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ABSTRACT Compressed sensing (CS) algorithms are used for linear array synthetic aperture radar
(LASAR) three-dimensional (3D) imaging. However, it is difficult to obtain imaging results with both
high computational efficiency and promising imaging quality. Because of the high-dimensional matrix-
operations, the computational complexity of several CS algorithms is huge such as the iterative adap-
tive approach (IAA), bayesian compressed sensing (BCS), and sparsity bayesian recovery via iterative
minimum (SBRIM) algorithm. Besides, the greedy pursuit algorithms such as the orthogonal matching
pursuit (OMP) algorithm cannot acquire ideal imaging results on account of the preset sparsity of the
imaging scene. To solve the problem, we present a fast sparse recovery algorithm via resolution approx-
imation (FSRARA) in this paper. Firstly, the whole imaging scene is divided into 3D scattering units
with large spacing, and SBRIM algorithm is used to obtain its low-resolution imaging results quickly.
Secondly, the low-resolution imaging results are conducted image segmentation by the fuzzy c-means (FCM)
clustering algorithm to extract the possible targets’ areas coarsely. Then we re-divide the imaging scene by
higher imaging resolution and extract the possible targets’ areas according to the coarsely possible targets’
areas. FSRARA achieves improved computational efficiency with low-dimensional matrix-operations on
the possible targets’ areas instead of the high-dimensional one on the whole imaging scene. Meanwhile,
FSRARA performs better in suppressing the false targets and sidelobe interference and improves the imaging
quality than the SBRIM algorithm. Simulation and experimental results prove that FSRARA improves
the computational efficiency by hundreds of times at most than SBRIM algorithm and its computational
efficiency is higher than smoothed L0 norm (SL0), IAA, and BCS algorithm. Besides, FSRARA improves
the imaging quality compared with OMP, IAA, SL0, BCS, and SBRIM algorithms.

INDEX TERMS Compressed sensing, LASAR 3D imaging, fast sparse recovery algorithm via resolution
approximation, image segmentation.

I. INTRODUCTION
Synthetic aperture radar (SAR) is a radar imaging technique
with all-day, all-weather working capabilities, and has been
successfully applied in both military and civil fields because
of its high-resolution imaging ability. However, traditional
SAR images only obtain the two dimensional (2D) targets’
information on the Range-Doppler domain, and cannot reflect
targets’ information in the height dimension. How to obtain
targets’ three-dimensional (3D) imaging results has been
the fascinating issue of SAR imaging technology, which
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leads to the emergence of several SAR 3D imaging tech-
nologies such as curvilinear SAR (CurSAR) [1], tomogra-
phy SAR (TomoSAR) [2], and linear array SAR (LASAR)
[3] recently. CurSAR synthesizes a curve array through the
moving of one single antenna and combines the range com-
pression technology to obtain the three-dimensional (3D)
imaging resolution of the imaging scene. TomoSAR achieves
the third-dimensional resolution by synthesizing a virtual
aperture in the tomography direction with multiple parallel
voyages. However, it is difficult to achieve the ideal curve
trajectory and obtain high imaging resolution in CurSAR,
and TomoSAR is limited by the multi-voyage parallel trajec-
tory requirement. Meanwhile, both CurSAR and TomoSAR
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can only obtain high-quality 3D imaging results under one
working mode. Those shortcomings constrain the applica-
tion of CurSAR and TomoSAR in 3D imaging seriously.
LASAR [3] achieves 3D imaging resolution by the moving of
linear array antenna and range compression technology. Dif-
ferent from CurSAR and TomoSAR, LASAR can achieve 3D
high-quality imaging under different working modes such as
downward-looking mode and forward-looking mode. How-
ever, LASAR faces many challenges to realize 3D imaging
such as the huge antenna elements and the high-dimensional
echo signal.

Sparse recovery algorithms via compressed sensing (CS)
[4]–[7] theory have been widely researched because of their
super-resolution imaging ability compared with the matched
filter (MF) algorithm [8], and they can achieve high-quality
imaging with the sampling rate of echo signal lower than
the Nyquist sampling rate. Meanwhile, scholars have pro-
posed several sparse recovery algorithms recently, such as
orthogonal matching pursuit (OMP) algorithm [9], [10],
Bayesian compressed sensing (BCS) algorithm [11], [12],
iterative shrinkage/thresholding (IST) method [13], and the
dictionary learning (DL) algorithm [14]. Zhang et al. [15]
have proposed a Robust Flexible Discriminative Dictionary
Learning method to improve the traditional DL algorithms’
performance, and they also proposed a Locality-Constrained
Projective Dictionary Learning (LC-PDL) [16] to reduce the
computational cost of DL algorithms. And sparse reconstruc-
tion algorithms have been used in several areas such as the
radar imaging, image feature extraction [17], and feature
selection [18], [19]. Besides, because of the sparsity of the
SAR imaging scene, CS algorithms have been used for SAR
imaging recently. In [20], a threshold gradient pursuit (TGP)
algorithm was proposed for SAR 3D imaging, which uses the
maximum-minimum ratio and changing rate of the scattering
coefficients to replace the preset sparsity of the imaging
scene. In [21], the iterative adaptive approach (IAA) was
used for SAR imaging. In [22], the smoothed L0 norm (SL0)
algorithm was used for high-resolution Inverse SAR (ISAR)
imaging by combining the cycle shift method and exploiting
sparse apertures. In [23], an ISAR imaging algorithm based
on sparse Bayesian learning (SBL) algorithm was proposed
to achieve a sparser solution and select the parameters auto-
matically. In [24], the sequential order one negative expo-
nential (SOONE) function was used to measure the signal’s
sparsity. Meanwhile, a 2D gradient projection (GP)-SOONE
algorithm was proposed for super-resolution ISAR imaging.

CS algorithms are used for LASAR 3D imaging because
of the sparsity of the 3D imaging scene. In [25], a combi-
nation of polar formatting and L1 regularization algorithm
was proposed for downward-looking LASAR 3D sparse
imaging. In [26], the BCS algorithm was used for reduc-
ing sidelobes in LASAR 3D imaging. In [27], a 3D CS
algorithm was proposed to solve the couple effects between
different directions in LASAR imaging by reconstructing the
2D sparse signals on overcomplete dictionaries with separa-
ble atoms directly. Besides, the sparsity bayesian recovery

via iterative minimum (SBRIM) algorithm was proposed
in [28] by setting the scattering coefficients of the imag-
ing scene obey the exponential prior distribution, which
achieves high-resolution imaging without the preset spar-
sity, and improves the imaging quality by reducing the pre-
set parameters compared with BCS algorithm. However,
the high-dimensional matrix-operations make the computa-
tional complexity of SBRIM algorithm very huge and limit
its application.

CS algorithms obtain imaging results with higher quality
at the expense of increased computational complexity com-
pared with the MF [8] algorithm. Meanwhile, scholars
have proposed several methods to reduce the reconstruction
time of CS algorithms recently. To cut down the com-
putational burden, article [29] introduced the SL0 algo-
rithm into SAR sparse imaging. In [30], the whole scene
was divided into several sub-scenes by the range profiles;
and then the whole image was obtained by combining the
reconstructed sub-scenes according to the range profile sub-
patches. In [31], the equidistant slice split (ESS) algorithm
was used to split the 3D imaging scene into several 2D
equidistant slices along the range direction, and the 3D imag-
ing results were obtained by combining the 2D image of
every equidistant slice. Zhao et al. [32] used the truncated
singular value decomposition (TSVD) algorithm to decrease
the computational complexity of LASAR 3D imaging.Mean-
while, according to the Fourier property of the measurement
matrix and the Toeplitz structure of the covariance matrix,
Zhang et al. [33] proposed a fast IAA algorithm for scanning
radar imaging. However, those algorithms except the fast
IAA algorithm still conduct imaging of the whole imaging
scene and cannot improve the computational efficiency of CS
algorithms efficiently. Meanwhile, the measurement matrix
in SAR imaging is not the Fourier matrix, the fast IAA
algorithm is not suitable for high-quality imaging.

To improve the computational efficiency of CS algorithms,
a fast sparse recovery algorithm via resolution approxima-
tion (FSRARA) is proposed in this paper. Firstly, the whole
imaging scene is divided into 3D scattering units by a uni-
form spacing larger than the traditional imaging resolu-
tion of LASAR 3D imaging, and the SBRIM algorithm is
used to obtain the 3D low-resolution imaging results of the
whole imaging scene quickly. Secondly, we use the fuzzy
c-means (FCM) [34] clustering algorithm to perform image
segmentation on the preliminary imaging results to extract
the possible targets’ areas in the imaging scene coarsely.
Then, we re-divide the imaging scene by smaller spacing
and re-extract the possible targets’ areas according to the
coarsely possible targets’ areas. Finally, we use the possi-
ble targets’ areas to construct the measurement matrix and
perform high-resolution imaging. Besides, the main contri-
butions of FSRARA are shown as follows:
• Improve the computational efficiency significantly:

FSRARA has converted the high-dimensional matrix-
operations on the 3D imaging scene to the low-dimensional
matrix-operations on the possible targets’ areas. Meanwhile,
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because of the 3D imaging scene’s sparsity, the possible tar-
gets’ areas are far less than the whole imaging scene. There-
fore, FSRARA has improved the computational efficiency
significantly compared with SBRIM algorithm.
• Improve the imaging quality: the influence of false tar-

gets or sidelobe interference are suppressed more effectively
by constructing the measurement matrix by the possible tar-
gets’ areas. Therefore, FSRARA has improved the imaging
quality compared with SBRIM algorithm.

The remaining sections are arranged as follows: the 3D
sparse imaging model of LASAR is introduced in section II;
the FSRARA is proposed in section III; the performance of
FSRARA is analyzed by simulation and experimental results
in section IV; Section V proposes the main conclusions of the
whole paper.

II. 3D SPARSE IMAGING MODEL OF LASAR
A. LINEAR REPRESENTATION MODEL OF LASAR
Assume LASAR works in the downward-looking mode and
the geometric model of LASAR is shown in Fig.1, where axis
x, axis y, and axis z represents the cross-track(CT), along-
track(AT) and range direction respectively. PA = {Ql =
(xl, yl, zl); l ∈ [1, 2, . . . ,NA]} is the location set of antenna
phase centers(APCs) in the 2D equivalent array synthesized
by the moving of linear antenna array (LAA), NA represents
the total number of APCs in the 2D equivalent array.

FIGURE 1. The geometric model of downward-looking LASAR.

The LASAR imaging scene is considered as point-targets’
scattering model under far-field observing conditions and
divided into 3D uniform scattering units. Let PS = {Pm =
(xm, ym, zm);m ∈ �} represent the set of scattering units’
locations, where � = [1, 2, . . . ,M ] represents the index set
of scattering units. Let α = Vec[αm] represent the vector
of scattering coefficients, where αm represents the scattering
coefficient of Pm, and Vec[.] is the vectorized symbol. Set the
LASAR system to transmit the linear frequency modulation
signal [35], and the echo signal ofPm after range compression
is formulated as:

sr (r, l,m) = αmχR(r − Rl,m)exp{−j2kRl,m} (1)

where r represents the range domain, and k represents the
wavenumber of LASAR, Rl,m = ‖Ql − Pm‖2 is the dis-
tance between Pm and Ql , and χR(.) represents the ambiguity

function of range compression. Echo signals of the whole
imaging scene are defined as:

sr (r, l) =
∑
m∈�

sr (r, l,m) (2)

where sr (r, l) is written as sr (r, l) = {sr (rn, l) =

ψ(rn, l)Tα, n = 1, . . . ,NR}, NR represents the number of
sampling points in range domain, and ψ(rn, l) = Vec[χR
(rn−Rl,m)exp(−j2kRl,m)] represents the vector of delay phase
between Pm and Ql . Then the linear representation model of
LASAR is defined as:

sn = 2α + n (3)

where sn = Vec[sr (rn, l)] ∈ CNA×1 represents the echo signal
of the nth equidistant plane after range compression, and
2 = Vec[ψ(rn, l)]T ∈ CNA×M represents the measurement
matrix of sn, n is the signal noise in sn. Therefore, the 2D
imaging has been translated into getting the optimal value
of α through solving (3) by CS algorithms such as OMP,
BCS and SBRIM algorithm. SBRIM algorithm is used for
imaging in this paper because of its higher imaging quality
and stronger ability in suppressing the signal noise than OMP
and BCS algorithm. Besides, the basic principle of SBRIM
algorithm is introduced in the next subsection.

B. SBRIM ALGORITHM
Set the signal noise n to obey the complex Gaussian random
distribution [36]: f (n) ∝ CN (0, βI), where β is the variance
of n. Then the posterior probability of sn obeys f (sn|α, β) ∝
CN (2α, βI) according to the linear representation model,
where α and sn represent the scattering coefficients and the
echo signal after range compression of nth equidistant plane
respectively. Therefore the posterior probability density func-
tion (PDF) of sn is defined as:

f (sn|α, β) ∝
1

(2πβ)NA\2
exp

{
−
‖sn −2α‖22

2β

}
(4)

The scattering units in the SAR image are independently
and identically distributed, and their distribution is gener-
ally considered as the exponential distribution. Therefore

the prior PDF of α is defined as f (α) ∝
M∏
m=1

f (αm) =

M∏
m=1

exp(−λ0|αm|p), where λ0 > 0, and 0 < p ≤ 1.

Because β belongs to [0,∞), the prior PDF of β is defined as
f (β) ∝ 1. According to the Bayesian Information Criterion
[37], the posterior PDF of α is expressed as:

f (α|sn, β) ∝ f (sn|α, β)f (α)f (β)

=
1

(2πβ)NA\2
exp

{
−
‖sn −2α‖22

2β

}
×

M∏
m=1

exp(−λ0|αm|p) (5)
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FIGURE 2. (a) The flow diagram of SBRIM algorithm. (b) The flow diagram of LASAR 3D imaging.

Calculating the conditional likelihood function of
f (α|sn, β), and then we can get:

ln(f (α|sn, β)) = −
NAln2π

2
− λ0

M∑
m=1

|αm|
p

−

{
‖sn −2α‖22

2β

}
−
NAlnβ

2
(6)

NAln2π
2

does not influence the optimal estimation of α
and β by the Maximum Likelihood (ML) criterion [38]; the
conditional likelihood function of f (α|sn, β) is defined as:

L(α, β) = −
{NAlnβ

2
+ λ0

M∑
m=1

|αm|
p
+
‖sn −2α‖22

2β

}
= −

{NAlnβ
2
+ λ0‖α‖p +

‖sn −2α‖22
2β

}
(7)

The lp norm of α in (7) can be smoothly approximated by

‖α‖p ≈
M∑
m=1

(|αi|2 + η)p\2 [39]. Moreover, the cost function

for the optimal estimation of α and β is defined as:

J (α, β),NAlnβ+
‖sn −2α‖22

2β
+λ0

M∑
m=1

(|αi|2 + η)p\2 (8)

where η is the smooth factor, and the optimal estimation value
of α and β are obtained by solving (9) according to the ML
criterion.

(α̂, β̂) = arg lim
α,β

J (α, β) (9)

Therefore, we can obtain the 2D imaging results of all
equidistant planes through solving (9), and the 3D imaging
results by combining every equidistant planar 2D imaging
results. Then we summarize the flow diagram of SBRIM
algorithm and LASAR 3D imaging as Fig.2.

C. PROBLEMS OF SBRIM ALGORITHM
The computational complexity of SBRIM algorithm in 3D
imaging is quantitatively analyzed in this subsection. Define
one multiplication and addition as the unit computational
complexity: ϑ(1), and the computational complexity of per-
forming inversion on A ∈ CN×M is equal to A times
B ∈ CM×M .

The computational complexity of 2D imaging using
SBRIM algorithm for the nth equidistant plane is analyzed
firstly. According to the flow diagram of SBRIM algorithm
shown in Fig.2 (a), the computational complexity of SBRIM
algorithm is mainly generated by the multiplication among
the vector of scattering coefficients, measurement matrix 2
and echo signal sn. For example, when the 2D imaging scene
of the nth equidistant plane is divided intoM0×M0 scattering
units, and the measurement matrix of sn is 2 ∈ CNA×M .
And the computational complexity of SBRIM algorithm on
2D imaging is ϑ(ISNAM2), where M = M2

0 , NA represents
the total number of APCs in the 2D equivalent array, and
IS represents the number of iterations of SBRIM algorithm.
Therefore, the total computational complexity of SBRIM
algorithm on LASAR 3D imaging is ϑ(NRISNAM2) accord-
ing to Fig.2 (b), where NR represents the number of sampling
points in the range direction. Meanwhile, the computational
complexity of 3D imaging by MF and OMP algorithm is
represented by ϑ(NRNAM ) and ϑ(KNRNAM ) [40] under the
same imaging conditions respectively, where K is the preset
sparsity of imaging scene in the OMP algorithm. There-
fore, the computational complexity of SBRIM algorithm far
exceeds MF and OMP algorithm and we need to study a
new sparse imaging algorithm to improve computational effi-
ciency without reducing the imaging quality compared with
SBRIM algorithm.

III. FAST SPARSE RECOVERY ALGORITHM BASED ON
RESOLUTION APPROXIMATION
To improve the computational efficiency of LASAR 3D
imaging, we present a fast sparse recovery algorithm via res-
olution approximation (FSRARA) in this section, FSRARA
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mainly consists of the following three steps. Firstly, FSRARA
obtains the low-resolution imaging results of the whole imag-
ing scene by SBRIM [28] algorithm quickly. Secondly the
low-resolution imaging results are conducted image segmen-
tation by FCM [34] algorithm to extract the possible targets’
areas in the whole imaging scene. Finally, we use the possible
targets’ areas to perform the 3D high-resolution imaging.
Moreover, the detailed steps of LASAR 3D imaging by
FSRARA are introduced in the following subsections.

A. LOW-RESOLUTION IMAGING
The whole imaging scene is divided into 3D discrete scat-
tering units by a uniform spacing, and the spacing is larger
than the traditional array imaging resolution of LASAR.
Besides, the spacing is practically set as twice of the tra-
ditional array resolution after taking the computational effi-
ciency and imaging quality into overall consideration. Then
the 3D low-resolution imaging results α0 ∈ CM1×M1×NR

of the whole imaging scene are obtained by SBRIM [28]
algorithm after Is1 iterations, where NR represents the total
number of sampling points in the range direction.

B. IMAGE SEGMENTATION
After obtaining the low-resolution imaging results α0, α0 is
classified into several subclasses through performing image
segmentation by the FCM algorithm to obtain the possible
targets’ areas. To extract the possible targets’ areas as com-
pletely as possible, the extracting threshold is generated by
the subclass imaging results corresponding to the clustering
centers with the smallest two amplitudes, and the possible tar-
gets’ areas are extracted coarsely by the extraction threshold
and α0. Then, the imaging scene is re-divided into 3D scat-
tering units by a new uniform spacing smaller than the array
imaging resolution.Meanwhile, the possible targets’ areas are
extracted again according to the preliminary possible targets’
areas. In addition, the main steps of extracting the possible
targets’ areas are introduced as follows:

Step A.1: The nth equidistant planar imaging results in the
low-resolution imaging results α0 are extracted and recorded
as αn = αn(i, j) = α0(i, j, n) ∈ CM1×M1 , 1 ≤ i, j ≤ M1;

Step A.2: The normalized αn is obtained and recorded as
ᾱn = ᾱn(i, j) by (10):

ᾱn(i, j) =
|αn(i, j)| −min|αn|
max|αn| −min|αn|

(10)

Step A.3: The matrix α̂n is obtained by conducting the
means filtering operation [41] on ᾱn;
Step A.4: The Gray scale value of α̂n is generated and

recorded by hn =
{
hn(i, j) =

|α̂n(i, j)|
max|α̂n|

}
∈ CM1×M1 and

transformed into Egn = {gnw = hn(i, j);w = (j−1)×M1+i} ∈
CMZ1 , where MZ1 = (M1)2 represents the total number of
scattering units in the nth equidistant plane.

Step A.5: Initialize the main parameters of image segmen-
tation: the maximum iterations are T = 100, the threshold
of terminating iterations is ε = 10−5, the fuzzy exponent is

m = 2, and the number of subclass is c = 3, the membership
function matrix is initialized byU (0)

= [u(0)knw; k = 1, · · · , c],

where u(0)knw is a random number between 0 and 1 and satisfies
c∑

k=1
u(0)knw = 1. The initial value of cluster centers are obtained

and recorded as V (0)
= {v(0)k ; k = 1, · · · , c} by (11).

v(0)k =

MZ1∑
w=1

(u(0)knw )
2gnw

MZ1∑
w=1

(u(0)knw )
2

(11)

Step A.6: Update the membership degree function matrix
U (t)

= [u(t)knw ]c×MZ1
, where u(t)knw represents the extent of

gnw belonging to the subclass imaging results corresponding
to v(t)k , v(t)k represents the value of clustering centers after t
iterations, t is the current iteration number.

1): Set u(t)knw = 1,u(t)pnw = 0, p 6= k , when d (t)knw = 0;

2): Update u(t)knw by (12) when d (t)knw > 0; where d (t)knw =

‖gnw − v
(t)
k ‖2 is the distance between gnw and v(t)k .

u(t)knw =
1

c∑
l=1

(
d (t)knw
d (t)lnw

)2

(12)

Step A.7: Update the cluster center v(t+1)k by (13);

v(t+1)k =

MZ1∑
w=1

(u(t)knw )
2gnw

MZ1∑
w=1

(u(t)knw )
2

(13)

Step A.8: Repeat Step A.6 to A.7 if ‖v(t+1)k − v(t)k ‖ > ε or
t < T ; otherwise terminate iteration, and the optimal mem-
bership function matrix and clustering centers are obtained
and recorded as U (t)

→ U and V (t)
→ V respectively;

Step A.9: gnw is divided into the subclass imaging results
corresponding to the clustering center with the maximum
membership degree function of gnw . The classification results
of hn are sorted in the ascending order according to the
amplitude of vk and recorded as hn = [hn1 , hn2 , hn3 ], where
hn1 and hn3 represent the two subclasses imaging results of
nth equidistant plane corresponding to the clustering center
with the minimum andmaximum amplitude respectively. The
extraction threshold for nth equidistant planar imaging results
is generated by (14) to extract the possible targets’ areas as
completely as possible.

ρn0 =
max(hn1 )+min(hn2 )

2
(14)

The classification results of the low-resolution imaging
results α0 are obtained after traversing all equidistant planar
imaging results through Step A.1 to A.9 proposed in this
subsection. Besides, the extraction thresholds for α0 are gen-
erated and recorded as ρ0 = {ρ

n
0 ; n = 1, . . . ,NR} according
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to the classification results of α0 and (14). The low-resolution
imaging results of possible targets’ areas are obtained and
recorded as αs ∈ CM1×M1×NR through (15).{

If gnw ≥ ρ
n
0 , αs(i, j, n) = αn(i, j)

If gnw < ρn0 , αs(i, j, n) = 0
(15)

After obtaining the low-resolution imaging results of pos-
sible targets’ areas αs, the 2D imaging scene interval of every
equidistant plane is re-divided into M0 ×M0 scattering units
by a new uniform spacing, and the spacing is smaller than
the array imaging resolution of LASAR, where M0 > M1.
Then the imaging results of possible targets’ areas in the
re-divided imaging scene αf ∈ CM0×M0×NR are obtained
by performing the linear interpolation operation [42] on αs.
Because the linear interpolation operation on αs leads to
the increasing false targets, the possible targets’ areas in
the re-divided imaging scene are re-extracted through the
same method as extracting the possible targets’ areas in the
low-resolution imaging results. In addition, the classification
results of αf are acquired and recorded as hf = {hfn; n =
1, . . . ,NR} ∈ CM0×M0×NR ; where hfn = [hfn1 , hfn2 , hfn3 ] rep-
resents the classification results of the nth equidistant planar
imaging results in αf . The extraction thresholds for αf are
generated and recorded as ρf = {ρ

n
f ; n = 1, . . . ,NR} accord-

ing to hf and (14). Moreover, the possible targets’ areas
in the re-divided imaging scene are extracted and recorded
as G = {G(xr , yr , n); n = 1, . . . ,NR} by (16).{

If hfn (i, j) ≥ ρ
n
f , (i, j, n) ∈ G(xr , yr , n)

If hfn (i, j) < ρnf , (i, j, n) /∈ G(xr , yr , n)
(16)

where 1 ≤ i, j ≤ M0 and 1 ≤ r ≤ NMn , G(xr , yr , n) repre-
sents the possible targets’ areas in the nth equidistant plane,
and NMn is the number of scattering units in G(xr , yr , n).

According to the steps of performing image segmentation,
the image segmentation operation on the imaging results does
not affect the distribution of the echo signal. However, targets
with amplitudes lower than the extraction threshold are lost
after extracting the possible targets’ areas. Because those tar-
gets are also submerged in the background when conducting
imaging by CS algorithms such as OMP or SBRIM algorithm
directly, the loss of those targets does not affect the image
quality of high-resolution imaging. Meanwhile, the false tar-
gets and sidelobe interference are suppressedmore effectively
through extracting the possible targets’ areas, and the possible
targets’ areas are considered as the prior information for
high-resolution imaging.

C. HIGH-RESOLUTION IMAGING
After obtaining the possible targets’ areas G in III.B, we use
the possible targets’ areas rather than the whole imaging
scene to construct the measurement matrix and perform
high-resolution imaging. Hence, the cost function for getting
the optimal estimation ofα and β has been translated into (17)
according to G(xr , yr , n) and (7), where G(xr , yr , n) repre-
sents the possible targets’ areas in the 2D imaging scene of

nth equidistant plane, α represents the scattering coefficients
of the nth equidistant plane, β represents the variance of
the signal noise. Meanwhile, the main process of conducting
high-resolution imaging according to the possible targets’
areas is introduced in the following content.

J (α(xr , yr , n), β) , NAlnβ

+
‖sn −2(:,wr )α(xr , yr , n)‖22

2β

+ λ

NMn∑
r=1

(|α(xr , yr , n)|2 + η)
p
2 (17)

where 1 ≤ r ≤ NMn , NMn represents the number of scat-
tering units in G(xr , yr , n), (xr , yr , n) represents the location
information of α(xr , yr , n), sn represents the nth equidistant
planar echo signal after range compression, 2(:,wr ) =[
2(1,wr ), . . . ,2(NA,wr );wr = (yr − 1)M0 + xr

]
is the

vector of delay phase for α(xr , yr , n), and NA represents the
total number of APC in the 2D equivalent array. Therefore,
the high-resolution imaging according to the possible targets’
areas has been translated into getting the optimal solution of
α and β of the arguments in the function (18), and we use the
ML criterion to acquire the optimal value of α and β in the
following two steps.

(α̂n, β̂n) = argmin lim
α,β

J (α(xr , yr , n), β) (18)

Step B.1: Estimate the scattering coefficients vector α̂(t)n by

noise variance β̂
(t−1)

:
Calculate the partial derivative of J (α̂(t−1)(xr , yr , n),

β̂(t−1)) for α̂(t−1)(xr , yr , n) after t − 1 iterations, then the
partial derivative of α̂(t−1)(xr , yr , n) can be formulated as:

∂J (α̂(t−1)(xr , yr , n), β̂(t−1))
∂α̂(t−1)(xr , yr , n)
= 2λ(t)s 3(α̂

(t−1)(xr , yr , n))× α̂(t−1)(xr , yr , n)

+
22(:,wr )H (2(:,wr )α̂(t−1)(xr , yr , n)− sn)

β̂(t−1)
(19)

where (xr , yr , n) ∈ G(xr , yr , n), wr = (yr − 1)M0 + xr , and
λ
(t)
s = λβ̂

(t−1),3(α̂(t−1)(xr , yr , n)) ∈ CMz×Mz is the diagonal
matrix of α̂(t−1)(xr , yr , n) and is defined as:

3(α̂(t−1)(xr , yr , n)) = 3(wr ,wr )

=
p
2
(|α̂(t−1)(xr , yr , n)|2 + η)

p
2
−1

(20)

Suppose
∂J (α̂(t−1)(xr , yr , n), β̂(t−1))

∂α̂(t−1)(xr , yr , n)
= 0, then the esti-

mation value of α̂(t−1)(xr , yr , n) satisfies (21).

(2(:,wr )H2(:,wr )+ λ(t)s 3(α̂
(t−1)(xr , yr , n)))

× α̂(t−1)(xr , yr , n) = 2(:,wr )H sn (21)

It is difficult to directly determine an accurate solution
of (21) because of the nonlinear function 3(α̂(t−1)(xr , yr , n))

VOLUME 7, 2019 178715



B. Tian et al.: FSRARA for LASAR 3D Imaging

FIGURE 3. The flow chart of LASAR 3D imaging by FSRARA.

of α̂(t−1)(xr , yr , n), and efficiently estimated through (22) by
the iterative approximation method [43].

(2(:,wr )H2(:,wr )+ λ(t)s 3(α̂
(t−1)(xr , yr , n)))

× α̂(t)(xr , yr , n) = 2(:,wr )H sn (22)

Therefore, the estimation value of nth equidistant planar
scattering coefficients can be obtained after several iterations
and recorded as α̂(t)n ∈ CM0×M0 through (22) and (23).{
If (xr , yr , n) ∈ G(xr , yr , n), α̂

(t)
n (xr , yr ) = α̂(t)(xr , yr , n)

If (xr , yr , n) /∈ G(xr , yr , n), α̂
(t)
n (xr , yr ) = 0

(23)

Step B.2: Estimate the noise variance β̂(t) by α̂(t)(xr , yr , n):
Calculate the partial derivative of J (α̂(t)(xr , yr , n), β̂(t−1))

for β̂(t−1), and the partial derivative can be expressed as:

∂J (α̂(t)(xr , yr , n), β̂(t−1))

∂β̂(t−1)

=
NA
β̂(t−1)

−
‖sn −2(:,wr )α̂(t)(xr , yr , n)‖22

(β̂(t−1))2
(24)

Suppose
∂J (α̂(t)(xr , yr , n), β̂(t−1))

∂β̂(t−1)
= 0, then we can

obtain the estimation value of β̂(t−1) by (25).

β̂(t) =
‖sn −2(:,wr )α̂(t)(xr , yr , n)‖22

NA
(25)

where sn represents the nth equidistant planar echo signal
after range compression, 2(:,wr ) is the phase-delay vector
for α̂(t)(xr , yr , n).

If α̂(t)n satisfies
‖α̂

(t)
n − α̂

(t−1)
n ‖2

‖α̂
(t)
n ‖2

< ε0 or t > IS2 , then

the 2D high-resolution imaging results of the nth equidistant
plane are obtained: α̂(t)n → α̂n, where ε0 represents the itera-
tion termination threshold, IS2 represents the number of iter-
ations in the high-resolution imaging step. Moreover, the 2D

high-resolution imaging results of all equidistant planes are
obtained after traversing all equidistant planes by Step B.1 to
B.2, and the 3D high-resolution imaging results are obtained
and recorded as α̂ = {α̂n; n = 1, . . . ,NR} ∈ CM0×M0×NR by
combining those 2D imaging results.

In the high-resolution imaging step, we use the possible tar-
gets’ areas instead of thewhole imaging scene to construct the
measurement matrix and estimate the scattering coefficients
of the imaging scene. Therefore, FSRARA has simplified
the high-dimensional matrix-operations on the whole imag-
ing scene with low-dimensional matrix-operations according
to the possible targets’ areas successfully. Besides, the size
of possible targets’ areas influences the computational effi-
ciency of the high-resolution imaging step greatly. Because
of the sparsity of 3D imaging scene, the percentage of possi-
ble targets’ areas in the whole imaging scene is very small
and FSRARA has improved the computational efficiency
efficiently compared with SBRIM algorithm. Meanwhile,
through extracting the possible targets’ areas and construct-
ing the measurement matrix by the possible targets’ areas,
the false targets and sidelobe interference have been sup-
pressed more effectively and the measurement matrix indi-
cates the characteristics of targets in the imaging scene better.
FSRARA has improved the imaging quality compared with
SBRIM algorithm.

D. BASIC STEPS OF LASAR 3D IMAGING BY FSRARA
According to the main steps of the low-resolution imaging,
image segmentation and high-resolution imaging, we can
summarize the main steps of LASAR 3D imaging by
FSRARA in the following contents, meanwhile, the flow
chart of FSRARA is shown in Fig. 3.

Step 1: The original echo signals of LASAR are conducted
range compression, and echo signals after range compression
are recorded as S = {sn; n = 1, . . . ,NR};
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Step 2: Divide the 2D imaging scene interval of every
equidistant plane by a uniform spacing intoM1×M1 scatter-
ing units, the spacing is practically twice of the array imaging
resolution of LASAR, and the 3D low-resolution imaging
results of the whole imaging scene are obtained and recorded
as α0 ∈ CM1×M1×NR by SBRIM [28] algorithm after Is1
iterations;

Step 3: α0 is classified into several subclasses after per-
forming image segmentation by FCM algorithm, and the
extraction thresholds of α0 are generated and recorded as
ρ0 = {ρ

n
0 ; n = 1, . . . ,NR} by the subclass imaging results

corresponding to the clustering centers with the smallest two
amplitude. Moreover, the low-resolution imaging results of
possible targets’ areas are extracted and recorded as αs ∈
CM1×M1×NR according to the extraction thresholds ρ0 and the
low-resolution imaging results α0;
Step 4: Redivide the 2D imaging scene interval of the nth

equidistant plane intoM0 ×M0 scattering units by a uniform
spacing smaller than the array imaging resolution of LASAR.

Step 5: The imaging results of possible targets’ areas in
the re-divided imaging scene are obtained by performing
the linear interpolation operation on αs and recorded as
αf ∈ CM0×M0×NR , meanwhile, the possible targets’ areas
are re-extracted and recorded as G = {G(xr , yr , n); n =
1, . . . ,NR} ∈ CM0×M0×NR by the same method as Step 3;
Step 6: The 2D high-resolution imaging results of the nth

equidistant plane are obtained by performing Step B.1 to
B.2 proposed in subsection III.C after Is2 iterations according
to G(xr , yr , n), and recorded as α̂n ∈ CM0×M0 ;
Step 7: After traversing the imaging scene of every equidis-

tant plane by Step 4 to Step 6 proposed in this subsection,
the 3D imaging results of the whole imaging scene are
obtained and recorded as α̂ = {α̂n, n = 1, . . . ,NR} ∈
CM0×M0×NR by combining the 2D imaging results of all
equidistant planes.

E. THE COMPUTATIONAL COMPLEXITY OF FSRARA
According to subsection III.C, the computational complexity
of LASAR 3D imaging by FSRARA is mainly generated
by two parts: the 3D low-resolution imaging of the whole
imaging scene, and the 3D high-resolution imaging according
to the possible targets’ areas.

The computational complexity of 3D low-resolution imag-
ing is ϑ(NRIS1NAM

4
1 ) according to the analysis of the

computational complexity in subsection II.C; meanwhile,
the computational complexity of 3D high-resolution imag-

ing is
NR∑
n=1

ϑ(IS2NAN
2
Mn
+ IS2NANMn ) ≈

NR∑
n=1

ϑ(IS2NAN
2
Mn

),

which is mainly generated by Step 6 and 7 proposed in
subsection III.D. Hence, the total computational complexity
of FSRARA on LASAR 3D imaging is ϑ(NRIS1NAM

4
1 ) +

NR∑
n=1

ϑ(IS2NAN
2
Mn

), where IS = IS1 + IS2 represents the

total iterations of FSRARA on LASAR 3D imaging, IS1 and
IS2 represent the number of iterations in the low-resolution

imaging step and high-resolution imaging step respectively,
M1 and M0 represent the number of scattering units in the
low-resolution imaging step and high-resolution imaging step
respectively, NA represents the total number of APCs in the
2D equivalent array, NMn is the number of scattering units
in the possible targets’ areas of the nth equidistant planar
imaging scene, and NR represents the amount of sampling
points in the range direction. Meanwhile, the computational
complexity of SBRIM and FSRARA on LASAR 3D imaging
is shown in Table.1.

TABLE 1. The computational complexity of SBRIM and FSRARA algorithm
on LASAR 3D imaging.

As seen in Table.1, M0 and NMn determines the compu-
tational complexity of the SBRIM and FSRARA algorithm
on LASAR 3D imaging respectively. However, because of
the sparsity of the 3D imaging scene, the percentage of the
possible targets’ areas in the whole imaging scene is very
small. Therefore, FSRARA has reduced the computational
complexity significantly compared with SBRIM algorithm.

IV. SIMULATION AND EXPERIMENTAL RESULTS
Both simulation and experimental results are used to certify
the effectiveness of FSRARA for LASAR 3D imaging in this
section. Meanwhile, the SBRIM algorithm is the main com-
parison algorithm in this paper because of its high imaging
quality. Besides, MF, OMP, IAA, SL0 and BCS algorithms
are also used as the comparison algorithm to evaluate the
performance of FSRARA better. In order to evaluate the
performance of those algorithms in LASAR 3D imaging
quantitatively, the running time speed-up (RTS), the normal-
ized mean square error (NMSE), targets background contrast
(TBR) [44], and image entropy (ENT) [45] are used in this
section. The RTS is used to compare the computational effi-
ciency of different algorithms.Meanwhile,NMSE,TBR, and
ENT are used to evaluate the imaging quality.

RTS is defined by RTS = TCS/TRA, where TCS represents
the running time of LASAR imaging by one algorithm, and
TRA represents the running time of the other algorithm. The
RTS illustrates the comparison of computational efficiency
between two algorithms.

NMSE is defined by NMSE =
‖α̂ − α‖2

‖α‖2
, where α is the

original scattering coefficients of the imaging scene, and α̂ is
the estimation value of α. The smaller NMSE illustrates that
the estimation results are more approximate to the original
scattering coefficients.

ENT is defined by ENT =
∑
g(i)

p(i) log p(i), where p(i)

represents the percentage of the pixel with the Gray value i,
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and g represents the total number of Gray values in imaging
results. ENT is used to characterize the texture of the image;
the image is sharper with smaller ENT.

TBR is defined by TBR = 20 log
{NT
NB

∑
i∈T (|α̂i|)∑
j∈B(|α̂j|)

}
,

where T andB are obtained by (26) and represent the index set
of targets and background in the imaging results respectively,
NT and NB represents the number of elements in T and B
respectively. The bigger TBR proves that targets are easier to
be identified from the imaging results.{

If |α̂n(x, y)| ≥ max(|α̂|) ∗ γ, (x, y, n) ∈ T
If |α̂n(x, y)| < max(|α̂|) ∗ γ, (x, y, n) ∈ B

(26)

where 1 ≤ x, y ≤ M0, α̂ ∈ CM0×M0×NR represents the 3D
imaging results,M0 represents the number of scattering units,
NR represents the number of sampling points in the range
direction, and γ represents the judgment threshold between
the targets and background in α̂.

A. SIMULATION RESULTS
B. SIMULATIONS OF POINT-TARGETS
In this subsection, the point-targets simulations for one 2D
equidistant plane are conducted to verify the effectiveness
of FSRARA for high-resolution imaging. The main param-
eters and the original scene of the point-targets simulation
are shown in Table.2 and Fig.5 (a) respectively, and the 2D
imaging scene is divided into 101×101 scattering units along
the CT and AT direction. Moreover, imaging results of MF,
OMP, IAA, SL0, BCS, SBRIM, and FSRARA algorithms
are shown in Fig.4. As seen in Fig.4, MF algorithm suffers
from severe sidelobe interference and low imaging resolution.
Meanwhile, all CS algorithms used in this paper have a
stronger ability to eliminate sidelobe interference and obtain
higher imaging resolution compared with MF algorithm.

TABLE 2. The basic parameters of point-targets simulation.

To evaluate the performance of FSRARA better and more
detailed, we conduct point-targets simulations under different
imaging conditions such as the sampling rate, signal to
noise ratio (SNR) [46] and amount of scattering units.
Meanwhile, 200 Monte Carlo trials of FSRARA and OMP
algorithm are conducted to evaluate the performance better;
however, theMonte Carlo trials of another four algorithms are
set as 50 times because of the huge computational complexity.
The point-targets simulations under different sampling rate

FIGURE 4. (a) Original scene. (b) Imaging results of MF algorithm.
(c) Imaging results of OMP algorithm. (d) Imaging results of IAA
algorithm. (e) Imaging results of SL0 algorithm. (f) Imaging results of BCS
algorithm. (g) Imaging results of SBRIM algorithm. (h) Imaging results of
FSRARA algorithm.

of echo signal are conducted firstly. Besides, the sampling

rate is calculated by Sampling Rate =
N
NA

and belongs to

5% ∼ 100%, where NA represents the total number of APCs
in the 2D equivalent array and N represents the number
of APCs used for LASAR 3D imaging, and the evaluation
results under different sampling rates with 101× 101 scatter-
ing units are shown in Fig.5.

As seen in Fig.5, the NMSE and ENT of all algorithms
increase with the decreasing sampling rate because of the
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FIGURE 5. Evaluation results under different sampling rates. (a) NMSE.
(b) TBR. (c) ENT. (d) RTS.

increasing sparsity of echo signal; while, TBR decreases
with the decreasing sampling rate. As seen in Fig.5 (a)∼(c),
the NMSE of the IAA algorithm under different sampling
rates is greater than 0.4 and larger than that of other algo-
rithms. Meanwhile, the NMSE of OMP and SL0 algorithm is
larger than 0.3 when the sampling rate is smaller than 30%.
Therefore, OMP algorithm cannot achieve high-resolution
imaging under sampling rate lower than 30% because of
the limited preset sparsity of the imaging scene. Meanwhile,
SL0 algorithm cannot estimate the scattering coefficients
accurately under sampling rate smaller than 30% because
of the fixed iterative step length of the Steepest descent
method in SL0 algorithm. Moreover, the NMSE of BCS
algorithm is second only to the IAA algorithm and larger than
0.3 when the sampling rate is less than 50%. Because several
parameters such as the noise variance or iterative termination
threshold are needed to be preset when the BCS algorithm
is used for imaging and the preset parameters cannot satisfy
the requirement of the high-resolution imaging under all
sampling rates entirely, which makes BCS algorithm fail to
obtain high-quality imaging results under the sampling rate
lower than 50%.

Compared with the BCS algorithm, SBRIM and FSRARA
algorithm obtain imaging results with higher imaging qual-
ity by assuming the imaging scene obey the exponen-
tial distribution and reducing the preset parameters. They
suppress the influence of echo signal’s increasing sparsity
better and obtain imaging results with smaller NMSE com-
pared with OMP and SL0 algorithm under sampling rate
smaller than 60%. However, in the high-resolution imaging
step, the measurement matrix is constructed by the possible
targets’ areas and represents the targets’ characteristics in
the imaging scene better. In conclusion, through conduct-
ing high-resolution imaging by the possible targets’ areas,

FSRARA obtains imaging results with higher TBR, smaller
NMSE, and ENT compared with SBRIM algorithm. Besides,
the execution time of FSRARA is smaller than SBRIM, BCS,
IAA and SL0 algorithm, albeit larger than MF and OMP
algorithm. The computational efficiency of SBRIMalgorithm
has been improved about 300 times by FSRARA, which
encounters our goal of proposing a new sparse 3D LASAR
imaging method. And the improvement of computational
efficiency increases with the increasing sparsity influenced
by the decreasing sampling rate. Therefore, FSRARA obtains
imaging results with higher imaging quality and greater com-
putational efficiency compared with SBRIM algorithm, and
has better performance under higher sparsity.

To evaluate the performance of FSRARA under different
imaging resolution, point-targets simulations under different
amount of scattering units are conducted secondly. The num-
bers of scattering units change from 31 × 31 to 101 × 101
along CT and AT direction, and the evaluation results under
different amount of scattering units with sampling rate 50%
are shown in Fig.6.

FIGURE 6. Evaluation results under different amount of scattering units.
(a) NMSE. (b) TBR. (c) ENT. (d) RTS.

As seen in Fig.6 (a)∼(c), NMSE of those algorithms above
increase because of the increasing imaging resolution as
the growth of scattering units. The covariance matrix in the
IAA algorithm reaches its singular value more quickly as
the increasing imaging resolution, which limits the number
of iterations in the IAA algorithm. Meanwhile, the high-
dimensional matrix-operations limit the number of iterations
further, the limited iterations make the imaging results of the
IAA algorithm suffer from false targets or sidelobe inter-
ference seriously. The NMSE of IAA algorithm is larger
than 0.4 when the number of scattering units is larger than
81×81. Moreover, the difficulty of presetting the parameters
of the BCS algorithm accurately increases as the increasing
imaging resolution, whichmakes the influence of false targets
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or sidelobe interference increase gradually. Therefore, BCS
algorithm has obtained imaging results with higher NMSE
and ENT, and smaller TBR compared with SL0, SBRIM,
and FSRARA algorithm. Meanwhile, the NMSE of the OMP
algorithm increases as the increasing imaging resolution
because of the limitation of preset sparsity. When the number
of scattering units is larger than 71 × 71, OMP algorithm
obtains imaging results with larger NMSE compared with
SBRIM and FSRARA algorithm.

Because SBRIM algorithm has reduced the preset param-
eters successfully compared with BCS algorithm, SBRIM
algorithm can achieve high-quality imaging even under high
imaging resolution. Meanwhile, the measurement matrix of
FSRARA indicates the targets’ characteristics in the imaging
scene better. FSRARA eliminates the sidelobe interference
and false targets better and obtains imaging results with larger
TBR, and smaller ENT and NMSE compared with SBRIM
algorithm. As seen in Fig.6(d), because of the decreasing per-
centage of possible targets’ areas in the imaging scene as the
increasing scattering units, the RTS between FSRARA and
other algorithms increase gradually. Therefore, FSRARA has
better performance in improving computational efficiency
when the imaging resolution is higher. Meanwhile, the RTS
between SBRIM and FSRARA is bigger than 50 when the
number of scattering units is larger than 61× 61. The execu-
tion time of FSRARA is larger than the OMP algorithm and
smaller than another four algorithms.

To evaluate the ability of FSRARA in eliminating
the influence of signal noise on high-quality imaging,
point-targets simulations under different SNR [46] are con-
ducted finally. Meanwhile, because SL0 algorithm can-
not obtain high-quality imaging results under low SNR,
SL0 algorithm is not used as the comparison algorithm in
point-targets simulation under different SNR. The SNR of
the echo signal belongs to 0 ∼ 40, and the evaluation results
under different SNR with 81× 81 scattering units and 100%
sampling rate are shown in Fig.7.

As seen in Fig.7 (a)∼(c), both NMSE and ENT decrease
as the growth of SNR because of the decreasing false tar-
gets and sidelobe interference; however, TBR increases with
the growth of SNR. The NMSE of the IAA algorithm is
the largest and greater than 0.5 when the SNR is smaller
than 20 dB because of the limited iterations caused by the
huge computational complexity. Moreover, NMSE of the
OMP algorithm increases as the decreasing SNR because
of the limited preset sparsity of the imaging scene and is
larger than SBRIM and FSRARA, and bigger than 0.3 under
SNR smaller than 10. Because the scattering coefficients
of the imaging scene do not obey the Gaussian distribution
and the preset parameters cannot satisfy the requirement of
high-resolution imaging under low SNR, the imaging results
of the BCS algorithm suffers from false targets and sidelobe
interference seriously under low SNR.

Different from BCS algorithm, both SBRIM and FSRARA
algorithm assume the imaging scene obey the exponen-
tial prior distribution and only preset λ0 and p to achieve

FIGURE 7. Evaluation results under different SNR. (a) NMSE. (b) TBR.
(c) ENT. (d) RTS.

high-resolution imaging. They have a stronger ability to sup-
press the signal noise under low SNR compared with OMP,
IAA, and BCS algorithm. Meanwhile, through extracting the
possible targets’ areas and performing high-resolution imag-
ing by the possible targets’ areas, FSRARA has eliminated
the false targets or sidelobe interference better and obtained
imaging results with smaller NMSE, ENT, and bigger TBR
compared with SBRIM algorithm. As seen in Fig.7(d),
the decreasing false targets and sidelobe interference with the
growing of SNR reduces the size of the possible targets’ areas
and the computational complexity of FSRARA. However,
the computational efficiency of the SBRIM, BCS, and IAA
algorithms is not affected by the SNR, which makes the RTS
between SBRIM, BCS, and IAA and FSRARA algorithms
increase as the increasing SNR. And the execution time of
FSRARA is between MF and OMP algorithm, and RTS
between SBRIM and FSRARA is bigger than 50.

According to the simulations in this subsection, the covari-
ance matrix and the high-dimensional matrix-operations have
limited the number of iterations of IAA algorithm, the limited
iterations make the imaging results of IAA algorithm are
affected by the sidelobe interference or false targets seriously.
Meanwhile, SL0 algorithm cannot obtain high-quality imag-
ing results under low SNR, and this disadvantage has con-
strained the application of SL0 algorithm. Moreover, because
of the preset sparsity of the imaging scene, OMP algorithm
cannot suppress the influence of false targets or sidelobe
interference effectively as the increasing imaging resolution
or sparsity or decreasing SNR. Meanwhile, the preset param-
eters in the BCS algorithm cannot satisfy the requirement
of high-quality imaging entirely, which makes the imaging
results of BCS algorithm suffer from sidelobe interference or
false targets.

Both SBRIM and FSRARA algorithm have eliminated
the sidelobe interference or false targets better and obtained
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FIGURE 8. The original scene and imaging results of complex targets. (a) Original scene. (b) Imaging results of MF algorithm. (c) Imaging results of
OMP algorithm. (d) Imaging results of SL0 algorithm. (e) Imaging results of BCS algorithm. (f) Imaging results of SBRIM algorithm. (g) Imaging results
of FSRARA algorithm.

imaging results with higher quality compared with BCS
algorithm by reducing the preset parameters. However,
the measurement matrix indicates the characteristics of tar-
gets in the imaging scene better, and FSRARA has eliminated
the influence of signal noise better than SBRIM algorithm.
Meanwhile, FSRARA has reduced the dimensions of the
measurement matrix and simplified the high-dimensional
matrix-operations into the calculation of corresponding ele-
ments in the possible targets’ areas successfully. There-
fore, FSRARA improves the computational efficiency
significantly and obtains imaging results with higher qual-
ity compared with SBRIM algorithm. The computational
efficiency of FSRARA is mostly lower than the OMP and
MF algorithm and higher than BCS, IAA, SL0, and SBRIM
algorithm. Moreover, FSRARA has better performance in
improving computational efficiency when the sparsity of the
imaging scene is stronger, or the imaging resolution is higher.

C. SIMULATIONS OF COMPLEX TARGETS
The simulations of complex targets are conducted to analyze
the performance of FSRARA for LASAR 3D imaging further
in this subsection. The main parameters of complex targets
simulation are shown in Table.3, meanwhile, the original
imaging scene and the 3D imaging results of complex targets
are shown in Fig.8. As seen in Fig.8, OMP, BCS, SBRIM,
and FSRARA algorithm achieve 3D high-quality imaging
for complex targets and have a stronger ability in suppress-
ing sidelobe interference than MF algorithm. Meanwhile,

TABLE 3. The basic parameters of 3D simulation simulation.

the imaging results of SL0 algorithm suffer from the sidelobe
interference seriously because of the signal noise in the echo
signal. Moreover, the high-dimensional matrix-operations
make the computational efficiency of 3D imaging by IAA
algorithm unacceptable. For example, the running time of 3D
imaging by IAA algorithm is about 102 hours when the
2D imaging scene of every equidistant plane is divided into
41× 41 scattering units, and the iterations of IAA algorithm
are 3 times, and the computer’s primary hardware devices
are listed as follows: Core I7 8700K, 64GB RAM, and the
NVIDIA GeForce GTX 1080Ti. Therefore, both IAA and
SL0 algorithms are not used as the comparison algorithms
in this subsection. Meanwhile, because the original scattering
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coefficients of 3D imaging scene are hardly calculated, TBR,
ENT and RTS are used to evaluate the performance of algo-
rithms above in this subsection. Fig.9 shows the evaluation
results under different amount of scattering units with the
sampling rate 100% and SNR 20 dB. The 2D imaging scene
is divided into 51× 51 to 101× 101 scattering units.

FIGURE 9. Evaluation results of complex targets simulations under
different scattering units. (a) RTS. (b) Execution time. (c) TBR. (d) ENT.

As seen in Fig. 8, BCS, SBRIM, and FSRARA algorithm
can achieve 3D high-quality imaging without the pre-
set sparsity comparing to the OMP algorithm. However,
because the preset parameters in BCS algorithm cannot meet
the requirement of 3D high-quality imaging totally, BCS
algorithm has lost some targets’ information and cannot
obtain 3D high-quality imaging results. Meanwhile, both
SBRIM and FSRARA has obtained imaging results with
higher quality by reducing the preset parameters compared
with BCS algorithm. And as seen in Fig.9, the computa-
tional complexity of BCS algorithm is higher than SBRIM
and FSRARA algorithm. Meanwhile, FSRARA has obtained
imaging results with bigger TBR and smaller ENT compared
with OMP and SBRIM algorithm, and the RTS between
SBRIM and FSRARA increases as the growth of scattering
units and is bigger than 50 when the amount of scattering
units is larger than 61 × 61. Meanwhile, the execution time
of FSRARA is between MF and OMP algorithm. Therefore,
FSRARA improves the computational efficiency of SBRIM
algorithm significantly; and improves the imaging quality
for LASAR 3D imaging compared with SBRIM algorithm
by conducting 3D high-resolution imaging by the possible
targets’ areas.

D. EXPERIMENTAL RESULTS
In order to verify the effectiveness of FSRARA for the
experimental data, the experimental data obtained by the
X-band ground equivalent LASAR (X-GDLASAR) exper-
imental system is used for 3D imaging in this subsection.

The X-GDLASAR system obtains a high range resolution
through transmitting the stepped frequency signal with wide
bandwidth by vector network analyzer. Meanwhile, the main
parameters of X-GDLASAR system are shown as follows:
the center frequency of the X-GDLASAR system is 10 GHz,
the signal bandwidth is 2 GHz, the size of the 2D equivalent
array is 1.5 × 1.3 m. The geometric model of two balls
experiment is shown in Fig.10 (b), there are two copper balls
in the imaging scene, and the distance between ball one and
the X-GDLASAR system is 5 m. Firstly, the possible targets’
echo signals are extracted to avoid useless computation and
decrease the influence of false targets according to the loca-
tions of two balls. Meanwhile, MF, OMP, SL0, IAA, BCS,
and SBRIM algorithm are used for high-quality imaging
and considered as the comparison algorithms to evaluate the
performance of FSRARA in 3D imaging of the experimental
data better, and the imaging results of those algorithms are
shown in Fig.11.

FIGURE 10. (a) The X-GDLASAR system. (b) The geometric model of two
balls experiment.

As seen in Fig.11, MF algorithm has obtained imaging
results with severe sidelobe interference, and SL0 algorithm
cannot obtain high-quality imaging results because of the
inevitable signal noise in the echo signal of the experimen-
tal data, then SL0 algorithm is not used as the comparison
algorithm to evaluate the performance of FSRARA in the 3D
imaging of experimental data. Meanwhile, we have obtained
imaging results of other 5 CS algorithms used in this paper
under different amount of scattering units to evaluate the
performance of FSRARA for the experimental data better,
and the 2D imaging scene interval of every equidistant plane
is divided into 31× 31 to 101× 101 scattering units. Fig.12
shows the evaluation results under different amount of scat-
tering units with the sampling rate 100%.

As seen in Fig.11, the imaging results of the OMP algo-
rithm has lost some targets’ information and suffered from
sidelobe interference because of the limited preset sparsity
of imaging scene. According to Fig.11 (c) and Fig.12 (b),
the high-dimensional matrix-operations and the huge echo
signal makes the computational complexity of IAA algorithm
very huge. For example, the running time of 3D imaging by
IAA algorithm is more than 20 hours when the imaging scene
of every 2D equidistant plane is divided into 61×61 scattering
units. Besides, the iterations of the IAA algorithm are set
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FIGURE 11. Imaging results of two balls experiment. (a) MF algorithm. (b) OMP algorithm. (c) IAA algorithm. (d) BCS algorithm. (e) SL0 algorithm.
(f) SBRIM algorithm. (g) FSRARA.

FIGURE 12. Evaluation results of two balls experiment under different
scattering units. (a) RTS. (b) Execution time. (c) TBR. (d) ENT.

to 3 times to avoid the covariance matrix reaching its singular
value. Meanwhile, because of the inevitable signal noise in
the echo signal and the limited iterations, the imaging results
of IAA algorithm are influenced by the sidelobe interference
and false targets terribly.

As seen in Fig.11 and 12, because the preset parame-
ters in BCS algorithm hardly meet the requirements of all
equidistant plane high-quality imaging for the experimental
data, the imaging results of the BCS algorithm are terribly
affected by the sidelobe interference.Moreover, the execution
time of 3D imaging by IAA and BCS algorithm is higher
than SBRIM algorithm. Besides, both SBRIM and FSRARA
algorithm have eliminated the sidelobe interference better
than BCS algorithm by reducing the preset parameters, and
they have obtained imaging results with higher imaging qual-
ity compared with IAA and BCS algorithm. FSRARA has
obtained imaging results with higher TBR and smaller ENT
compared with other four algorithms. Meanwhile, the execu-
tion time of FSRARA is between MF and OMP algorithm.
RTS between SBRIM and FSRARA increases as the growth
of scattering units and is bigger than 50 when the amount
of scattering units is larger than 61 × 61. There exist false
targets in the extracted echo signal’s region after extracting
the echo signal according to the targets’ position, all CS
algorithms used for LASAR 3D imaging are influenced by
the false targets’ interference, except the FSRARA. Through
extracting the possible targets’ areas in the imaging scene
and conducting 3D imaging according to the possible targets’
areas, FSRARA eliminates the false targets in the imag-
ing scene better. To summarize, FSRARA can improve the
imaging quality and computational efficiency for LASAR 3D
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imaging compared with SBRIM algorithm according to the
experimental results in this subsection.

V. CONCLUSION
In this paper, a novel algorithm named FSRARA is pro-
posed to improve the computational efficiency of CS
algorithms. FSRARA has replaced the high-dimensional
matrix-operations on the whole imaging scene with the
low-dimensional matrix-operations on the possible targets’
areas, additionally, the size of the possible targets’ areas
is far smaller than the whole 3D imaging scene because
of the sparsity of the 3D imaging scene. Both simulation
and experimental results demonstrated that the computational
efficiency of FSRARA has been improved by hundreds of
times at most compared with SBRIM algorithm. The compu-
tational efficiency of FSRARA is lower than MF algorithm
and higher than SL0, IAA, and BCS algorithms. Meanwhile,
the computational efficiency of FSRARA is lower than the
OMP algorithm except for the case of large preset sparsity
in the OMP algorithm. Besides, the false targets and sidelobe
interference has been suppressed effectively by just using the
possible targets’ areas to construct the measurement matrix,
and the measurement matrix indicates the characteristics of
targets in the imaging scene better. FSRARA obtained 3D
imaging results with higher imaging quality compared with
OMP, SL0, IAA, BCS, and SBRIM algorithm. Simulation
and experimental results have confirmed our conclusions
well.
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