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ABSTRACT In this paper, we propose amethod to increase the robustness of 2D/3D optical image encryption
using the dilated deep convolutional neural network (CNN). In order to solve the problem that encrypted
images suffer from some attacks in practical application, we utilize a fast and effective CNN denoiser based
on the principle of deep learning. The CNN improves the robustness of the algorithm by improving the
resolution of the reconstructed images. Besides, CNN has a high performance against blur and occlusion
attacks. We introduce the pixel scrambling method to enhance the security level of the encryption by
the private key of pixel scrambling operation. The proposed method can not only realize the encryption
of a two-dimensional image but also implement three-dimensional image encryption by combining the
integral imaging technology. Double random phase encoding in the fractional Fourier domain is selected for
experimental verification, and the results show the capability for robustness, noise immunity, and security
of the proposed method.

INDEX TERMS Optical image encryption, integral imaging, fractional Fourier transform, convolutional
neural network.

I. INTRODUCTION
With the rapid development of multimedia technology, it is of
considerable significance to take efficient and high-security
measures to protect the information at the same time. Because
of the widespread use of images, image encryption becomes
a focus of information security research [1]–[10]. In recent
years, more and more image encryption researchers attach
importance to the optical information processing technol-
ogy due to its characteristics of high parallelism, substantial
parameter freedom, high latitude, great data capacity, and
high security. Furthermore, many mature and capable opti-
cal image encryption technologies have emerged. In [11],
P. Refregier and B. Javidi proposed the double random phase
encoding (DRPE) method based on 4f system. Then many
scholars have extended it to its fractional Fourier transform
(FrFT) domain, Fresnel transform domain, gyrator trans-
form domain, and have proposed the corresponding image
encryption scheme [12]–[16]. In [17], Unnikrishnan et al.
have proposed an optical image encryption method based on
random phase encoding in the FrFT domain. FrFT not only
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has the excellent properties of traditional Fourier transform
but also provides additional keys, the scale factors, and the
fraction orders, for the encryption system, which makes the
encryption system obtain high security.

In practice, encryption systems suffer from various attacks,
the most common of which is noise attack, and the quality of
the decrypted image will be reduced. Thus, researchers have
put forward numerous solutions to this problem [18]–[24]
such as filtering based methods, spare models, nonlocal self-
similarity models (NSS), and Markov random field models.
Among them, the NSS models are considered as the state-of-
the-art methods. And some typical methods include block-
matching and three-dimensional (BM3D) filtering, learned
sparse coding, nonlocally centralized sparse representation
and weighted nuclear norm minimization. In recent, some
developed convolutional neural network (CNN) algorithms
like image restoration CNN provide exceptional performance
in denoising [25]–[29]. Despite the high denoising quality of
these methods, they inevitably have two major shortcomings.
One of them is involving complex optimization problems and
time-consuming in the test process. And the other one is that
these models are usually non-convex with multiple artificial
hypothesis parameters.
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FIGURE 1. Schematic of the proposed encryption method.

To overcome these disadvantages, researchers propose
some discriminative learning methods like multi-layer per-
ceptron (MLP). In [30], Zhang et al. regard image denois-
ing as a maximum a posteriori problem from the Bayesian
perspective and use the deep CNN to learn the prior as a
denoiser.

Due to the wide application of three-dimensional (3D)
imaging and display, more attention has been paid to the
research of 3D image encryption. In [31], Lippmann pro-
posed integral imaging (II). We can obtain a two-dimensional
(2D) image array named elemental image (EI) array which
contains different perspective information of a 3D scene by
using a lenslet array and charge-coupled device (CCD) sen-
sor. And the 3D image can be recovered from the EIs based on
computational integral imaging reconstruction (CIIR) algo-
rithm. Because of the distributedmemory characteristic of EI,
3D image encryption owns high robustness.

The key contributions of the proposed method are summa-
rized as follow: we introduce an effective CNN denoiser into
the encryption to separate the noise from the noised decrypted
image; the deep learning method not only can against noise
attack but also against blur and occlusion attacks; the CNN
uses residual learning algorithm to enhance the accuracy and
performance of the model; parametric rectified linear unit
(ReLU) and batch normalization (BNorm) method are intro-
duced to improve the speed and the performance of CNN;
we use dilated filter to increase the size of receptive field
while reducing the network depth as much as possible; the
scrambling algorithm is added in the encryption process in
order to further improve the security of the encryption system;
the encryption system can realize not only 2D but also 3D
image.

II. THEORETICAL ANALYSIS OF THE PROPOSED METHOD
The schematic of the proposed encryption method is illus-
trated in Fig. 1. It can be divided into three parts: encryp-
tion process, CNN denoising, and the reconstruction process.
In the first process, the input image is preprocessed via
pixel position scrambling technology. The rules of dividing,
numbering, and scrambling are used as private keys that
can provide higher security for the encryption system. Then,
the double random phase encoding in the fractional Fourier
domain is implemented on the scrambled image to get the
encoded image. The decryption is the inverse process of the
encryption process.

In the second process, CNN denoising is implemented. The
denoising can be considered as an inverse problem whose
purpose is to recover the latent clean image x from the noisy
image y who follows an image degradation model y = x +
v, where v is additive white Gaussian noise with standard
deviation σ . We learn a denoising convolutional neural net-
work utilizes residual learning approach, whose output is the
residual image v̂ instead of the clean image x. Thus, we can
get the approximated clean image as

x̂ = y− v̂. (1)

In the third process, the CIIR algorithm is added to recon-
struct the 3D image. It needs to be emphasized that the input
image of 3D image encryption is the EI obtained by lenslet
array and CCD sensor.

Some key technologies involved in our proposed encryp-
tion method, as well as some specific parameter designs, are
described in the following parts of this section.

A. OPTICAL IMAGE ENCRYPTION BASED ON FrFT
The FrFT is an extension of the traditional FT on the order
of the continuous FT whose time-frequency analysis charac-
teristic breaks the limitation of the traditional FT. We define
the αth-order FrFT of the input image f (x) in the one-
dimensional (1D) case as follows

Fα {f (x)} =
∫
+∞

−∞

Bα
(
x, x ′

)
f
(
x ′
)
dx ′. (2)

The transform kernel can be expressed as follows

Bα
(
x, x ′

)
= Aθ exp

[
iπ
(
x2 cot θ−2xx ′ csc θ+x ′2 cot θ

)]
,

(3)

Aθ =
exp

(
−
iπsgn(sin θ)

4 +
iθ
2

)
√
|sin θ |

, (4)

where

θ =
απ

2
, (5)

and i is the imaginary unit. Where α 6= 0 or ±2.
Here is a brief description of the encryption process: At

first, scramble the input image f (x) to obtain C (x). Then,
multiply C (x) with the first random phase mask (RPM)
(M1 = exp [i2πn1 (x)]) and implement FrFT on order α.
Later, multiply the second RPM (M2 = exp [i2πn2 (x)])

and carry out the FrFT on an order β to get the encoded image
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FIGURE 2. Structure of the CNN denoiser.

as follow

ξ (x) = Fβ
{
Fα {C (x) exp [i2πn1 (x)]} exp [i2πn2 (x)]

}
,

(6)

where n1 (x) and n2 (x) are two independent random
matrices.

The decryption is the inverse process of the encryption
process. We can obtain the C (x) and perform inverse pixel
scrambling transformation on it to get the original image
f (x). The C (x) is as

C (x) = F−α
{
F−β {ξ (x) exp [−i2πn2 (x)]}

× exp [−i2πn1 (x)]}. (7)

B. DECRYPTED IMAGE DENOISING
The structure of CNN denoiser we proposed in this paper is
shown in Fig. 2. We set the depth of the network to 7. The
first layer contains ‘‘Dilated Convolution (Dconv)+ ReLU’’.
The middle five layers include ‘‘Dconv+ BNorm+ ReLU’’,
and each layer produces 64 feature maps. The last layer has
‘‘Dconv’’. The red square frame in every layer means the
kernel of the dilated convolution, and the sizes of them are
3×3, 5×5, 7×7, 9×9, 7×7, 5×5 and 3×3. Zero padding
is implemented before Dconv to ensure that each feature map
and input image are the same sizes.

1) RESIDUAL LEARNING STRATEGY
The depth is an essential parameter of CNN, to a certain
extent, better results can be obtained by adding more network
layers. However, with the increase of depth, the rate of accu-
racy will quickly reach saturation and then decline rapidly.
Hence, we introduce residual learning strategy into CNN.

Assuming that the network is designed to represent the
mappingH (x) = F (x)+x which can be converted to learn a
residual function F (x) = H (x)− x. So the original function
x̂ is as

x̂ = H (x)− F (x). (8)

We suggest that it may be more convenient to optimize the
residual map than the original reference map. Furthermore,
if a recognition map is optimized, it is easier to make its

residual value approach zero than to use a stack of nonlinear
combinations to fit an identity map.
As verified by experiments in [32], the deep residual

learning framework significantly enhances the accuracy and
performance of the model. Just because of this, we uti-
lize the residual learning approach to denoise the decrypted
images.

2) DILATED CONVOLUTION
Deep CNN has some fatal defects, especially the design of the
pooling layer. The pooling layer added into the network will
lose information and reduce the accuracy. However, without
the pooling layer, the receptive field will become smaller,
and the global features will not be learned. If we simply
remove the pooling layer and expand the convolution kernel,
it will lead to an increase in the burden of computation.
Consider these reasons, we use the dilated convolution to
achieve tradeoffs between the network depth and the size of
the receptive field. A dilated filter with dilation factor s can
be regarded as a sparse filter of size (2s+ 1) × (2s+ 1),
in which only the components of 9 fixed positions can be
non-zeros.
There are two potential problems in the dilated convolu-

tion. The first one is the gridding effect. Assuming that we
repeatedly use several 3×3 convolution kernels with dilation
factor 2, the problem of discontinuity of convolution kernels
will occur, and the continuity of information will be lost.
The second one is that long-ranged information might be not
relevant. In order to solve the problems mentioned above,
a solution is proposed [33] and named as Hybrid Dilated
Convolution design structure.
In the proposed CNN, we set the dilation factors of 3 ×

3 Dconv in every layer as 1, 2, 3, 4, 3, 2 and 1 in turn.
So that the equivalent size of the receptive field of each
layer is 3 × 3, 7 × 7, 13 × 13, 21 × 21, 27 × 27, 31 ×
31 and 33 × 33. If we use the traditional 3 × 3 convolu-
tion filter to achieve the same size as the receptive field,
we need to design a network in depth of 16. In other words,
the increase of the receptive field size is linearly related
to the depth of the network if we use traditional convo-
lution, while it increases exponentially in utilizing dilated
convolution.
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3) BATCH NORMALIZATION
When we train the neural network, the standardized input
can improve the training speed. Hence, we combine batch
normalization with a convolutional neural network.

Suppose there are N training samples in the current batch
processing, and each batch has d dimension, which means the
input is x = {x1, x2, · · · , xd }. Then, each dimension of x is
normalized by

x̂k =
xk − E (xk)
√
Var (xk)

, (9)

where E (xk) is an expectation of xk , and Var (xk) is the
variance of xk . However, it is not simple to input the data to
the next layer after normalization because it will affect the
features learned in the current layer. Therefore, it is necessary
to add a transformation and reconstruction, we introduce
two parameters γk and ηk to scale and shift the normalized
value as

yk = γk x̂k + ηk , (10)

where γk =
√
Var (xk) and ηk = E (xk). In such formulation,

the convolution network gets the benefits of batch normaliza-
tion such as higher robustness, faster training speed, better
performance, and lower sensitivity to initialization.

4) TRAINING
It is generally accepted that CNN performs better with the
more extensive training dataset. So that, we choose Waterloo
Exploration Database (WED) which collects 4744 images as
our training dataset.

The loss function is a standard to judge the network perfor-
mance, the smaller the loss function is, the better performance
the network has. We set the loss function as

L(2) =
1
2N

N∑
i=1

‖f (yi,2)− (yi − xi)‖2, (11)

where N denotes N pairs training data, yi is the i-th input of
noised image and xi is the i-th corresponding clean image.
The network parameters 2 is set by Adam solver, and the
other hyper-parameters of Adam choose their default values.

In the network training, the mini-batch size is set as 64. The
simulation experiments are implemented in Matlab (R2015b)
with theMatconvnet toolbox on a PCwith Intel(R) Core(TM)
i5-4460 CPU 3.2 GHz and NVIDIA GeForce GTX 1050 Ti.

C. 3D IMAGE COMPUTATIONAL RECONSTRUCTION
The input image of 3D image encryption is the EIs, and the
setup for EIs generation is illustrated in Fig. 3. The 3D objects
(‘‘Cars’’) are recorded as EIs by a CCD camera through a
lenslet array. The EIs are a series of 2D elemental images, and
each EI contains different perspective information of the 3D
objects. We realize the encryption of 3D images by reducing
the dimension of 3D to 2D. In other words, we implement the
proposed encryption method on each 2D EI and recover the
3D image from the encrypted EIs. Because of the distributed

FIGURE 3. The setup for EIs generation.

memory characteristic of EIs, 3D image encryption obtains
high robustness against data loss attacks.

The 3D image can be digitally reconstructed by the CIIR
algorithm. Assume that the reconstructed 3D image and each
EI have the same resolution, the reconstructed 3D images at
the depth z can be formulated as follow

<(x, y, z) =
1

ψ(x, y)

M−1∑
m=0

N−1∑
n=0

Em,n(x − m
M × p
cx × γ

,

y− n
N × p
cy × γ

), (12)

where<(x, y, z) means the pixel intensity of the reconstructed
3D image at the distance z, ψ(x, y) is the superimposed num-
ber matrix, M and N represent that each EI has M columns
andN rows, Em,n denotes the (m,n)th monospectral elemental
image, cx and cy are the size of imaging sensor, p is the pitch
of each micro-lens, γ represents the magnification factor and
γ = z

/
g, where g is the focal length.

III. EXPERIMENT RESULTS AND
PERFORMANCE ANALYSIS
In order to show the feasibility and the performance of the
proposed method, several experiments are conducted. The
simulation parameters of 2D image tests are described as
follows. The grayscale images of ‘‘Clock’’ and ‘‘House’’
with a size of 256 × 256 pixels are used as input images
respectively to be encrypted, as shown in Figs. 4(a) and (e).
It is divided into 16384-pixel blocks with the size of 2 × 2
pixels, the scrambled image is obtained after pixel scrambling
process, and present as noise distribution, the input image
content cannot be recognized directly from them, as shown
in Figs. 4(b) and (f). Then the random function is used to gen-
erate two random phase masks on the MATLAB simulation
platform. The fractional orders are given by αx = 1.5, αy =
1.2, βx = 1.4, βy = 1.6, αx and βx are for the x-direction
while αy and βy are for the y-direction. The encrypted images
are shown in Figs. 4(c) and (g). Figures 3(d) and (h) present
the decrypted images using correct keys, we can see that
when there is no noise or distortion, the decryption results
are almost the same as the original images.

To better simulate the real situation of noise attack on
the encryption system, we attacked the encrypted image
after the encryption process artificially. The manually intro-
duced noise is the Gaussian noise with different variances.
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FIGURE 4. Encryption and decryption results: (a) and (e) input images,
(b) and (f) scrambled images, (c) and (g) encrypted images,
(d) and (h) decryption results using correct keys.

FIGURE 5. Output results with Gaussian noise attack: (a)-(d) decryption
images with Gaussian noise variance of 0.05, (e)-(h) decryption images
with Gaussian noise variance of 0.10, (i)-(l) decryption images with
Gaussian noise variance of 0.15, (a), (c), (e), (g), (i) and (k) decryption
images without the CNN Denoiser, (b), (d), (f), (h), (j) and (l) reconstructed
images using the CNN Denoiser.

Fig. 5 shows the decryption results without the CNNDenoiser
and the reconstructed results using the CNN Denoiser. And
we compare the proposed methods with the state-of-the-art
algorithms, one is model-based optimization method BM3D
in [22] and the other is discriminative learning method MLP
in [22]. The results are illustrated in Fig. 7.

We use the peak signal-to-noise ratio (PSNR) and mean
structural similarity (SSIM) as indicators to evaluate the qual-
ity of the reconstructed images. PSNR works based on the
error between the corresponding pixel of the reconstructed
image compared with the attacked image. PSNR can be
defined as

PSNR = 10 log10
(2n − 1)2

MSE
, (13)

where n is the number of bits per pixel, the grayscale image
is 8, that is, the gray image of the pixel of 256, and the mean
square error (MSE) is calculated as

MSE =
1

H×W

H∑
i=1

W∑
j=1

(X (i, j)− Y (i, j))2, (14)

whereH×W represents the size of each of the images,X (i, j)
and Y (i, j) mean the attacked and reconstructed images
respectively.

Generally, the larger the PSNR value, the smaller the dis-
tortion and the better the reconstruction effect. Sometimes,
however, the image quality reflected by PSNR does not match
the actual human subjective visual perception. When white
noise is added to the high, middle and low frequency area of
the same image respectively, the quality of the image which
is noised in the high frequency area is better than that of the
other two, but the PSNR values of the three are the same.
Therefore, we also calculated the SSIM to better evaluate the
image quality.

SSIM is an index used to measure the similarity between
two images, its value ranges from 0 to 1. SSIM is highly con-
sistent with human subjectivity. The SSIM algorithm divides
the whole spatial area into blocks. One SSIM value reflects
the quality of all pixels in a block, and all SSIM values
constitute a SSIM map which reflects the overall quality of
the image. The mean SSIM with a high value has more white
pixels in its SSIM map, corresponds to a high similarity
between the attacked image and the reconstructed image.
SSIM can be defined as

SSIM (x, y) =

(
2µxµy+c1

) (
2σxy+c2

)(
µ2
x+µ

2
y+c1

)
+

(
σ 2
x +σ

2
y +c2

) , (15)

c1 = (K1L)2 , c2 = (K2L)2 , (16)

where µx and µy represent the mean of x and y, σx and σy
denote the variance of x and y, σxy is the covariance, L is the
dynamic range of the images, and it defaults to 255, K1 and
K2 are two constants and the default values are 0.01 and 0.03
respectively.

The calculated PSNR and mean SSIM values of the result
images by different denoised methods are recorded in Table 1
and Table 2. And the SSIM maps of each image in Fig. 5 are
shown in Fig. 6. From Table 1, we can calculate the PSNR
values of the reconstructed image ‘‘Clock’’ and ‘‘House’’ are
increased 8.9512% and 15.5536% on an average respectively
by the proposed CNN Denoiser, while the increment rates
by the BM3D are 4.6066% and 10.8944%, and the rates by
the MLP are 2.9600% and 12.6195%. We noticed that the
PSNR value of the noised decrypted image is the highest in
the first column in Table 1, which is caused by the fact that
PSNR is not completely consistent with human subjective
visual perception. So, we need to evaluate the image quality
in combination with the mean SSIM values. The mean SSIM
values of the reconstructed image ‘‘Clock’’ and ‘‘House’’
recorded in Table 2 are improved 70.6588% and 45.6067%
on an average respectively, while the rates by the BM3D
are 56.6344% and 34.7428%, and the rates by the MLP are
24.1649% and 20.8622%. Moreover, from the comparison
of the corresponding SSIM map, we can directly see the
difference in image quality before and after reconstruction,
it is evident that the method we proposed has a good effect.
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FIGURE 6. SSIM map of each image in FIGURE 5.

FIGURE 7. Denoised results with Gaussian noise attack by different
methods: (a) and (e) decryption images with Gaussian noise variance
of 0.10, (b) and (f) denoised by BM3D, (c) and (g) denoised by MLP,
(d) and (h) denoised by the proposed CNN Denoiser.

TABLE 1. The PSNR values of result image by different denoising
methods.

Besides the Gaussian noise attack, we also carry out other
noise attacks, Salt & Pepper noise, Rayleigh noise, and uni-
form noise attacks. Moreover, we calculate the PSNR and the
mean SSIM values. The experimental results are recorded
in Table 3 and Table 4, and specifically, indicate the high
quality of the reconstructed images of the proposed method.
Besides the noise attack experiments, blur and occlusion
attacks are implemented. We choose motion blur with the
angle at 30◦ and different distances (Dis = 10 and Dis =
15), and the output results are shown in Fig. 8. We can see
from the contrast images that the proposed method also has

TABLE 2. The mean SSIM values of result image by different denoising
methods.

FIGURE 8. Output results with blur attack with an angle at 30◦:
(a)-(d) decryption images with blur distance of 10, (e)-(h) decryption
images with blur distance of 15, (a), (c), (e) and (g) decryption images
without the proposed method, (b), (d), (f) and (h) decryption images using
the proposed method.

TABLE 3. The PSNR values of each image under different noise attacks.

TABLE 4. The mean SSIM values of each image under different noise
attacks.

a good effect in image deblurring. The experimental results
of the proposed method against occlusion attacks are shown
in Fig. 9. Even if 40% and 60% pixels in the encrypted images
are lost, the proposed method can still decrypt the input
images from them. From the above, the proposed encryption
method has high robustness against some classical types of
attacks.

Here, the security of the proposed method is analyzed
experimentally. The security keys include the pixel scram-
bling rule, the random phase mask: M1 and M2, and
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FIGURE 9. Output results with occlusion attack: (a) and (c) 40% pixels
from encrypted images are occluded, (b) and (d) decryption images from
(a) and (c) using the proposed method, (e) and (g) 60% pixels from
encrypted are occluded. (f) and (h) decryption images from
(e) and (g) using the proposed method.

FIGURE 10. Decryption results with incorrect keys: (a)-(c) the decrypted
images ‘‘Clock’’, (d)-(f) the decrypted images ‘‘House’’, (a) and (d) with
incorrect scramble rule, (b) and (e) with randomly generated different
RPMs, (c) and (f) with incorrect fraction order (0.5, 0.5, 0.5, 0.5).

FIGURE 11. Output results with Gaussian noise attack: (a) and (d)
decryption images with Gaussian noise variance of 0.05,
(b) and (e) decryption images with Gaussian noise variance of 0.10,
(c) and (f) decryption images with Gaussian noise variance of 0.15,
(a)-(c) decryption images without the CNN Denoiser, (d)-(f) reconstructed
images by using the CNN Denoiser.

the fraction order of FrFT: αx , αy, βx , βy. We simulate
the decryption results of these keys in the case of errors
respectively. Figs. 10(a) and (d) represent the decrypted
image with a wrong scrambling rule which is generated

FIGURE 12. Output results with blur attack with an angle at 30◦: (a) and
(d) decryption images with blur distance of 5, (b) and (e) decryption
images with blur distance of 10, (c) and (f) decryption images with blur
distance of 15, (a)-(c) decryption images without the proposed method,
(d)-(f) decryption images using the proposed method.

FIGURE 13. Output results with occlusion attack: (a) 40% pixels from
encrypted images are occluded, (b) decryption images from (a) using the
proposed method, (c) 60% pixels from encrypted are occluded.
(d) decryption images from (c) using the proposed method.

randomly. The decrypted results of using the incorrect RPMs
M3 = exp [i2πn3 (x)] and M4 = exp [i2πn4 (x)] are
shown in Figs. 10(b) and (e), where n3 (x) and n4 (x) are
the two independent random matrices different from n1 (x)
and n2 (x). Figs. 10(c) and (d) are the results with incorrect
fraction order (0.5, 0.5, 0.5, 0.5). It is obvious that when any
of the keys is wrong, the correct decrypted images cannot be
obtained.

For the 3D image, the denoised results are shown in Fig. 11.
To make the conclusion more reliable, we implement some
Gaussian noise attacks with different noise intensity (variance
of 0.05, 0.10 and 0.15). In Table 5.We can calculate the PSNR
values of the reconstructed image are increased 27.4885% on
an average by the proposed method. In addition, blur attacks
with angle at 30◦ and different distances (Dis = 5, Dis = 10
and Dis = 15) are carried out and shown in Fig. 12. The
PSNR values are improved 3.9056% on an average according
the records in Table 6. Moreover, we also accomplish the
occlusion attacks with 40% and 60% pixels occluded, and
Fig. 13 represents the feasibility of the proposed method
against the occlusion attack.

VOLUME 7, 2019 181089



J. Chen et al.: Deep Learning for Improving the Robustness of Image Encryption

TABLE 5. The PSNR values of each image in Figure 11.

TABLE 6. The PSNR values of each image in Figure 12.

From the above results, we can see that the proposed
method is useful to improve the quality of the decrypted
image after noise attacking. The proposed method can not
only deal with Gaussian noise attacks but also against other
kinds of noise attacks. Furthermore, the proposed method
utilizes pixel scramble to enhance the security level by the
private key of this operation, and it takes advantage of the
FrFT to enhance the key space of the encryption system.

IV. CONCLUSION
In this paper, a deep learning method to improve the robust-
ness of 2D/3D image encryption is proposed. We adopt
DRPE in the fractional Fourier domain, and introduce the
pixel position scrambling method to increase the security
of the encryption system. Aiming at the actual problem of
noise attacking in encryption, we utilize CNN with a residual
learning approach to restoring the original image from the
attacked decrypted image. Meanwhile, the batch normaliza-
tion and dilated convolution are utilized in CNN to improve
the performance. Experimental results show that the proposed
method is effective against noise, blur and occlusion attacks.
Since color images and other media types like video attack
more attention in image processing, we will carry out relevant
research in the future.
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