sch=dt

(55)

(53) describes the upper and lower phase angle limits of the
node. (54) is the power flow limit of the transmission line. The
power balancing constraint is given in (55).

E. MULTI-OBJECTIVE OPTIMIZATION
Considering that traditional Genco, WPP and DRA all want
to maximize their interests, in order to balance the interests
of all parties, this paper adopts an improved weighted method
to obtain the best behavior patterns of market participants.

The objective function of the traditional weighted method
is as follows:

OBJ = max {β1 (GencoProfit)+ β2 (WPPProfit)

+β3 (DRAProfit)} (56)

where β1, β2, β3 should satisfy:

0 ≤ β1, β2, β3 ≤ 1 (57)

β1 + β2 + β3 = 1 (58)

To make the weighted coefficients β1, β2, β3 more com-
prehensive, this paper improves the traditional weighted
method by combining the Analytic Hierarchy Process(AHP)
and Entropy method.

The basic idea of the AHP is to first establish a hierarchical
structure model by stratifying the indices according to their
importance, and then construct a set of pairwise comparison
matrices by comparing all the evaluation indices in each layer.
The consistency test should also be done, and finally, weights
are determined. Details of the AHP method can be found
in [26].

The hierarchical structure model used in this paper is
shown in Fig.3.

FIGURE 3. The hierarchical structure model.

As can be seen in Fig.3, the hierarchical structure model
has three layers, which are the target layer, the criteria layer,
and the participant layer. The weights are determined based
on three indices, such as environmental benefits, policy, and
economic benefits.

According to [26], we can get the weights of three partici-
pants from the point of the three indices, respectively, as can
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be seen in (59-61).

A = [a1, a2, a3] (59)

B = [b1, b2, b3] (60)

C = [c1, c2, c3] (61)

Actually, the weights obtained from the AHP method
are subjective, reflecting the intention of decision-makers.
Therefore, the Entropy method is used to evaluate the con-
tribution of each characteristic index to the result and obtain
combined objective weights based on the subjective weights.

The basic idea of the Entropy method is to determine the
objective weight according to the magnitude of the index
variability. The weighting step of the Entropy method is as
follows: firstly, the indices are standardized, and then the
information entropy of each index is obtained, and finally,
the combined weights of the indices are determined.

(59-61) are used as input data for the Entropy method, and
thus a standardized matrix can be derived as shown in (62).

D =

 d11 d12 d13
d21 d22 d2,3
d31 d32 d33

 (62)

In which, dij (i = 1, 2, 3; j = 1, 2, 3) denotes the weight
of the participant i from the point of index j.

Equation (63) denotes the calculation of the entropy value
of the index j.

ej = −
1
ln 3

3∑
i=1

dij∑3
i=1 dij

∗ ln

(
dij∑3
i=1 dij

)
, j = 1, 2, 3

(63)

The weight of each index can be calculated as in (64).

wj =
1− ej∑3

j=1 (1− ej)
, j = 1, 2, 3 (64)

Finally, the proportion of each participant in the objective
function can be decided in (65).

βi =
∑3

j=1
wjdij, i = 1, 2, 3 (65)

The combined weight can more objectively and accurately
reflect the contribution of each component to the result of the
objective function, and the optimization result can reasonably
reflect the market power of each participant in the market.

It is to be noted that there are many other methods
to solve the multi-objective optimization problem such as
heuristic algorithms, and we decide to use the improved
weighted method after careful consideration. The reasons are
as follows:

a. Heuristic algorithms may be stuck in local optimum,
which is the major concern. However, the global opti-
mal solution must be found by the improved weighted
method proposed in this manuscript. The reason is that the
multi-objective optimization problem can be transformed into
a single-objective optimization problem after the weights
have been determined. Then through some linearization

methods, the single-objective optimization problem can be
further transformed into a mixed-integer linear programming
problem, and thus can be easily solved by some optimization
software such as Gurobi. Thereby, we can obtain the global
optimal solution. Furthermore, we combine the Analytic
Hierarchy Process and Entropy method to make the weights
more accurate and comprehensive.

b. The improved weighted method takes less time than
heuristic algorithms. Although this manuscript focuses on the
day-ahead schedule instead of the real-time schedule, which
means that we have plenty of time to run our model and get
the solution, we still want to indicate that according to our
calculation results, the heuristic algorithm will take 8 hours
and 23 minutes to get the solution while it only takes nearly
2 hours to use the improved weighted method.

Finally, it should be noted that different algorithms have
their own advantages and disadvantages. So it is difficult
for us to decide which one is the better one. Although this
manuscript uses the improved weighted method, this does
not mean that other algorithms are not good, but we think
that the improved weighted method is more suitable for this
manuscript.

F. LINEARIZATION
In the objective function of this paper, there exists two con-
secutive types of variables multiplied such as Inct ∗ Pent ,
resulting in the non-convex of the model. To deal with
the non-convex terms, this paper uses a binary expansion
approach to discretize the continuous variable to a finite set
of values and then uses the Big-M method to convert the
product term of two integer variables to a linear term [15].
Thus the non-convex optimization problem is transformed
into a convex optimization problem.

Take the term Inct∗Pent as an example. From (21) and (22),
the range of values of Inct and Pent is known. Then the
expressions of Inct and Pent can be obtained by the binary
expansion approach as follows:

Inct = 0+
Incmax

MM t
∗

∑log2MM t

n=0
2n ∗ kn (66)

Pent = 0+
Penmax

MM t
∗

∑log2MM t

n=0
2n ∗ qn (67)

In which, kn and qn are binary variables.MM t is the power
function of 2 and it equals to 64 in this paper.

It can be seen from equations (66) and (67) that there exists
a product term kn ∗ qn in the result of the term Inct ∗ Pent .
Then the Big-M method is used to handle the product term

kn ∗ qn, as can be seen in (68-71).

αn = kn ∗ qn (68)

αn = qn − r (69)

kn ∗ 0 ≤ qn − r ≤ kn ∗ 1 (70)

(1− kn) ∗ 0 ≤ r ≤ (1− kn) ∗ 1 (71)
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In which, r is a binary variable. With the aid of (66-71),
the non-convex term Inct ∗ Pent has been transformed into a
linear term.

III. CASE STUDY
To obtain the optimal strategy of each market participant
and validate the proposed day-ahead market model, a slightly
modified version of the IEEE RTS-24 (Appendix Fig.19) is
considered, which includes 32 generators (22 coal-fired unit
and 10 wind turbines), loads at 17 buses, and 37 transmission
lines.

Coal-fired units 1-8 are managed by Genco 1, 9-15 are
managed by Genco 2, and 16-22 are managed by Genco 3.
Wind turbines 1-3 are administered by WPP 1, 4-7 are oper-
ated by WPP 2, and 8-10 are managed by WPP 3. The load
nodes are uniformly managed by DRA 1, and among them,
nodes 1-8 each has a CHPS and an energy storage device.
Wind turbines 1-7 have an installed capacity of 300 MW, and
wind turbines 8-10 have an installed capacity of 500 MW.
Details of the CHPS and energy storage device can be seen in
the Appendix.

Using the improved weighted method, the weights of the
Genco 1, 2, 3, WPP 1, 2, 3 and DRA account for 0.14,
0.08, 0.08, 0.1, 0.12, 0.18, 0.3 of the objective function
respectively.

The scenario data of the wind power output is adapted from
the actual data of the Irish grid in 2014-2019 [30], fromwhich
two sets of hourly wind power data are extracted.

The extraction method of the first (second) set of hourly
wind power data is: Firstly, find the minimum (maximum)
three days of total wind power output per month and extract
hourly wind power data from these three days, thus obtaining
216 scenarios.

FIGURE 4. The first set of scenario data.

The two sets of data are then aggregated into ten categories
separately using the K-means clustering method, and the
results are shown in Fig.4 and Fig.5. Thus wind power uncer-
tainty is taken into consideration through scenario generation.

It is considered that the wind power output of both WPP 1
and WPP 2 is consistent with the first set of scenario data
because the wind turbines controlled by them are geographi-

FIGURE 5. The second set of scenario data.

cally close. It is also believed that the wind turbines controlled
by WPP 3 are rich in wind power resources, and the wind
power output of them is in line with the second set of scenario
data.

In this case, the unit incentive/penalty for positive/negative
deviations of wind power is chosen to be 0.9/1.1 times of
electricity price. The unit income that can be obtained by the
CHP unit and the energy storage device to sell electricity to
ISO is chosen to be 0.9 times of electricity price. The unit
income that can be obtained by the heat buffer tank to sell heat
to ISO is chosen to be 0.9 times of heat price. The original
electricity price is set to be 15 $/MWh.

The proposed model is formulated as a mixed-integer pro-
gramming (MIP) problem and solved using the GUROBI
solver in Yalmip.

The TOU optimization results are shown in Table 1.

TABLE 1. TOU optimization results.

This paper does not consider the thermal network and the
source thermal power plant, and since consumers have little
market power in the thermal market, consumers are regarded
as the recipient of the thermal price. The thermal price is
shown in Table 2.

TABLE 2. Thermal price.

Fig.6 compares the load consumption before and after
the implementation of the DRP. The blue/red line represents
the load curve before/after the implementation of the DRP.
It can be seen that the load consumption curve has become
smoother, and the peak-to-valley difference has been reduced
significantly, which shows the necessity and superiority of
implementing DRP.
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FIGURE 6. Comparison of the load consumption before and after the
implementation of the DRP.

To investigate the impact of CHPS and energy storage
devices on the behavior patterns of market participants, four
situations are considered as follows:

Situation 1: With no CHPS and energy storage device.
Situation 2: Only include CHPS.
Situation 3: Only include the energy storage device.
Situation 4: Include CHPS and energy storage devices

simultaneously.
It is to be noted that general parameters such as network

topology, load value, and generator data are consistent in
these four situations.

The four situations will then be compared and discussed
from five perspectives of WPP output, Genco output, Energy
storage device operation, CHPS operation, and DRA profit.

FIGURE 7. Wind output curves of WPPs in situation 4.

1) WPP
Wind output curves of WPPs in situation 4 is shown in Fig.7.
It can be seen from Fig.7 that the output curves of WPP
1 and 2 are similar, and the output curve of WPP 2 is slightly
higher than 1, this is because WPP 2 owns four wind turbines
whereas WPP 1 only has three wind turbines.

In common with WPP 1, WPP 3 owns three wind turbines;
however, WPP 3’s 24-hour output plan is much larger than
WPP 1 or 2. This is mainly because the wind turbines con-
trolled by WPP 1 and WPP 2 are located close to each other,

and their wind power resource endowments are relatively
close; while WPP 3 is located at a location where wind power
is relatively abundant. This shows that the location of the
wind turbine has a significant impact on its participation in
the market and the submission of the output plan.

FIGURE 8. Comparison of WPP 1 output plans for the four situations.

Fig.8 shows the comparison of WPP 1 output plans for the
four situations. Analysis of Fig.8 reveals two phenomena:
(1) During 0-16h, the output curves of WPP 1 in the four

situations almost coincide, and the wind power output
under situation 2 and situation 4 is slightly lower than
the other two situations during 11-16 h.

(2) During 18-22h, the output of WPP 1 in situation 1 is
greater than the output of the other three situations.

The cause of phenomenon 1 is that the energy storage
devices in situation 3 and situation 4 do not supply power
to the load during 0-16h, but purchase cheap electricity from
ISO for hoarding to sell at the peak of the electricity price,
so the energy storage devices in these two situations have
no effect on the wind power output plan. The CHP units in
situation 2 and situation 4 will supply the load during 11-16h,
causing the load to reduce the power demand of conventional
generators andwind turbines, which results in the wind power
output curve in situations 2 and 4 during 11-16h slightly lower
than the other two situations.

For situation 2, although the CHP unit continues to supply
power to the load during 0-10h when wind power resource
is rich, the traditional Genco will reduce the output appropri-
ately and the WPP will not be affected because WPP in the
total objective function accounts for a higher proportion than
Genco; for situation 4, the CHP unit’s electricity output is
all supplied to the energy storage device for hoarding during
0-10h, so there will be no impact on the wind power output
plan.

The cause of phenomenon 2 is: during 0-16h, the electricity
price is in the valley or off-peak period, and the energy storage
devices in situations 3 and 4 will purchase electricity from
ISO during this time. The energy storage device will provide
some power to the load and sell the electricity to ISO for profit
during peak hours, which will result in a reduction in the total
amount of load to be powered by conventional generators
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and wind turbines, thus the wind power output plans for
situation 3 and 4 during 18-22 hours are lower compared
to situation 1. Although there is no energy storage device in
situation 2, the CHP unit will shoulder the responsibility of
supplying partial power to the load, whichwill also reduce the
total load that is left to be powered by conventional generators
and wind power plants, resulting in a decline in wind power
output plans.

2) GENCO
Fig.9 shows the comparison of planned output of each tradi-
tional Genco under situation 4.

FIGURE 9. Comparison of planned output of each traditional Genco
under situation 4.

It can be seen from Fig.9 that the output curves of Genco 2
and 3 coincide and remain almost constant, whereas the
planned output curve of Genco 1 has a steep climb process
around 6-10 pm.

The main reason for this phenomenon is that the generators
controlled by Genco 1 are all located in the I area, the gen-
erators controlled by Genco 2 and 3 are located in the II
area, and 7 out of 10 wind turbines are located in the I area.
During 18-22h, wind power resources are scarce, and the load
demand is very high. To maintain the load balance in Area I,
Genco 1 has to increase its output significantly, thus causing
its planned output curve to undergo a steep climb process.

Fig.10 shows the comparison of the output plans of
Genco 1 in the four situations.

FIGURE 10. Comparison of the output plans of Genco 1 in the four
situations.

It can be seen from Fig.10 that the output plan curves
of Genco 1 during 0-17h are basically coincident under the
four situations. There are some differences during 18-22h,
in which situation 1 has the highest output curve, situation 2
ranks second, and situation 4 has the lowest output curve.

The reason for the difference among output curves during
18-22h is that this period is the peak period of the demand
curve, and load will be partially supplied by CHP units and
energy storage device in situation 4, which will result in
the phenomenon that the Genco output curve in situation 4
is lower than the other three situations. The CHP unit in
situation 2 can provide less electricity than the energy storage
device in situation 3 during the peak load period, so the Genco
output curve for situation 2 will be higher than situation 3.

3) ENERGY STORAGE DEVICE
As to the energy storage device, Fig.11 shows a comparison of
the operation of buying and selling electricity in situations 3
and 4.

FIGURE 11. Comparison of the operation of buying and selling electricity
in situation 3 and 4.

It can be seen from Fig.11 that the energy storage devices
in situation 3 and 4 will purchase electricity from ISO during
the valley period (0-7h) for storage, and sell the electricity
during the peak period of electricity price (18-22h) to increase
the load-side revenue. Due to the limitation of the discharge
rate of the energy storage device, it is impossible to sell all
the electricity before 10 pm so that the remaining electricity
will be sold out at midnight.

During 0-7h, the energy storage device in situation 3 buys
more electricity than situation 4. This is because situation 4
has CHP units, and the CHP units can provide energy for
the energy storage device, which reduces the quantity of
electricity to be bought. It can be seen from Fig.11 that the
energy storage device of situation 4 sells more electricity than
that of situation 3 during 18-22h, which is also due to the
existence of the CHP unit.

4) CHPS
The power output and heat output values of the CHP
unit in situation 2 and situation 4 are identical, as shown
in Fig.12 and Fig.13.
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FIGURE 12. The power output values of the CHP unit in situation 2 and
situation 4.

FIGURE 13. The heat output values of the CHP unit in situation 2 and
situation 4.

As can be seen from Fig.12 and Fig.13, the CHP units
remain operational for 24 hours and the output remains con-
stant. However, the electricity output of the CHP unit in
situation 4 is not wholly used for load supply or sold to ISO,
and a considerable part is transmitted to the energy storage
device for hoarding, so as to sell it during the peak period of
electricity price for profit. The distribution structures of the
output power of the CHP unit in situations 4 and 2 are shown
in Fig.14 and Fig.15, respectively.

FIGURE 14. Distribution structure of the output power of the CHP unit
in situation 4.

The red color in Fig.14 and Fig.15 represents the portion
of the CHP unit power output that transmitted to the energy

FIGURE 15. Distribution structure of the output power of the CHP unit
in situation 2.

storage device. Blue represents the portion sold to ISO, and
yellow represents the portion provided for the load.

Comparing Fig.14 and Fig.15, it can be found that since sit-
uation 4 has an energy storage device and situation 2 does not,
the output power of the CHP unit during 0-7h in Fig.14 has
all been transmitted to the energy storage device for storage
in order to sell at peak price later, whereas the entire energy
has to be sold to ISO in Fig.15, resulting in a reduction in
profit compared to Fig.14.

It can also be found that during 18-20h, the CHP unit will
sell most of its electricity output to ISO in Fig.14, whereas
in Fig.15,most of the CHP unit’s electricity output is provided
for the load. The main reason for the difference is that situa-
tion 4 has an energy storage device that can supply electricity
to the load, so the CHP unit will tend to sell electricity;
whereas situation 2 has no energy storage device, and as a
result, the CHP unit will tend to provide power for the load
during peak electricity price period.

Since the heat output from the CHP unit and the boiler
unit is all supplied to the heat buffer tank, only the heat
change in the heat buffer tank is studied in this paper. In fact,
in the model proposed in this paper, only the heat buffer
tank can participate in the thermal market for heat trading,
so the operation of buying and selling heat in situation 2 and
situation 4 should be consistent, as shown in Fig.16.

FIGURE 16. The operation of buying and selling heat in situation 2 and
situation 4.
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As can be seen from Fig.16, the heat buffer tank purchases
heat at 1 am to store, and sells the heat at the peak period of
the heat demand to make a profit, i.e.18-24h.

5) DRA PROFIT
The profit values of the DRA in the four situations in com-
pared in Table 3:

TABLE 3. Comparison of the profit values of the DRA in the four
situations.

As can be seen from Table 3, situation 1 has the least profit,
situation 4 has the most profit, and situation 2 has a profit
greater than situation 3.

Subtracting the profit of situation 1 from the profit of situ-
ation 2 can obtain the profit growth of the CHPS to the DRA,
which is 38975$, and subtracting the profit of situation 1
from the profit of situation 3 can achieve the profit growth
of energy storage device to the DRA, which is 12039$. The
profit of situation 4 minus the profit of situation 1 equals the
profit growth of the CHPS and the energy storage device to
the DRA, which is 52183$.

Considering CHPS independently is more profitable for
the DRA than considering the energy storage device alone.
This is because that the CHPS can participate in both the
electricity market and the thermal market, whereas the energy
storage device can only participate in the electricity market.

Considering the CHPS and the energy storage device
simultaneously can bring more growth of profit to the DRA
than the sum of their individual effects. It is because that
considering both the CHP unit and the energy storage device
enables the interaction between them, for example, the CHP
unit can transmit part of its electricity output to the storage
device for hoarding and sell it during peak price period to
make a profit.

It should be noted that load profiles may vary in different
days which will influence the results, but the volatility of load
profiles are not considered in this paper. The reason is that
compared to wind power, the load profile is less uncertain
and volatile, and it can be predicted by modern technology
accurately. Thus only the uncertainty of wind power is con-
sidered and the load profile of a particular day is used in the
case study.

6) IMPACT OF PARTICIPATION COEFFICIENTS θ
In equation (20), the penalty value will change as the contract
value dContractt changes, which in turn will cause the DRA
profit to change.

Similarly, the DRA profit will be influenced by the dissat-
isfaction function value c in equation (23).

Analyses have been carried out to understand the impact
of contract value dContractt and participation coefficients θ on
the profit values of the DRA in situation 4.

Fig.17 shows the variation of DRA profit with variations in
the parameter θ over the range from 0 to 1 (for fixed values

FIGURE 17. DR profits with variation in θ .

FIGURE 18. DR profits with variation in the contract value.

of other parameters). It is noted that as θ increases, there is
an increase in the DRA profit.

Fig.18 shows the variation of DRA profit with variations
in the parameter dContractt over the range from 0 to 100 MW
(for fixed values of other parameters). It can be seen from
Fig.18 that as the contract value increases, there is a decrease
in the DRA profit.

IV. CONCLUSION
This paper proposes a multi-participant day-ahead energy
market schedule model that takes into account demand
response programs. Wind power producers (WPP) are mod-
eled in this paper and there is no difference between WPP
and traditional generators in clearing the market. DRA that
includes both CHPS and energy storage devices is modeled.
In addition to participating in the electricity market, DRA can
also participate in the thermal market by buying and selling
heat stored in the heat buffer tank. This paper comprehen-
sively considers the objective function of multiple market
participants and uses the improved weighted method to solve
the multi-objective optimization problem. Considering the
uncertainty of wind power, the K-means clustering method is
used to generate multiple representative wind power output
scenarios.

Through the analysis of the IEEE RTS-24 test system,
the optimal day-ahead schedule strategy for each market par-
ticipant is obtained. It can be seen from the calculation results
of the case that by implementing the DRPs, the demand
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FIGURE 19. The diagram of the modified IEEE RTS-24 test system.

curve becomes smoother, and the peak-to-valley difference
is significantly reduced. Due to the volatility of wind power
output, traditional Gencos are still the mainstay of power
generation when wind power resources are scarce or demand
curve reaches its peak period. The energy storage device and

the heat buffer tank will purchase a large amount of power for
storage when the electricity price (heat price) is at the bottom,
and the electricity (heat) can be sold during the peak period
of the electricity (heat) price. Owing to the high efficiency
and economic benefits, the CHP unit remains operational
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for 24 hours. Considering the CHPS and the energy storage
device simultaneously can bring more growth of profit to
the DRA than the sum of their individual effects due to the
interaction between them.

Future work includes:
1) Analyze the power usage behavior of the load and

enhance the accuracy of the demand response model-
ing;

2) Study strategies for market participants in the reserve
and capacity markets.

APPENDIX
See Figs. 19 and 20 and Tables 4 and 5.

FIGURE 20. The FOR of a single CHP unit.

TABLE 4. Data of the heat buffer tank.

TABLE 5. Data of the energy storage device.
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