
Received November 23, 2019, accepted December 5, 2019, date of publication December 12, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2959084

Parallelism Optimized Architecture on FPGA for
Real-Time Traffic Light Detection
XUE-HUA WU 1, RENJIE HU 1, AND YU-QING BAO 2
1School of Electrical Engineering, Southeast University, Nanjing 210096, China
2School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China

Corresponding author: Renjie Hu (hurenjie@seu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 51707099.

ABSTRACT In this paper, a portable assistance system is designed to help the visually impaired to detect the
traffic light. The designed system is realized on the basis of the AdaBoost algorithm, which is fast and robust
in object detections. In order to accelerate the AdaBoost-based approach, a flexible parallel architecture is
implemented on the field-programmable gate array (FPGA) platform. The architecture is designed utilizing
the parallelism of computations in the AdaBoost-based detection. The computations of the window integral
image are implemented in parallel, and the confidences of the weak classifiers are calculated in parallel. The
parameters of the weak classifiers are trained by the AdaBoost algorithm with multi-layer features in the
MATLAB software, and then are configured on the FPGA platform via the Vivado design suite before the
detection process. The parallelism optimized architecture is implemented on an Artix-7 FPGA at 200 MHZ.
Experiments show that it can detect the traffic light in videos with a rate of 30 frames per second (fps).

INDEX TERMS AdaBoost algorithm, field-programmable gate array, integral image, parallel architecture,
traffic light detection.

I. INTRODUCTION
Many people in the world suffer from impaired vision. The
visually impaired are limited in the independent mobility in
urban roads, which is mainly because they cannot catch the
information for safety in the heavy traffic [1]. Since the traffic
light provides the crucial information to go and pause, it is
urgent to develop a cheap and portable assistance system
for real-time traffic light detection [2]. In this paper, a real-
time detection system is designed on the FPGA platform to
detect the nearby traffic light. Our research is motivated by
the popularity of cameras and the developments of hardware
technology. The portable computation hardware equipped
with small cameras provides the possibilities of mobile vision
for real-time traffic light detection.

The task of the real-time detection is to determine the posi-
tion of the traffic light in each frame of the video. In general,
the detection approaches consists of two categories: 1)model-
based, 2) learning-based [3]. In the model-based approaches,
heuristic knowledge of the traffic light (such as shape, colour)
is used to design a filtering scheme, which relies on the
experience of researchers. The model-based approaches are

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy .

simple and comprehensible. In [4], the colour distribution of
the traffic light is analyzed to build a colour-based model.
In [5], the Hough transformation is adopted to detect the
circular edge of the traffic light in a shape-based model.
In [6], properties of shape, colour arrangement, circuitry,
background, design and installation are utilized to build a
model of the traffic light. Then the model is implemented
on a mobile phone for test with videos about 5 to 10 fps.
Another approach on the phone is presented in [7], in which
a filtering scheme is designed to detect the traffic light with
a robust image acquisition method under particular expo-
sure conditions. In the learning-based approaches, features
of the traffic light are learnt by algorithms to construct a
detector without manual intervention. In [8], the AdaBoost
algorithm with the aggregate channel features is adopted
to detect the traffic light. In [9], a CPU-GPU fusion-based
approach of traffic light detection is implemented on a smart
phone platform. In their prototype, a kernel extreme learning
machine is adopted to detect the traffic light. The detection
rate of the prototype is about 20 fps. In [10], the adaptive
background suppression filter is adopted for coarse detection,
and then the cascaded linear support vector machine with
features (histograms of oriented gradients and the local colour
histograms) is used for fine detection. The similar approaches

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 178167

https://orcid.org/0000-0003-3107-1509
https://orcid.org/0000-0002-1394-0152
https://orcid.org/0000-0002-6076-4892
https://orcid.org/0000-0001-5161-9311


X.-H. Wu et al.: Parallelism Optimized Architecture on FPGA for Real-Time Traffic Light Detection

TABLE 1. Summary of the existing methods of the traffic light detection.

are found in references [11]–[13]. In [11], the background
filter is used to generate the candidate regions in complex
background, and then the cascaded classifier trained by the
AdaBoost algorithm is used to detect the traffic light. In [12],
the traffic light is recognized in images by a succession of
basic steps, including a process by prior characterisc analysis,
aggregate channel feature learning and inter-frame correla-
tion analysis. In [13], a high dynamic range camera is set to
capture consecutive low and high exposure frames. In their
prototype, the traffic light candidates are detected in low
exposure frames and then classified using a deep learning
algorithm in high exposure frames. The summary of the exist-
ing methods of the traffic light detection is listed in Table 1.

The learning-based approaches are widely used due to
their accuracy and robustness. Though each of the super-
vised learning algorithms has a good performance, it is dif-
ficult to select the best algorithm according to the no free
lunch (NFL) theorems in supervised learning [14]. However,
a breakthrough is made by considering the goal of developing
a cheap and portable assistance system. The detection rate of
theAdaBoost algorithm is faster than that of SVM, although it
needs more time in the training process [15]. The AdaBoost
algorithm is a classic ensemble method, in which multiple
decisions are synthesized to reduce the risk of making a
serious poor decision [16]. The synthesis of decisions pro-
vides the possibility of ensembles of new decisions to update
the original system [17]. There are several prototype sys-
tems implemented on FPGA for the AdaBoost-based object
detections [18]. In the approach based on the deep learn-
ing, hierarchical features are computed intensively instead
of the easy-compute hand-crafted features [19]. The level
of hierarchical features increases with the depth of the deep
network [20]. Since the representations of feature maps and
weights are floating-point operands, the approach is usually
implemented on GPU which results in high-precision and

excessive memory [21]. Recently the deep-learning-based
approaches are optimized to run on FPGA [22].

FPGA is flexible in configuration and consumes low
power. It can reconfigure the compute-intensive calcula-
tions for acceleration [23]. The reconfigurable computing on
FPGA is applied to design the accelerator of AlexNet [24],
VGG-16 [25], and optimized LeNet-5 [26]. The optimized
architectures change with different networks. The novel com-
ponents in networks bring a risk that the developed system
needs to be redesigned for a new generation [21]. In addition,
there are challenges of network compression, data quanti-
zation from floating-point to fixed-point, nonlinear function
representation, frequent memory accesses to develop the net-
works on FPGA [24]–[26]. In contrast, the implementation of
the AdaBoost-based detection on FPGA is simple in structure
and easy to upgrade. In the structure, the sum of confidences
of weak classifiers is compared with a threshold to get the
detection result [27], [28].

The AdaBoost-based detection on FPGA is capable to
accelerate in videos of higher resolution and frame rates
with progress of cameras [29]–[31]. Several specialized hard-
ware architectures are reported to reconfigure the inten-
sive computations on FPGA within limited power and
size [32]–[38]. In [32], a partially parallel architecture is
proposed for the face detection using the AdaBoost algorithm
with Haar-like features. The proposed architecture is imple-
mented on a Virtex-5 FPGA with the detection rate of 30 fps
on VGA videos. In the architecture, the integral image of
the window is calculated by the one-pass computation, and
the weak classifiers in the early stages are implemented in
parallel. In [33], a real-time face detection system is imple-
mented on a Cyclone II FPGA. In the approach, it is found
that the candidate regions can pass the similar number of
weak classifiers at different scales. So the performances of the
candidate regions at the smaller scale are used to skip unlikely

178168 VOLUME 7, 2019



X.-H. Wu et al.: Parallelism Optimized Architecture on FPGA for Real-Time Traffic Light Detection

TABLE 2. Summary of the existing hardware architectures for the AdaBoost-Based object detection.

windows at the larger scale. The work [34] presents a flexible
parallel architecture based on a massively parallel systolic
computation of the classification engine. The architecture is
implemented on a Virtex II pro FPGA. In the architecture,
the systolic array implementation is used to boost the parallel
computation of the classifiers and parallelize the calculation
of the window integral image. In some architectures, the cur-
rent window integral image can be generated in one clock
cycle, due to the correlation between the integral images of
the adjacent windows [31], [35]. In the work [36], a hetero-
geneous system integrated by the ARM and FPGA platform
is proposed to accelerate the AdaBoost-based detector. The
detector is faster than that on a single ARM platform. In the
work [37], [38], the local binary pattern (LBP) transform is
adopted in the preprocessing step to minimize the effect of
different lighting conditions. The summary of the existing
hardware architectures for the AdaBoost-based detection is
listed in Table 2. The performances of the mentioned archi-
tectures are verified in their applications. However, the paral-
lelism of the computations is not fully exploited. In this paper,
we propose a parallelism optimized architecture on FPGA
to detect the traffic light. The contributions of this paper are
mainly summarized as following:
• The computation of the window integral image is fully

parallel designed, and all of the weak classifiers are imple-
mented in parallel.
• The parameters of the weak classifiers are trained by the

AdaBoost algorithm with multi-layer features.
The remaining of this paper is organized as follows:

In Section II, concepts of the AdaBoost-based traffic
light detection with multi-layer features is introduced.
In Section III, the framework of the designed system is
described in details. The experiment results are shown in
Section IV. In Section V, the conclusions are given and the
future work is discussed.

II. ADABOOST-BASED TRAFFIC LIGHT DETECTION WITH
MULTI-LAYER FEATURES
In this section, concepts of the AdaBoost-based traffic
light detection with multi-layer features are introduced. The
AdaBoost algorithm is short for the adaptive boosting algo-
rithm, which adjusts adaptively to the errors of weak clas-
sifiers [39]. The AdaBoost algorithm is popular after its
successful application in the face detection. In the application,
Haar-like features are used to describe the information of
the face, and the AdaBoost algorithm is adopted to train

FIGURE 1. Concepts of the AdaBoost-based traffic light detection with
multi-layer features. (a) Multi-layer features, (b) Sliding window detector
in image, (c) Computation in the window detector.

weak classifiers on the features. The Haar-like features are
image representations of the Haar wavelet function, which
is efficient to capture the differences along the horizontal,
vertical and diagonal directions [40]. The traditional Haar-
like features are crafted in the grayscale image and are limited
in the colour representation. In order to describe the colour
information, additional features are designed in the chromi-
nance layers. The multi-layer features are good at extracting
the shape and colour information of the traffic light in natural
scenes [41].

The concepts of the AdaBoost-based traffic light detection
with multi-layer features are shown in Fig.1. The multi-
layer features consist of seven types. The features 1©- 5© are
luminance-layer features, which are implemented in the Y
channel. The features 6©- 7© are chrominance-layer features,
which are implemented in the Cr , Cb channel respectively.
Since the YCrCb colour space is an opponent luma-chroma
space, the quantization of the chrominance is not affected by
the luminance. As a result, the chrominance-layer features
are able to accurately extract the colour information under
different lighting conditions. The multi-layer features are
composed of rectangles. The features change with rectangles
of different number, position or size. There are 89925 fea-
tures in a window of 30 × 10. The value of each feature is
calculated by sum of the intensities in the white rectangle
subtracting that in the gray rectangle (or 0 if there is no gray
rectangle),

fg =
∑
RecW

i−
∑
RecG

i. (1)

VOLUME 7, 2019 178169



X.-H. Wu et al.: Parallelism Optimized Architecture on FPGA for Real-Time Traffic Light Detection

FIGURE 2. Framework of the designed system. In the dataflow-based detection on the FPGA platform, videos
captured by the camera are processed in the signal processing module, and the detection result is displayed on the
LCD. The parameters of the weak classifiers configured on FPGA are trained by the AdaBoost algorithm with
multi-layer features off-line.

where fg represents the value of feature, and i represents the
intensity of pixel. The pixel sum within each rectangle can be
quickly calculated with four values in the integral image,∑

RecW

i = iix,y − iix ′,y − iix,y′ + iix ′,y′ . (2)

where iix,y represents the value at the point (x, y) in the
integral image. In computations of the integral image in each
channel, the value represents the sum of intensities on the
upper left of the point, that is,

iix,y =
∑

1≤a≤x,1≤b≤y

ia,b. (3)

Based on the easy-use features, the AdaBoost algorithm is
adopted to train the parameters of weak classifiers in itera-
tions. During each iteration, the most distinguishing feature
is selected to train a weak classifier on samples of updated
distribution. The function of the weak classifier is as below,

hi = (fg < thri)?1 : 0. (4)

where fg represents the feature value, thri represents the
threshold of the weak classifier. The threshold can be quickly
trained by sorting feature values [27]. The feature value with
the minimal error can be taken as the threshold of the weak
classifier. After the parameters of the weak classifier are
determined, the weight of the weak classifier is calculated
using its error as below,

αi = log
1− εi
εi

. (5)

In addition, the distribution of samples are updated with new
sample weights which are calculated as below,

wi+1,j = wi,jexp(−αihi(xj)yj). (6)

In this equation,wi,j is the weight of sample xj in i-th iteration,
αi is the weight of the i-th weak classifier, hi(xj) is the label
given by the weak classifier, and yj is the original label of
sample xj. After all of the iterations are finished, the weak

classifiers are synthesized to construct a strong classifier as
below,

H = (
∑

(αi × hi) > Thr)?1 : 0. (7)

where αi and hi represents the weight and value of the
weak classifier respectively, Thr represents the threshold of
the strong classifier. The traffic light is detected when the
weighted sum of the weak classifiers is greater than the
threshold of the strong classifier.

In order to detect the traffic light in uncertain positions,
the window detector slides across the image with a spacing
stride of one. The number of the sub-windows with different
positions is calculated as below,

N =
W − w+ 1

s
×
H − h+ 1

s
. (8)

where s represents the spacing stride, W , H represents the
width, height of the image respectively, and w, h represents
the width, height of the window detector respectively. The
size of the window detector is independent of the size of the
image.

III. THE DESIGNED SYSTEM
In this section, the designed system is introduced. The frame-
work of the designed system is shown in Fig. 2. In the
dataflow-based detection process, the video of the natural
traffic scene is captured by a camera in the RGB mode. The
size of each frame in the video is H × W . The data in each
frame are processed in the signal processing module. This
module consists of two blocks. In the block of colour space
transformation, the pixel in the frame is transformed into the
YCrCb colour space in sequence, and the coordinate of the
pixel is counted to record the position. In the block of window
processing, the pixels of each channel are stored in a line
buffer with h taps. Then the integral images of the window
of h× w are calculated with the taps outputs. Based on three
integral images, the confidences of weak classifiers are evalu-
ated in order to calculate the detection result. The parameters
of the weak classifiers are previously trained by the AdaBoost
algorithm with multi-layer features in the MATLAB software

178170 VOLUME 7, 2019



X.-H. Wu et al.: Parallelism Optimized Architecture on FPGA for Real-Time Traffic Light Detection

FIGURE 3. Illustration of the fixed-point arithmetic transformation of Y
channel. The transformation costs four clock cycles per pixel.

off-line. The position of the detection result is provided by the
coordinate counter. For visual display, the detection result is
displayed on an LCD in the RGB mode. The size of the LCD
equals to the frame size.

A. PARAMETERS ACQUISITION AND CONFIGURATION
The parameters of weak classifiers are trained in MATLAB
before the configuration on FPGA. In the training, the pos-
itive and negative samples are adjusted to the size of h ×
w firstly. Then the primary RGB data in each sample are
converted to luminance data and colour-difference data in
the YCrCb colour space. The luminance data Y is helpful
to minimize the interference of the illumination, and the
colour-difference data Cr and Cb are efficient to indicate the
presence of the colour [42]. The conversion is formulated as
follows [43]:

Y = 0.2989× R+ 0.5870× G+ 0.1140× B. (9)

Cr = 0.5× R− 0.4187× G− 0.0813× B+ 128. (10)

Cb = −0.1687× R− 0.3313× G+ 0.5× B+ 128. (11)

whereR,G,B is the pixel value in red, green, and blue channel
respectively, Y represents the luminance data, Cr represents
the colour-difference data of (R − Y ), Cb represents the
colour-difference data of (B−Y ). After the colour space trans-
formation is finished, the AdaBoost algorithm with multi-
layer features is adopted to determine the parameters of the
weak classifiers. The concepts of the AdaBoost-based traf-
fic light detection with multi-layer features are described in
Section II. Then the parameters of the weak classifiers are
stored in the memory of FPGA for computations.

B. FIXED-POINT RGB2YCRCB
After realizing the parallelism optimized architecture on the
FPGA platform, the dataflow-based detection can be carried
out. The dataflow of primary RGB data is delivered to the
colour space transformation block in the form of one pixel
after another. The fixed-point arithmetic transformation is
adopted since the fixed-point computation is faster than the
floating-point computation [44], [45]. In the transformation,
the division of divisor 256 is realized by truncating the last
eight bits of the data value, which is shown in Fig. 3. The
fixed-point arithmetic transformation costs four clock cycles

FIGURE 4. Illustration of the dataflow in the line buffer. The line buffer is
composed of one input, W × (h− 1)+ 1 shift registers, and h outputs.
It can output the data in the same column of h adjacent rows
simultaneously.

per pixel.

Y = (77× R+ 150× G+ 29× B)/256. (12)

Cr = (128× R− 107× G− 21× B+ 32768)/256. (13)

Cb = (−43× R− 85× G+ 128× B+ 32768)/256. (14)

C. LINE BUFFERS
There are three line buffers in the block of window process-
ing. The data in the Y channel, Cr channel, and Cb channel
are stored respectively in each line buffer one pixel after
another. The line buffer is constructed by registers. As shown
in Fig. 4, the registers are connected in a serial chain. During
every clock cycle, the data of the new pixel is shifted in the
line buffer. At the same time, each register shifts its storage
to the right register and stores the data from the left register.
Each line buffer can store W × (h − 1) + 1 data in total.
Starting with the first data, the data at each interval W is
tapped out respectively. Hence, the line buffer can output h
data in the same column of adjacent rows simultaneously
per clock cycle. These outputs construct each column in a
window of h× w.

D. INTEGRAL IMAGE COMPUTATION
The outputs of the line buffer are utilized to calculate the inte-
gral image of the window. The integral image calculation is
intensive, and it needs frequent access to memory [46]–[48].
Herein numerous registers are used to store data for efficiency
calculations. The integral image calculation consists of two
stages.

On the first stage, the data at the same column are accu-
mulated in an extension of the application of the balanced
binary tree in the all-prefix-sums operation [49]–[51]. The
tree technique has two advantages: 1) the partial sums can
be calculated in parallel; 2) the partial sums can be reused

VOLUME 7, 2019 178171



X.-H. Wu et al.: Parallelism Optimized Architecture on FPGA for Real-Time Traffic Light Detection

FIGURE 5. Parallel computation of the column accumulative sum in the
calculation of the window integral image. In the diagram, D is the register,
which represents data delay. Ti represents the i -th clock cycle.

to generate the desired sum. It takes at least dlog2 ne clock
cycles to calculate the column accumulative sum at the
n-th row. For instance, the number n can be expressed in
binary form as 5′bx4x3x2x1x0, where the value of each bit is
zero or one. The calculation of the column accumulative sum
is shown in Fig. 5. The calculation takes five clock cycles.
In the first clock cycle, the partial sums over regions of two
adjacent rows are calculated in parallel. In the second clock
cycle, the partial sums over regions of four adjacent rows are
generated with the sums calculated in the first clock cycle.
In the third clock cycle, the partial sums over regions of eight
adjacent rows are generated with the sums calculated in the
previous clock cycle. The partial sums over regions of sixteen,
thirty-two adjacent rows are similarly generated in the fourth,
fifth clock cycle respectively. The calculation is formulated as
below,

n∑
i=0

Li = x4 ×
n4+24−1∑
i4=n4

Li4 + x3 ×
n3+23−1∑
i3=n3

Li3

+ x2 ×
n2+22−1∑
i2=n2

Li2 + x1 ×
n1+21−1∑
i1=n1

Li1

+ x0 × Ln0 + Ln. (15)

In the equation, Li represents the output in the i-th row of the
line buffer, and n − n4 represent the number of the output.

FIGURE 6. Refreshment of the window integral image by the addition in
each row. The column accumulative sums are accumulated in each row
per clock cycle.

Specifically, each number of the output can be expressed as
below,

n = 5′bx4x3x2x1x0, n0 = 5′bx4x3x2x10,

n1 = 5′bx4x3x200, n2 = 5′bx4x3000,

n3 = 5′bx40000, n4 = 5′b00000. (16)

On the second stage, the column accumulative sums are
accumulated in each row, which is shown in Fig. 6. In every
clock cycle, registers which store values of the first column
in the integral image are refreshed by the new column accu-
mulative sums. At the same time, the remaining registers are
refreshed by the sum of its left value and the new column
accumulative sum, respectively. The row accumulative sums
are calculated as below,

Rn_C0 =

n∑
i=0

Li,

Rn_Cm+1 = Rn_Cm +
n∑
i=0

Li. (17)

where Rn_Cm represents the data at the position (n, m)
in the integral image of the window. The integral image
of each channel in the YCrCb colour space is calculated
simultaneously.

E. WEAK CLASSIFIERS CALCULATION
The integral images are stored in registers, where all integral
pixel values are available to access synchronously. On the
integral image of each channel, the computations of weak
classifiers are implemented in parallel. These weak classifiers
are previously configured on FPGA via the Vivado design
suite.

The configuration of each weak classifier changes with
the selected feature. In general, there are seven types of
configuration according to the category of the multi-layer
features. The most complex feature consists of four adjacent
rectangles. To calculate the feature value, nine registers in

178172 VOLUME 7, 2019



X.-H. Wu et al.: Parallelism Optimized Architecture on FPGA for Real-Time Traffic Light Detection

FIGURE 7. Parallel implementation of the weak classifiers. In each weak classifier, the value of the selected feature is quickly calculated on the
integral image of Y , Cr , and Cb channel respectively. The computations of 200 weak classifiers are implemented in parallel. It takes six clock cycles to
calculate the confidence of each weak classifier.

the integral image of Y channel are accessed synchronously.
It takes five clock cycles to calculate the confidence of the
corresponding weak classifier [31]. The calculation of fea-
ture with fewer rectangles is simpler and faster. In order to
realize the parallelism of all weak classifiers, several reg-
isters are used to store the values of weak classifiers with
fewer calculation steps. As shown in Fig. 7, the value of the
chrominance-layer feature which consists of one rectangle
can be calculated in two clock cycles. Firstly, the data in four
registers in the integral image of Cb channel are read into two
independent adders for addition operation. Secondly, the two
sums are subtracted to calculate the feature value. The value
of the weak classifier is true if the feature value is smaller than
the threshold. Then the value of the weak classifier is stored
in registers with the latency of two clock cycles. The similar
calculation is implemented on the two-rectangle feature, and
the value of the weak classifier is stored with one clock cycle
delay. After getting the values of all weak classifiers, in the
sixth clock cycle, the confidence of each weak classifier is
calculated by multiplying the value by weight of the weak
classifier.

These confidences are evaluated to calculate the detection
result. The window is considered to contain the traffic light
when the sum of the confidences is higher than the threshold
tuned by off-line training.

IV. EXPERIMENT RESULTS
In order to test the performance of the designed system,
the off-line training is carried out in the MATLAB software,

FIGURE 8. Experimental platform. (a) Block diagram, (b) Practical result.
The video of the practical result is provided in supplemental materials.

and the hardware architecture is implemented on an FPGA
platform for experiments.

The off-line training is realized by programming on the
basis of GML AdaBoost Matlab Toolbox [52]. The con-
figuration of weak classifiers is obtained after running the
program. It takes several hours to train the weak classifiers.
The number of weak classifiers is 200. In the training process,
234 positive samples of the traffic light and 468 negative
samples of the surroundings are used to tune the parameters
of 200 weak classifiers. These samples are extracted in natu-
ral scene images. The size of each sample is 30× 10, which
is the same with the window detector. The configuration of
weak classifiers is verified since its high detection accuracy
on another 234 positive and negative samples [41].

The configuration of weak classifiers is coded in Verilog
on an FPGA platform. The experimental platform is shown
in Fig. 8. The FPGA platform is equipped with the camera,

VOLUME 7, 2019 178173



X.-H. Wu et al.: Parallelism Optimized Architecture on FPGA for Real-Time Traffic Light Detection

TABLE 3. Summary of resources utilization in the signal processing
module and time complexity of the window integral image computation.

external memory and LCD. The CMOS camera can capture
videos in the RGB mode at the rate of 30 fps. The size of
the video graphics array is 640 × 480. Pixels in the array
are cached in the external memory. The external memory is
based on DDR3 SDRAM, which is controlled by the memory
interface generator in the FPGA. The cache is read for the
signal processing. The processing result is displayed in the
RGB mode on the LCD of size 272×480. The display rate is
30 fps. Please note that because the detection rate is limited
only by the hardware clock speed of the signal processing
module, the designed system is suitable for the detection on
high-resolution and high-rate videos [30].

The parallelism optimized architecture is designed in
Verilog codes on the FPGA platform. For contrast study,
two window integral image calculation methods, Hiromoto’s
method [32] and Kyrkou’s method [34] are implemented in
the signal processing module for comparison. The summary
of resources utilization in the signal processing module and
time complexity of the window integral image computation
is listed in Table 3. The calculation of the window integral
image in the designed system has the minimal time complex-
ity. The designed system takes 15 clock cycles to calculate
the first integral image of window of size 30 × 10, and then
it can generate the integral image of the current window per
clock cycle. The designed system utilizes obviously fewer
look-up-tables (LUTs) than the two earlier methods, due to
the parallel architecture by which few memory blocks are
needed. The registers utilized by the designed system are dra-
matically fewer thanKyrkous’s method but slightlymore than
Hiromoto’s method. The more consumed registers are mainly
used to store the partial sums in the parallel computation.
In the implementation of Hiromoto’s method, 156 F7 Muxes
and 51 F8 Muxes are used to realize several logic commands,
which are realized by LUTs in the other two methods [53].
The result of the designed system is in accordance with the
two earlier methods, although the architectures of the three
methods are different. The parallelism optimized architec-
ture is implemented on the XC7A100TFGG484-2 chip in
Artix-7 series of Xilinx. The chip operates at 200 MHZ. The
device utilization of summary report is listed in Table 4. The
designed system utilizes 65.49%, 60.92% of the available
LUT, LUTRAM resources respectively. The devices of the
chip are mainly utilized in the signal processing module,
which has three line buffers and three integral images. A line

TABLE 4. Device utilization of the designed system.

TABLE 5. Summary of indexes of the designed system on embedded
platforms.

buffer consists of 13921 registers of 8 bits, and an integral
image consists of 300 registers of 17 bits. In the line buffer,
each data occupies 8 bits (1 byte), in order to represent the
maximal intensity of 255. Since the maximal sum of these
data is 76500 (255× 30× 10), the bit depth of the data in the
integral image is set to 17. The bit depth is proportional to the
size of the window detector.

The indexes of the designed system are summarized
in Table 5. Comparing with the indexes of the existing works,
the advantages and novelties of the designed system are
summarized as following:
• The designed system realizes FPGA-based design of the
traffic light detection, whereas the existing works are imple-
mented on CPU or GPU.
• The designed system adopts the AdaBoost-based machine
learning scheme, whereas [6], [7] is based on the filtering
scheme.
• The designed system uses multi-layer features which con-
sist of the luminance-layer features and the chrominance-
layer features, whereas [9] only adopts the luminance-layer
features.
•The designed system results in higher detection rate (30 fps)
over other methods.

V. CONCLUSION
In this paper, a parallelism optimized hardware architecture
is designed on FPGA for real-time traffic light detection. The
practical results show that the designed system can detect the
traffic light on videos of 640 × 480 at 30 fps. In addition,
the designed system is also theoretically suitable for the
detection on videos of high resolution and high rate.

The designed system is efficient, inexpensive, and
the hardware architecture is designed in Verilog codes.
Therefore, it can be easily transplanted to the other FPGA
platforms. In addition, the parallel computations of the

178174 VOLUME 7, 2019



X.-H. Wu et al.: Parallelism Optimized Architecture on FPGA for Real-Time Traffic Light Detection

integral image can also speed up the binaryzation using
the adaptive thresholding method. The future work may be
improving the designed system by introducing more types of
weak classifiers, in order to achieve a higher detection rate.

ACKNOWLEDGMENT
The authors want to thank the editors and reviewers for their
constructive suggestions.

REFERENCES
[1] M. A. Hersh and M. A. Johnson, Eds., Assistive Technology for Visually

Impaired and Blind People. London, U.K.: Springer, 2008, pp. 173–174.
[2] A. Almagambetov, S. Velipasalar, and A. Baitassova, ‘‘Mobile standards-

based traffic light detection in assistive devices for individuals with color-
vision deficiency,’’ IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3,
pp. 1305–1320, Jun. 2015.

[3] M. B. Jensen,M. P. Philipsen,M. Trivedi, T.Møgelmose, and T. Moeslund,
‘‘Vision for looking at traffic lights: Issues, survey, and perspectives,’’
IEEE Trans. Intell. Transp. Syst., vol. 17, no. 7, pp. 1800–1815, Jul. 2016.

[4] J. Aranda and P. Mares, Visual System to Help Blind People to Cross the
Street. Berlin, Germany: Springer, 2004, pp. 454–461.

[5] M. Omachi and S. Omachi, ‘‘Traffic light detection with color and edge
information,’’ in Proc. IEEE Int. Conf. Comput. Sci. Inf. Technol. Beijing,
China, Aug. 2009, pp. 284–287.

[6] J. Roters, X. Jiang, and K. Rothaus, ‘‘Recognition of traffic lights in
live video streams on mobile devices,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 21, no. 10, pp. 1497–1511, Oct. 2011.

[7] S. Mascetti, D. Ahmetovic, A. Gerino, C. Bernareggi, M. Busso, and
A. Rizzi, ‘‘Robust traffic lights detection on mobile devices for pedestri-
ans with visual impairment,’’ Comput. Vis. Image Understand., vol. 148,
pp. 123–135, Jul. 2016.

[8] M. P. Philipsen, M. B. Jensen, A. Møgelmose, T. B. Moeslund, and
M. M. Trivedi, ‘‘Traffic light detection: A learning algorithm and evalu-
ations on challenging dataset,’’ in Proc. 18th IEEE Intell. Transp. Syst.
Conf., Sep. 2015, pp. 2341–2345.

[9] W. Liu, S. Li, J. Lv, B. Yu, T. Zhou, H. Yuan, and H. Zhao, ‘‘Real-time
traffic light recognition based on smartphone platforms,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 27, no. 5, pp. 1118–1131, May 2017.

[10] Z. Shi, Z. Zou, and C. Zhang, ‘‘Real-time traffic light detection with
adaptive background suppression filter,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 3, pp. 690–700, Mar. 2016.

[11] X.-H. Wu, R. J. Hu, and Y.-Q. Bao, ‘‘Fast vision-based pedestrian traf-
fic light detection,’’ in Proc. IEEE Conf. Multimedia Inf. Process. Retr.
(MIPR), Miami, FL, USA, Apr. 2018, pp. 214–215.

[12] X. Li, H. Ma, X. Wang, and X. Zhang, ‘‘Traffic light recognition for
complex scene with fusion detections,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 1, pp. 199–208, Jan. 2018.

[13] J.-G. Wang and L.-B. Zhou, ‘‘Traffic light recognition with high dynamic
range imaging and deep learning,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 20, no. 4, pp. 1341–1352, Apr. 2019.

[14] D. H. Wolper and W. G. Macready, ‘‘No free lunch theorems for optimiza-
tion,’’ IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997.

[15] X. Wen, L. Shao, W. Fang, and Y. Xue, ‘‘Efficient feature selection and
classification for vehicle detection,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 25, no. 3, pp. 508–517, Mar. 2015.

[16] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
‘‘A review on ensembles for the class imbalance problem: Bagging-,
boosting-, and hybrid-based approaches,’’ IEEE Trans. Syst., Man, C, Appl.
Rev., vol. 42, no. 4, pp. 463–484, Jul. 2012.

[17] R. Polikar, ‘‘Ensemble based systems in decision making,’’ IEEE Circuits
Syst. Mag., vol. 6, no. 3, pp. 21–45, Sep. 2006.

[18] K. Xu, Y. Zheng, F. Zhang, Z. Jiang, Y. Qi, H. Chen, and J. Zhu,
‘‘An energy efficient adaboost cascade method for long-term seizure
detection in portable neurostimulators,’’ IEEE Trans. Neural Syst. Reha-
bil. Eng., vol. 27, no. 11, pp. 2274–2283, Nov. 2019, doi: 10.1109/
TNSRE.2019.2947426.

[19] M. D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional
Networks. Cham, Switzerland: Springer, 2014, pp. 818–833.

[20] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[21] S. I. Venieris, A. Kouris, and C.-S. Bouganis, ‘‘Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future directions,’’
ACM Comput. Surv., vol. 51, no. 3, pp. 1–39, 2018.

[22] G. Lacey, G. W. Taylor, and S. Areibi, ‘‘Deep learning on FPGAs: Past,
present, and future,’’ Feb. 2016, arXiv:1602.04283. [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2016arXiv160204283L

[23] K. Compton and S. Hauck, ‘‘Reconfigurable computing: A survey of
systems and software,’’ ACM Comput. Surv., vol. 34, no. 2, pp. 171–210,
2002.

[24] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing
FPGA-based accelerator design for deep convolutional neural networks,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, New York,
NY, USA, 2015, pp. 161–170.

[25] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo, ‘‘Optimizing loop operation and
dataflow in FPGA acceleration of deep convolutional neural networks,’’ in
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate ArraysNew York, NY,
USA, 2017, pp. 45–54.

[26] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, ‘‘Memory-
centric accelerator design for convolutional neural networks,’’ in Proc.
IEEE 31st Int. Conf. Comput. Design (ICCD), Asheville, NC, USA,
Oct. 2013, pp. 13–19.

[27] P. Viola andM. J. Jones, ‘‘Robust real-time face detection,’’ Int. J. Comput.
Vis., vol. 57, no. 2, pp. 137–154, 2004.

[28] F. Wang, Z. Li, F. He, R. Wang, W. Yu, and F. Nie, ‘‘Feature learning
viewpoint of adaboost and a new algorithm,’’ IEEE Access, vol. 7,
pp. 149890–149899, 2019.

[29] Y. Wei, X. Bing, and C. Chareonsak, ‘‘FPGA implementation of AdaBoost
algorithm for detection of face biometrics,’’ in Proc. IEEE Int. Workshop
Biomed. Circuits Syst., Singapore, Dec. 2004, pp. S1/6–17.

[30] H.-C. Lai, M. Savvides, and T. Chen, ‘‘Proposed FPGA hardware architec-
ture for high frame rate (� 100 fps) face detection using feature cascade
classifiers,’’ in Proc. 1st IEEE Int. Conf. Biometrics, Theory, Appl., Syst.,
Crystal City, VA, USA, Sep. 2007, pp. 1–6.

[31] J. Cho, B. Benson, S. Mirzaei, and R. Kastner, ‘‘Parallelized architecture of
multiple classifiers for face detection,’’ inProc. 20th IEEE Int. Conf. Appl.-
Specific Syst., Architectures Processors, Boston, MA, USA, Jul. 2009,
pp. 75–82.

[32] M. Hiromoto, H. Sugano, and R. Miyamoto, ‘‘Partially parallel architec-
ture for AdaBoost-based detection with Haar-like features,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 19, no. 1, pp. 41–52, Jan. 2009.

[33] M. Yang, J. Crenshaw, B. Augustine, R. Mareachen, and Y. Wu,
‘‘AdaBoost-based face detection for embedded systems,’’ Comput. Vis.
Image Understand., vol. 114, no. 11, pp. 1116–1125, 2010.

[34] C. Kyrkou and T. Theocharides, ‘‘A flexible parallel hardware architecture
for AdaBoost-based real-time object detection,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 19, no. 6, pp. 1034–1047, Jun. 2011.

[35] W. Zhou, H. Wu, and X. Zeng, ‘‘A low cost architecture for high per-
formance face detection,’’ Microprocessors Microsyst., vol. 39, no. 6,
pp. 339–347, 2015.

[36] Z. Xu, R. Shi, Z. Sun, Y. Li, Y. Zhao, and C. Wu, ‘‘A heterogeneous system
for real-time detection with AdaBoost,’’ in Proc. IEEE 18th Int. Conf.
High Perform. Comput. Commun., IEEE 14th Int. Conf. Smart City, IEEE
2nd Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Sydney, NSW,
Australia, Dec. 2016, pp. 839–843.

[37] S. Jin, D. Kim, T. T. Nguyen, D. Kim,M. Kim, and J.W. Jeon, ‘‘Design and
implementation of a pipelined datapath for high-speed face detection using
FPGA,’’ IEEE Trans. Ind. Informat., vol. 8, no. 1, pp. 158–167, Feb. 2012.

[38] S.-S. Lee, S.-J. Jang, J. Kim, and B. Choi, ‘‘A hardware architecture of face
detection for human-robot interaction and its implementation,’’ in Proc.
IEEE Int. Conf. Consum. Electron.-Asia (ICCEAsia), Seoul South Korea,
Oct. 2016, pp. 1–2.

[39] Y. Freund and R. E. Schapire, ‘‘A desicion-theoretic generalization of on-
line learning and an application to boosting,’’ in Proc. Int. Conf. Comput.
Learn. Theory, 1995, pp. 23–37.

[40] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, ‘‘Pedestrian
detection using wavelet templates,’’ in Proc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 1997, pp. 193–199.

[41] X.-H. Wu, R. Hu, and Y.-Q. Bao, ‘‘Pedestrian traffic light detection in
complex scene using adaboost with multi-layer features,’’ J. Eng. Res.,
vol. 6, no. 3, pp. 34–53, Sep. 2018.

[42] S. V. Dharan, M. Khalil-Hani, and N. Shaikh-Husin, ‘‘Hardware accelera-
tion of a face detection system on FPGA,’’ inProc. IEEE Student Conf. Res.
Develop. (SCOReD), Kuala Lumpur, Malaysia, Dec. 2015, pp. 283–288.

VOLUME 7, 2019 178175

http://dx.doi.org/10.1109/TNSRE.2019.2947426
http://dx.doi.org/10.1109/TNSRE.2019.2947426


X.-H. Wu et al.: Parallelism Optimized Architecture on FPGA for Real-Time Traffic Light Detection

[43] Recommendation ITU-R BT.6017. 2011. Studio Encoding Parameters of
Digital Television for Standard vol. 4, p. 3and Wide-screen 16:9 Aspect
Ratios. http://www.itu.int/rec/R-REC-BT.601-7-201103-I/en

[44] B. Ahirwal, M. Khadtare, and R. Mehta, ‘‘FPGA based system for color
space transformation RGB to YIQ and YCbCr,’’ in Proc. Int. Conf. Intell.
Adv.Syst., Kuala Lumpur, Malaysia, Nov. 2007, pp. 1345–1349.

[45] X. Zhang, X. Li, W. Yang, and R. Li, ‘‘FPGA-based color space conversion
system design and implementation,’’ in Proc. IEEE 7th Annu. Ubiquitous
Comput., Electron. Mobile Commun. Conf. (UEMCON), New York, NY,
USA, Oct. 2016, pp. 1–4.

[46] P. Ouyang, S. Yin, Y. Zhang, L. Liu, and S. Wei, ‘‘A fast integral image
computing hardware architecture with high power and area efficiency,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 1, pp. 75–79,
Jan. 2015.

[47] D. Puchala and K. Stokfiszewski, ‘‘GPU accelerated image binarization
based on first and second order integral images,’’ in Proc. IEEE 13th
Int. Sci. Tech. Conf. Comput. Sci. Inf. Technol. (CSIT), Lviv, Ukraine,
Sep. 2018, pp. 404–407.

[48] F. Spagnolo, P. Corsonello, and S. Perri, ‘‘Efficient architecture for integral
image computation on heterogeneous FPGAs,’’ in Proc. 15th Conf. Ph.D
Res. Microelectron. Electron. (PRIME), Lausanne, Switzerland, Jul. 2019,
pp. 229–232.

[49] R. L. Ladner and M. J. Fisher, ‘‘Parallel prefix computations,’’ J. Assoc.
Comput. Mach., vol. 27, no. 4, pp. 831–838, 1980.

[50] G. Blelloch, ‘‘Prefix sums and their applications,’’ in Synthesis of Parallel
Algorithms, 1st ed. San Francisco, CA, USA: Morgan Kauffman, 1993,
ch. 1, pp. 35–60.

[51] K. Abdelouahab, M. Pelcat, and F. Berry, ‘‘The challenge of multi-operand
adders in CNNs on FPGAs: How not to solve it!’’ in Proc. 18th Int. Conf.
Embedded Comput. Syst., Architectures, Modeling, Simulation, Pythago-
rion, Greece, 2018, pp. 157–160.

[52] A. Vezhnevets and V. Vezhnevets, ‘‘Modest AdaBoost-teaching adaBoost
to generalize better,’’ Graphicon, vol. 12, no. 5, pp. 987–997, 2005.

[53] UltraFast Design Methodology Guide for the Vivado Design Suite.
[Online]. Available: https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2019_1/ug949-vivado-design-methodology.pdf

XUE-HUA WU received the B.S. degree in elec-
trical engineering and the M.S. degree in power
system and its automation from the Nanjing Uni-
versity of Aeronautics and Astronautics (NUAA),
Nanjing, China, in 2009 and 2012, respectively.
She is currently pursuing the Ph.D. degree in
electrical engineering with Southeast University
(SEU), Nanjing. Her research interests include
image processing, machine learning, and object
detection.

RENJIE HU received the B.S., M.S., and Ph.D.
degrees in electrical engineering from Southeast
University (SEU), Nanjing, China, in 1985, 1994,
and 2002, respectively.

He is currently a Professor with Southeast Uni-
versity and serves as the Chief of the Electrical
and Electronic Experiment Center. His research
interests include electrical detection, intelligent
instrument, and power electronics.

YU-QING BAO was born in Zhenjiang, China,
in 1987. He received the Ph.D. degree from
Southeast University (SEU), Nanjing, China,
in March 2016.

He is currently an Associate Professor with
Nanjing Normal University (NJNU). His research
interests include smart city, intelligent instrument,
power system operation and scheduling, power
demand side management, and the frequency con-
trol of the power systems.

178176 VOLUME 7, 2019


