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ABSTRACT A single node failure capacity control function taking into account attack strength, attack times,
control node load intensity and the degree of attacked node is proposed in this paper to mitigate the cascading
failure of complex networks under random attack. An optimal probability allocationmechanism of redundant
resources is established by targeting the load of each neighbor node. Then, the node failure capacity control
function and allocation mechanism are used to define the phase transition critical factor and robustness
indicator that used the attack strength, control node load intensity and the degree of attacked node as the
parameters. Based on the above analysis, the phase transition critical factor model of degree distribution of
scale-free network and random network is derived, and the dynamic change law between the parameters
and phase transition critical state as well as robust performance of classical network and real network is
analyzed. The theoretical and experimental results show that in the controllable region, the smaller the degree
of attacked node, the greater the control node load intensity and the more difficult the phase transition critical
state to be achieved, and the better the effect of mitigating cascading failure. Besides, the robustness of the
network with cascading failure is mutually affected by the control node load capacity, the degree of attacked
node and phase transition critical factor within a certain range, which thus embarks on a new perspective to
mitigate the failure.

INDEX TERMS Cascading failure, node failure capacity control function, phase transition critical factor.

I. INTRODUCTION
Almost all infrastructure networks in the real world can be
regarded as complex networks, such as power grid [1]–[5],
communication network [6], transportation network [7]–[9]
and the Internet [10], etc., in which there are a large number
of nodes connecting to each other as well as links trans-
mitting information and energy. As the information trans-
fer station with storage capacity in the network, the node
load is inevitably attacked by the external world during the
operation, causing a series of dynamic losses in a network,
i.e. cascading failure of complex networks [11]–[13]. When
a network is subject to random or deliberate attacks from
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the external world, some nodes become invalid in the target
network, which leads to the redistribution of the node load
and the loss of input-output ability of some redistributed
node load due to exceeding the load capacity. The failure of
these nodes may cause the failure of other nodes through the
redistribution. This kind of network chain reaction is called
cascading failure, which is significant for making mitigation
strategy for network cascading failure, especially for the
application of mitigation strategy in the actual network and
social network [14]–[17]. Based on the previous research
results, we are aware that the ability of each node in the
network to bear extra load is limited [18], [19], and grasping
node control redundant resources [20]–[23], improving the
instantaneous critical state threshold when the network struc-
ture is destroyed, optimizing network system parameters and
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adjusting the topological framework of information network
are conducive to improving mitigation strategy for cascading
failure. Therefore, studying the topology dynamic evolution
process of network with cascading failure in external attack
environment as well as the node failure capacity control func-
tion based phase transition critical factor and other indicators
can better mitigate the negative influence of cascading failure.

It is necessary to build the cascading failure model of com-
plex networks and make load redistribution principle before
studying the dynamic mechanism of cascading failure and
developing the corresponding mitigation strategy. In 2002,
Motter and Lai investigated cascading failure based on over-
load mechanism and proposed the load-capacity model [20].
They defined that the node capacity was directly propor-
tional to the initial load. Motter’s load-capacity model was
improved in [21], where it was put forward that the higher
the initial load is, the larger the extra redundant resources
obtained. Lehmann et al proposed a random load redistribu-
tion method [24], which depended on the load of the attacked
nodes and the distribution was non-uniform and random.
Another study [25] proposed to define load local redistribu-
tion proportion coefficient1 by using the degree of the node
and the load distribution range of the control failure node as
parameters based on the load-capacitymodel, and a cascading
failure model was established by effectively adjusting the
range and heterogeneity of load redistribution. The real-time
processing capacity index of nodes was defined in [26], and
the weight was used as the extra load distribution ratio, and
each adjacent node bore the load of failed nodes according to
the normalized weight value. In study [27], to better explain
the strategy for repairing node failure, large load nodes bore
more redistributed load on the basis of shared load. A research
report tracked the real-time load state of nodes and took state
of adjacent nodes an important index to improve the classical
redistribution method [28], and the cascading failure under
the probability distribution of load increment and redistri-
bution was analyzed. The overload coefficient reflecting the
node’s ability to bear extra load, as well as the residual coef-
ficient and failure probability parameter describing the load
born by the nodes after the load distribution were introduced
in [19], which helped to build the dynamic model close to the
actual network failure.

On the basis of the cascading failure model of the overload
mechanism, the dynamic behaviors affecting the cascading
failure of network nodes was measured, especially the critical
state of network where neighbor nodes fail successively
due to destroying some nodes, so as to explore how each
parameter affected the relationship between the network
critical state and network robustness, as well as how to
mitigate the failure. Dobson et al. derived the capacity critical
value for generating the power-law cascading failure network
scale [29]. According to the adjustment control strategy,
structural characteristics and network tolerance under three
different load redistribution strategies, the corresponding
critical model of tolerance coefficient was derived in [24].

Duan proposed to take the node importance index [30] as
the critical condition of triggering cascading failure based on
the degree of oscillation of node load within the distribution
range. Another study [31] obtained the load limit of scale-free
network under large-scale cascading failure by setting the
critical value of the maximum connected branch which met
the minimum application degree of the network in the case of
random node failure. Peng et al. analyzed the load adjustment
parameters, and studied the network node failure based on
the attack threshold of network under external attack [32].
Researchers derived the critical value of the maximum con-
nected branch based on the probability generating function
of node failure, and concluded that the large scale cascading
failure of scale-free networks could be avoidedwhen the node
load was lower than its load limit [18].

This paper is based on the load-capacity model with
adjustable parameters. However, most of the previous stud-
ies fail to explore the critical conditions and robustness
of cascading failure based on node failure capacity con-
trol function by considering the attack strength, the degree
of attacked nodes and the ability to bear load in differ-
ent network topologies. In view that any node may be
attacked regardless of the importance of the nodes under the
external random attack mode, this paper adopts the classic
load-node degree correlation function model, follows the
newly-defined optimal probability distribution mechanism
of neighbor nodes to redistribute the load, and redefines a
new node failure capacity control function with various con-
straints. Besides, the phase transition critical function θc and
new robustness indicator R (T ) are introduced. Two classical
network topologies—ER (Erdos-Renyi) random network and
BA (Barabasi-Albert) scale-free network are introduced in
this paper, and two actual network topologies—ARPA net-
work and CERNET network are used as experimental objects
to derive the analytic expression of phase transition criti-
cal factor of classical network topologies. The experimental
results show that the indicator is effective and feasible. This
indicator is used to analyze the dynamic evolutionmechanism
of node’s successive failure and to make strategy to mitigate
the cascading failure of the network, and it also helps to
improve the robustness of the complex network by moder-
ately weakening the phase transition critical factor. This paper
provides strategies for mitigating the damages of cascading
failure of complex network under the external random attack
mode from the perspective of parameter optimization.

II. TOPOLOGY MODEL OF COMPLEX NETWORK
A. TWO CLASSICAL COMPLEX NETWORKS
ER random network [33] and BA scale-free network [34] are
common classical complex networks, where the important
information contained in a single node and a single edge
in the overall structure of the network is revealed. ER ran-
dom network is a complex random network model that is
commonly studied. The compilation environment pycharm is
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FIGURE 1. Characteristics of ER random network. (a) Network topology model (b) Degree distribution.

FIGURE 2. Characteristics of BA scale-free network. (a) Network topology model (b) Degree distribution.

imported into module networks to build ER random network
with 100 nodes and the random edge connection probability
of 0.035, as shown in Fig. 1(a). And the degree distribution of
ER random network obeys the Poisson distribution, as shown
in Fig. 1(b) [33], and it is expressed by[33]:

p (k) =
(
N
k

)
pk (1− p)N−k ≈ e−〈k〉

〈k〉k

k!
(1)

where 〈k〉 is the average degree and k is the degree of node.
Different from ER random network, the degree distribution

of topology of BA scale-free network is not uniform, and the
degree distribution function has power-law form, in which
few nodes have a high degree while most nodes have a
small degree. Once the nodes with a high degree and great
importance are attacked, the network paralyzes immediately.
The number of initial network nodes is set to be m0 = 8,
the number of new edges generated when each new node
is introduced is m = 5, and the growing network scale is
N = 100. Assuming that the nodes form a complete graph,
the BA scale-free network topology model is constructed,
as shown in Fig. 2(a), and the degree distribution of BA
scale-free network is as follows [34]:

p (k) = ck−λ (2)

FIGURE 3. ARPA network topology model.

where c is the parameter and λ is the power exponent of
the BA scale-free network. The degree distribution of the
logarithmic coordinates is shown in Fig. 2(b) [34].

B. TWO ACTUAL COMPLEX NETWORKS
Most of the networks in the real world are irregular in struc-
ture and degree distribution. In this paper, two actual net-
works in real life are studied, which are ARPA network and
CERNET network. ARPA network topology is a backbone
network topology, mainly used to study the characteristics
and properties of the network at present. It is composed
of 21 nodes and 23 links, with an average degree between
2 and 3, and its topology model [35] is shown in Fig. 3. CER-
NET network is the backbone of China’s education and scien-
tific research computer network, which consists of 36 nodes
and 49 links, with the maximum degree value of 9 and the
minimum degree value of 1. Its topology model [36] is shown
in Fig. 4.
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FIGURE 4. CERNET network topology model.

III. OPTIMAL PROBABILITY DISTRIBUTION MECHANISM
BASED ON NEIGHBOR NODE LOAD
When describing the cascading failure in the past, the node’s
failure state was usually directly removed, but in the real
world, the load of the attacked nodes is regarded to be dis-
tributed to the nodes in the neighbor set according to a certain
distribution principle. The network studied in this paper is
an unweighted network, where the cascading failure is to
utilize the change of complex network topology changes to
simulate the successive failure of nodes in the network under
external attack based on the dynamic characteristics of the
network. Assuming a actual network with N nodes, the load
of each node is less than its original capacity at the initial
stage, which means the whole network is in a stable state;
with the intensity and frequency of external attacks gradually
increasing, the attacked node j loses its load capacity and
information transmission ability gradually and becomes a
failed node, and then the load it bore is distributed to the
neighboring unaffected part or intact node i according to
certain distribution principle. If the total load of neighbor
nodes after increase exceeds their own capacity, they become
failed and cannot bear the extra load, and load will be redis-
tributed again, leading to load change of other nodes in the
network and thus large-scale cascading failure, as shown
in Fig. 5. Therefore, the cascading failure mechanism of
complex networks needs to be described from node capacity,
node load and the distribution principle of extra redundant
resources.

The node load refers to the amount of information carried
by a node at a certain time. Based on the correlation between
the load and the degree of the node, assuming that the initial
load of the attacked node j at the initial stage is l(0)j and the
degree of it is kj, the initial load is defined as [30]:

l(0)j = `k
τ
j (3)

where ` and τ are two parameters of control node load
intensity.

In general, in cascading failure models of many actual
networks, with the load objects determined, such as the actual
power network, traffic network and Internet, there is a certain
correlation between the load and the degree of each node, and
the larger the degree of the node, the greater the load it carries.
It is reasonable to utilize this dimensionless ‘‘structural load’’

FIGURE 5. Evolution of Multi-node failure after attack.

to study the failure propagation process of complex networks
under disturbance and the vulnerability of the whole network
after attack.

In the actual networks, the ability of each node to bear extra
load is usually limited by technical and economic factors,
and the relationship between load and capacity is studied
according to ‘‘capacity on-demand’’. For this reason, due to
the limited supply of hardware resources and the influence
of harsh environment, the node capacity is controlled by αj
under appropriate conditions. The capacity of the node Cj is
defined to be directly proportional to the initial load l(0)j [25],
i.e

Cj = (1+ αj)× l
(0)
j (4)

where j = 1, 2, · · · ,N , and αj > 0 is node failure capacity
control function, indicating the ability of a node to bear extra
load to further control the total amount of redundant resources
1C of the node. It will be introduced in detail in the next
chapter.

However, in the actual environment, the node capacity is
limited by its own resources, and it cannot obtain the supply
energy instantaneously from the external world when the
network is subjected to the sudden random attack, so the
upper limit of the node capacity has a fixed threshold. The
node capacity is redefined as:

Cj =

{(
1+ αj

)
× l(0)j Cj < Cmax

ψ Cj = Cmax
(5)

where ψ is the fixed threshold of node capacity.
The total amount of redundant resources 1C of all nodes

in a network is positively correlated with the initial load and
capacity control coefficients of each attacked node, which is
defined as:

1C =
∑

j∈�j
αj × l

(0)
j (6)
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When the network is subjected to the random attack
from the external world and the set of attacked nodes
�j = {j |j = 1, 2, · · · ,N } is destroyed, the total amount of
redundant resources is directly transferred to the neighbor
nodes of the failed nodes in the network through the adjacent
links that transmit information in a certain distribution way.
The initial load of the nodes can reflect the ability of the
node to process information under the normal operation of
the steady-state network, and the larger the initial load, the
stronger the node’s ability to processing information flowing
through it and the more the extra redundant resources to be
distributed. This distribution idea is defined as the optimal
probability distribution mechanism based on the neighbor
node load, that is, the probability distributed to the neighbor
intact nodes i is defined as:∏

i

=
`kτi∑
i∈�i `k

τ
i

(7)

where�i = {i |i = 1, 2, · · ·N − j } is the intact node set. The
proportion αji of the load of attacked node j distributed to the
neighbor intact node i is described as:

αji =
∏
i

αj (8)

The redundant resources that are distributed to the neighbor
intact node i from the node j are defined as:

1Ci = αji × l
(0)
j (9)

Its initial load is distributed to the neighbor intact node i
according to the proportion αji, which results in an update of
load of node i.
When the network is under the random attack, a node j

quickly fails when attacked, and its load is transferred to
partially or entirely intact node, whichwill result in the failure
of this node if the sum of the received load 1Ci and its own
load li exceeds its original capacity Ci, that is, li+1Ci > Ci.
The load is distributed to other intact nodes according to
the optimal probability distribution mechanism of neighbor
node load at the same time, and cascading failure repeats,
which leads to the failure of other nodes until the load of
the remaining nodes of the network does not exceed their
capacities.

IV. NETWORK PHASE TRANSITION CRITICAL INDEX AND
ROBUSTNESS BASED ON NODE FAILURE CAPACITY
CONTROL FUNCTION
In general, once the actual networks are attacked randomly by
the external world in real life, the nodes with self-protection
ability and the communication links between nodes are dam-
aged to different degrees. The stronger the attack strength,
the more serious the damage. Only the failure of nodes sub-
jected to random attack is considered in the process of cas-
cading failure of complex network in this paper. Therefore,
it is necessary to focus on the degree of gradual change of the
node load and the influence of attack times and attack strength

on the dynamic response of large-scale cascading failure. The
attack strength [37] is defined as:

µ = T × γ (10)

where T is the attack times and γ is the strength coefficient,
indicating the damage degree of each attack to the target.

The capacity of the attacked node j is limited by the
external attack times T , the coefficient of attack strength γ ,
the degree of the node itself and the control load strength
parameter τ . The node failure capacity control function is
defined as:

αj = αj
(
T , γ, kj

)
= β

Tγ kτj〈
kτj
〉 (

Cj < ψ
)

(11)

The distribution of redundant resources is controlled at the
same time, and β is the distribution parameter.

〈
kτj
〉
=

1
N

N∑
j=1

kτj =
∫ kmax

kmin

kτp (k) dk (12)

where p (k) is the degree distribution of network topology.
Based on the optimal probability distribution mechanism of
model in the random attack environment, to avoid a series of
successive cascading failures, li +1Ci < Ci should be met.
To better explore the failure process of any node in random

attack, a new indicator θc, i.e. the phase transition critical
factor is introduced, which is a threshold for measuring
whether the network topology jumps violently after the node
is attacked. Because the larger the phase transition critical
factor is, the more likely each node is to fail, resulting in
topology collapse, and cascading failure is more likely to
happen. When the intact nodes in the network have strong
ability to bear extra load, the successive failure of nodes
can be effectively controlled and the system can keep work-
ing normally, so that further damage to the global network
can be avoided. At this time, the network phase transition
trend does not reach the topology structure of the original
network maintained by the phase transition critical factor,
so the topology phase transition does not happen and it
maintains at the steady state; otherwise, the intact nodes fail
successively, the network phase transition breaks through the
whole network topology constant structure maintained by the
critical factor, each node gradually fails, and the network
vulnerability gradually increases.

Assuming that the intact node i is in a critical state when
receiving extra redundant resources, its capacity is directly
proportional to the network phase transition critical factor, i.e.

Cic = θc × li (13)

In the critical state of network topology phase transition,
based on (9) and (13), we have

li + αjilj = θcli (14)
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According to (7), (8) and (11), equation (14) is re-
expressed as:

βTγ k2τj〈
kτj
〉∑

i∈�i k
τ
i

= θc − 1 (15)

Based on the above-mentioned situations, the random-
ness of external attacks and the direct or indirect correlation
between nodes make the ability of node to bear load seriously
affected, and the network topology weakened. To better study
the overall damage degree and vulnerability under random
attack reflected by the successive failure of network nodes,
the effectiveness R (T ) of information transmission of the
whole network after T attacks are adopted to measure the
robustness of network dynamic phase transition scale under
the cascading failure model, which is defined as [37]:

R (T ) =
H (T )
H (0)

=

N ′(T )×
N ′(T )∑
i=1

ki(T )

N ×
N∑
i=1

ki

(16)

where H (T ) is the efficiency of information transmission
between nodes in the network after T attacks, N ′ (T ) is the
number of nodes that have not failed in the network after
T attacks, ki (T ) is the node degree after the N th attack,
and N is the total number of nodes in the network initially.
When subjected to a certain number of attacks, the smaller the
effectiveness R (T ) of the information transmission between
nodes with communication ability, the greater the impact of
cascading failure on the topology connectivity and informa-
tion transmission efficiency, and the weaker the robustness;
otherwise, the larger R (T ), the smaller the impact of cas-
cading failure on the topology connectivity and information
transmission efficiency, the stronger the robustness, and the
smaller the cascading failure scale.

When the phase transition critical factor θc of network
topology decreases gradually, although there is external ran-
dom attack, the node failure at this can cannot change the
network topology, so the system still operates well with good
function, and the robustness R (T ) is gradually enhanced,
which is enough to maintain the normal work of the network.
Besides, the network robustness functionR (T )will gradually
change with the corresponding parameters. When the phase
transition critical factor θc increases gradually, each node
collapses too frequently, and the network robustness function
R (T ) gradually weakens until it tends to 0.

V. ANALYTIC SOLUTION OF CLASSICAL NETWORK
PHASE TRANSITION CRITICAL FACTOR
To explore the gradual evolution of topology structures of
BA scale-free network and ER random network under ran-
dom attack, the destructive power and influence of network
resisting cascading failure under the phase transition critical

condition controlled by each parameter. Putting (10) in (15),
we have:

βµk2τj〈
kτj
〉∑

i∈�i k
τ
i

= θc − 1 (17)

According to the conditional probability, we have:∑
i∈�i

kτi =
∑kmax

kmin
kjp
(
k ′
∣∣kj ) k ′τ (18)

where p(k ′
∣∣kj ) is the conditional probability of degree k ′

of the node neighboring the attacked node j with the
degree of kj.

In degree-independent network, we have:

p
(
k ′
∣∣kj ) = k ′p

(
k ′
)/
〈k〉 (19)

According to (19), equation (18) is simplified into:∑
i∈�i

kτi =
kj
〈k〉

∑kmax

kmin
p
(
k ′
)
k ′τ+1

=
kj
〈
kτ+1

〉
〈k〉

(20)

Based on the degree distribution of BA scale-free network,
i.e. (2), and putting it in (12), we obtain:〈

kτj
〉
=

∫ kmax

kmin

kτ ck−λdk

=
c

τ − λ+ 1

[
kτ−λ+1max − kτ−λ+1min

]
(21)

Make the maximum degree M = kmax and the minimum
degree m = kmin, according to study [16], M = mN (λ−1)−1 ,
〈k〉 = 2m, c = (λ− 1)mλ−1 in the scale-free network, and
therefore, 〈

kτj
〉
=
(λ− 1)mτ

τ − λ+ 1

[
N

τ−λ+1
λ−1 − 1

]
(22)

Then, the phase transition critical factor in the BA scale-
free network can be expressed as:

θc = 1+
2βµk2τ−1j (τ − λ+ 1) (τ − λ+ 2)

m2τ (λ− 1)2
(
N

τ−λ+1
λ−1 − 1

) (
N

τ−λ+2
λ−1 − 1

) (23)

BA scale-free network itself is to support the whole net-
work with some nodes with large degrees as the key points.
Due to the randomness of external attacks, when the nodes
with the degree of kj attacked is the important node, its
load-bearing capacity cannot resist the external strength,
and θc gradually increases, resulting in the change of topology
structure and gradually worsening operation of the whole net-
work. Besides, the network topology change performance is
also influenced by the external attack strength, the scale-free
power index of the whole network, and the ability of the
failure node to bear load, etc.

The degree distribution of the ER randomnetwork is shown
as (1), and then we have:〈

kτj
〉
=

∑kmax

kmin
kτ e−〈k〉

〈k〉k

k!

= 〈k〉
τ−1∑
I=0

(
τ − 1
I

) 〈
k I
〉

(24)
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FIGURE 6. Influence of parameter τ on the phase transition critical factors of two classical networks. (a) BA scale-free network
(b) ER random network.

Similarly, 〈
kτ+1

〉
= 〈k〉

τ∑
I=0

(
τ

I

) 〈
k I
〉

(25)

The phase transition critical factor of ER random network
can be expressed as:

θc = 1+
βµk2τ−1j

〈k〉
τ−1∑
I=0

(
τ − 1
I

) 〈
k I
〉 τ∑
I=0

(
τ

I

) 〈
k I
〉 (26)

The iterative calculation result of (26) is relatively compli-
cated. Based on the homogeneity of ER random network, 〈kτ 〉
can be approximately seen as 〈k〉τ , and then analytic (19) of
network phase transition critical factor is directly simplified
into:

θc = 1+
βµk2τ−1j

〈k〉2τ
(27)

Similar to the BA scale-free network, the degrees of nodes
in ER random network are generated according to the Poisson
distribution law. Some nodes have large degrees, and the
external attack strength and other parameters have a great
influence on the critical phase transition of the network
topology.

VI. SIMULATION EXPERIMENT AND RESULTS ANALYSIS
In order to test the accuracy and reliability of the mitigation
strategy proposed in this paper, two groups of experiments
are carried out to compare and analyze. One is to take BA
scale-free network and ER random network as objects to
study cascading failure. By analyzing the changes of param-
eters such as control node load intensity, attack strength and
the degree of attacked node, the influence of external random
attack on the robustness R (T ) and the phase transition critical
factor θc of the network is studied, so as to prove the accuracy
of the mitigation strategy for cascading failure. The other is to
take ARPA network and CERNET network in the real world

as objects and to simulate the cascading failure process of
these two networks by using the strategy proposed in this
paper, so as to verify the practicability and reliability of the
mitigation strategy proposed.

A. SIMULATION EXPERIMENT AND ANALYSIS
OF TWO CLASSIC NETWORKS
In the cascading failure model of two classical networks
constructed in this paper, the input parameters of the model
mainly includes distribution parameter β, attack strength µ,
degree of attacked node kj, power index λ, control node
load intensity τ , network scale N , minimum degree of node
m and average degree of network 〈k〉. Therefore, based on
ER random network and BA scale-free network architecture,
through controlling these parameters, the behavior mecha-
nism and restriction factors of network under random attack
are analyzed, and how to adjust them to mitigate the harm of
repeated failure is explored in this simulation.

1) INFLUENCE OF CONTROL NODE LOAD INTENSITY ON
CASCADING FAILURE OF TWO CLASSICAL NETWORKS
The control node load intensity τ is an important indicator
to represent the initial load of actual networks, and it affects
the load-bearing capacity of each initial node in the network,
as well as the distribution strength of nodes in the network
space structure at the initial time.When subjected to the exter-
nal random attack, the cascading failure mode is generated.
For the BA scale-free network, the network scale is defined
to be N = 100, minimum degree to be m = 1, distribution
coefficient to be β = 1, attack strength to be µ = 1 and
power exponent to be λ = 2.1. For ER random network of
the same scale, the distribution coefficient is defined to be
β = 1, attack strength to be µ = 1 and the average degree
to be 〈k〉 = 12.06. According to two kinds of cascading
failure mechanism models, mainly through the analysis of
how the control node load intensity τ reflects its correlation
with cascading failure when the degree kj of attacked node
changes, the simulation results are shown in Fig. 6.
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FIGURE 7. Influence of parameter µ on the phase transition critical factors of two classical networks (τ = 0.2). (a) BA scale-free
network (b) ER random network.

We can observed from Fig. 6 that the control node load
intensity τ has a great influence on the phase transition criti-
cal factor θc of the network topology. In ER random network,
when the degree kj of the attacked nodes is small, the phase
transition critical factor θc decreases with the increase of
parameter τ , and its convergence to 1 gradually slows down
until divergence with the increase of kj. It is easy to under-
stand. The nodes with enhanced ability to bear load in the
network have greater ability to resist external disturbance,
so the network topology is less likely to fail. However, when
the nodes with larger degrees are attacked by the external
world, their neighbor nodes are greatly affected by it. Hence,
no matter how the node controls its load, the structure dis-
tribution of the network will inevitably change, leading to
large-scale failure.

In BA scale-free network, the phase transition critical fac-
tor θc also decreases with the increase of parameter τ , and
its convergence to 1 gradually slows down until divergence
with the increase of kj. However, when the degree kj of the
attacked nodes is large, the phase transition critical factor
θc first increases and then decreases with the increase of
parameter τ due to the heterogeneity of BA network. Hence,
to some extent, continuously strengthening the load-bearing
capacity does not necessarily improve the invulnerability of
the network. The smaller the degree of attacked node kj,
the larger the control load strength τ and the less likely the
topological phase transition of cascading failure to occur,
which mitigate the adverse situation to some extent.

We can learn by further observation and analysis of Fig. 6
that curves intersect at the same point with coordinate of
approximately (0.5,1.1). When 0.2 ≤ τ < 0.5, θc decreases
with the increase of kj; When τ ≥ 0.5, θc increases with the
increase of kj, and θc = 1.1 is the value of the critical state.

2) INFLUENCE OF ATTACK STRENGTH ON THE CASCADING
FAILURE OF TWO CLASSICAL NETWORKS
In order to explore the influence of attack strength µ on
the change of network topology under the external random
attack, we make the distribution coefficient β = 1, network

scale N = 100, minimum degree m = 1, average degree
〈k〉 = 12.06 and power index λ = 2.1. Different values of
attack strength µ are taken to study the change of damage
degree of network topology when the attacked nodes j with
different node degrees kj under different attack strength in
two classical networks. We can learn from the simulation
test in Fig. 6 that τ = 0.5 is an important critical factor
affecting the network phase change structure. Therefore, this
simulation test includes two mitigation strategies: strategy 1
with τ = 0.2 when 0.2 ≤ τ < 0.5, and strategy 2
with τ = 0.6 when τ ≥ 0.5. The simulation results of
strategy 1 with τ = 0.2 are shown in Fig. 7, and the
simulation results of strategy 2 with τ = 0.6 are shown
in Fig. 8.

In strategy 1, when the network structure and nodes are
not attacked by the external world, θc = 1 and the network
operates normally. Whether it is BA scale-free network or
ER random network, with the increase of attack strength,
the damage to the attacked nodes aggravates in the network.
At the same time, the number of failed nodes increases
continuously because of the load factor transferred through
links between nodes, and the phase transition critical fac-
tor θc of the network topology increases, further triggering the
cascading failure of the whole network structure. When the
nodes have same capacity τ to bear load, it is the nodes with
smaller degree, not the nodes with larger degree that intensify
the change of the phase transition critical state of network
topology, and when the degree increases gradually, the dif-
ference of the network topology change between the curves is
gradually reduced. That is to say, the nodeswith higher degree
are less sensitive to the change of network topology. For this
difference, BA scale-free network test results are consistent
with those of ER random network. By comparing the data of
the nodes of the same degree in two figures of Fig. 7, it can
be seen that the nodes of the same degree are more likely to
fail successively in BA network than in ER random network
under the same attack strength, which reflects the advantage
of heterogeneity of degree distribution of nodes in BA scale-
free network.
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FIGURE 8. Influence of parameter µ on the phase transition critical factors of two classical networks (τ = 0.6).

Similarly, the phase transition critical factors of two net-
work topologies in strategy 2 with τ = 0.6 are positively cor-
related with the external random attack strength µ. However,
under the premise that the attack strength is constant and the
node control load capacity is large, the greater the degree of
the attacked nodes, the greater the importance for the network
structure, and the faster the failure speed of the network,
which leads to failure of the communication between network
nodes. It is observed by the test and simulation results that
the change state of BA scale-free network and ER random
network is the same. When the load-carrying capacity of
the node reaches a certain value, the key to restrict the cas-
cading failure is the construction mechanism of the initial
network. The nodes of the same degree are more likely to
fail successively in the BA network than in the ER random
network.

3) INFLUENCE OF PHASE TRANSITION CRITICAL FACTOR
AND CONTROL NODE LOAD INTENSITY ON THE
ROBUSTNESS OF TWO CLASSICAL NETWORKS
Robustness measures the ability of a network structure to
resist damage after being disturbed and attacked by the exter-
nal world, and it is represented by R(T ) in this experiment.
The network scale is defined to be N = 100, distribution
coefficient to be β = 1, attack times to be T = T0 =
100, the proportion of attacked nodes to be 0.05, attack
strength to be µ = 1, minimum degree to be m = 1,
power index to be λ = 2.1 and the average degree to be
〈k〉 = 12.06. And then experiment 1 is conducted to study
the influence of the phase transition critical factor θc on the
robustness of two classical networks; experiment 2 is carried
out to study the influence of control node load intensity
τ on the robustness of two classical networks. Experiment
1 explores the correlation between the parameter θc and the
robustness under the strong and weak load-bearing capacity
of the attacked nodes, and the simulation results are shown
in Fig. 9.

We can observe from Fig. 9 that the phase transition crit-
ical factor θc of the network topology is negatively corre-
lated to the robustness indicator R(T0) no matter whether
the load-bearing capacity of the nodes is low (τ = 0.4) or
high (τ = 0.6). In the stage of 1 ≤ θc < 1.2, the decline
speed of ER network curve and BA network curve is fast
first and then slows down gradually, while in the stage of
1.2 ≤ θc < 1.7, the decline speed of two curves is slow first
and then fast, and there are fluctuations in the decline process.
Finally the robustness converges to R(T0) = 0, which means
the network topology nodes are completely failed. We can
observe that the degree of attack nodes in the two networks
is the same, and when two networks is in the same phase
transition critical state, compared with ER random network,
the BA scale-free network structure has poor robustness
and is easier to trigger the cascading failure of neighbor
nodes. Besides, in the same network topology framework,
the nodes with higher degree have poorer ability to maintain
the network communication and resist damage under external
attack, that is, the nodes with higher degree have poorer
robustness. The simulation results of experiment 2 are shown
in Fig. 10.

We can observe from Fig.10 that whether the phase tran-
sition critical factor is on the left side (θc = 1.05) of the
key point or on the right side (θc = 1.12) of the key
point, in the topology framework of two networks, the load-
bearing capacity τ of the node is positively correlated to the
robustness. In the stage of 0.2 ≤ τ < 0.64, the curves
of the two network structures first rise rapidly and then
slowly, while in the stage of τ ≥ 0.64, the rising of the
curves slows down first and then speeds up gradually, and
there are some fluctuations until the robustness converges to
R (T0) = 1. It can also be seen that the degree of attack
nodes in the two networks is the same, and when the two
nodes have the same load-bearing capacity, compared with
ER random network, the BA scale-free network has good
robustness and is not easier to trigger the cascading failure
of neighbor nodes. Besides, whether it is the BA scale-free
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FIGURE 9. Influence of parameter θc on the robustness of two networks at different levels of τ . (a) τ = 0.4 (b) τ = 0.6.

FIGURE 10. Influence of parameter τ on the robustness of two networks at different levels of θc . (a) θc = 1.05 (b) θc = 1.12.

network or the ER random network, when the nodes have
the same capacity in handling the load, the higher degree the
nodes have, the poorer the robustness of the corresponding
network is, and the more likely the cascading failure between
neighbor nodes is to happen. In the simulation experiments,
the dynamic correlation between the influence parameters
and the phase transition critical state as well as the robustness
of the network system has well confirmed the conclusion of
the theoretical analysis.

B. SIMULATION EXPERIMENT AND ANALYSIS
OF TWO ACTUAL NETWORKS
However, classic network topology structures with regular
characteristics, such as BA network and ER network, are
not common in real world. Whether the mitigation strategy
based on node failure capacity control function proposed in
experiment 1 is applicable to actual networks or not, as well
as its practicability and reliability need to be verified by
ARPA network and CERNET network. In experiment 2, the
node degree values of ARPA network topology are 2, 3 and
4 respectively, and the node degree values of CERN network
topology are 1, 2, 3, 4, 5, 6 and 9 respectively.

1) INFLUENCE OF CONTROL NODE LOAD INTENSITY ON
THE CASCADING FAILURE OF TWO ACTUAL NETWORKS
Similar to experiments of the classical network, as the main
index, the control node load intensity τ affects both the
load of each initial node in the network and the distribution
density of nodes in the network spatial structure. The network
scale the two actual networks is 21 and 36 respectively, their
distribution coefficient is β = 1 and their attack strength is
µ = 1. Through analyzing how control node load intensity
τ reflects its correlation with the cascading failure when the
degree of attacked nodes changes, the simulation results are
shown in Fig. 11.

We can observe from Fig.11 that whether it is ARPA net-
work or CERNET network, the control load strength param-
eter τ is not always negatively correlated to the network
phase transition critical factor θc. It can be known from the
ARPA network topology model that it has relatively simple
structure and scale, and the nodes with kj of 3 and 4 account
for 1

/
3, and these nodes are located in the important hub

of the spatial structure model. When attacked, the node
with large degree certainly will disturb its neighbor nodes
seriously, and no matter how the node strengthens its load
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FIGURE 11. Influence of parameter τ on the phase transition critical factors of two actual networks. (a) ARPA network (b) CERNET
network.

strength parameters, the structure distribution of the network
will inevitably change, which will lead to a large-scale col-
lapse. For nodes with smaller kj, reasonably increasing the
load strength parameters of nodes improves the ability of
the whole network to resist external disturbances. Similarly,
the structure model of CERNET network is relatively sim-
ple, and when a small number of nodes with kj of 4, 5, 6
and 9 are failed, with the increase of τ , τ is positively cor-
related with θc. And only when parameter τ of the nodes
with smaller kj increases, it is difficult to break through the
whole network topology constant structure maintained by the
critical factor, so that the cascading failure is not easy to
occur.

Through further observation and analysis of Fig.11, we can
observe that the phase transition critical factor curves of reg-
ular networks such as BA network and ER network converge
to different points. In the ARPA network, the curves with kj
of 2, 3 and 4 intersect in the area of τ ∈ [0.343,0.448]. When
0.2 ≤ τ < 0.343, the smaller the degree of attacked node,
the larger the θc value. When τ ≥ 0.448, the smaller the
degree of attacked node, the smaller the θc value. Similarly,
the curves with different kj values intersect in the area of
τ ∈ [0.315, 0.435]. When 0.2 ≤ τ < 0.315, the smaller the
degree of attacked node, the larger the θc value. When τ ≥
0.435, the smaller the degree of the attacked node, the smaller
the θc value. Therefore, τ ∈ [0.343, 0.448] of ARPA network
and the corresponding θc ∈ [1.465,1.479] as well as τ ∈
[0.315,0.435] of CERNET network and the corresponding θc
∈ [1.387,1.421] are the critical areas of dynamic changes of
four cascading failures. In order to prevent the interference
to the following experiment caused by parameters in the
critical area, fixed values τ = 0.2, 0.8, θc = 1.42, 1.48 of
ARPA network and θc = 1.38, 1.45 of CERNET network
are set.

Based on the above analysis, parameter τ has the same
influence on the two actual networks as on the BA scale-free
network and ER random network studied in Fig. 6, that is, for
the attacked node with smaller degree kj, appropriate increase

of control load strength τ can effectively mitigate a series of
damages caused by cascading failure.

2) INFLUENCE OF ATTACK STRENGTH ON THE CASCADING
FAILURE OF TWO ACTUAL NETWORKS
In order to explore the influence of external attack strength
µ on the change of network topology, the distribution coef-
ficient is set to be β = 1, and different µ values are
taken to analyze and study the change of extent of dam-
age to network topology when the attacked node j with
the degree of kj in two actual networks is under different
attack strength. It can be seen from the simulation results
in Fig. 11 that two mitigation strategies are established
through fixed values. The simulation results of strategy
1 with τ = 0.2 and strategy 2 with τ = 0.8 are shown
in Fig. 12 and Fig. 13 respectively.

In strategies 1 and 2, whether it is ARPA network or
CERNET network, with the increase of attack strength under
random attack, the damage of the attacked nodes in the
network increases sharply, and the phase transition critical
factor θc of the network topology also increases. In strategy
1, for the attacked node with small degree, when the control
load strength τ is small, the attacked node with large degree
is more likely to increase the change of phase transition
critical state and cause a series of network damage. However,
in strategy 2 with τ = 0.8, the attacked node with large
degree is more likely to show the network vulnerability with
the increase of attack strength µ. The reason for this is that
when τ is small, it is the node itself resists cascading failure,
whoes characteristics such as the load of the node itself have
a certain ability to delay damage against random attacks, and
the larger the degree of attacked node, the better the effect of
resisting network cascading failure, while when τ is large,
the attacked node with small degree has greater ability to
mitigate failure than the attacked node with large degree.
It is the same with the simulation results and analysis of
the influence of parameter µ on the phase transition critical
factors of BA network and ER network in Fig. 7 and Fig. 8.
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FIGURE 12. Influence of parameter µ on the phase transition critical factors of two actual networks (τ = 0.2). (a) ARPA network
(b) CERNET network.

FIGURE 13. Influence of parameter µ on the phase transition critical factors of two actual networks (τ = 0.8). (a) ARPA network
(b) CERNET network.

FIGURE 14. Influence of parameter θc on the robustness of ARPA network at different levels of τ . (a) τ = 0.2 (b) τ = 0.8.

3) INFLUENCE OF PHASE TRANSITION CRITICAL FACTOR
AND CONTROL NODE LOAD INTENSITY ON THE
ROBUSTNESS OF TWO ACTUAL NETWORKS
To further determine the reliability and authenticity of the
influence of phase transition critical factor and load strength

on the network robustness, the distribution coefficient is set
to be β = 1 and attack strength to be µ = 1 in this exper-
iment, and R(T ) represents the robustness of the network
after T attacks. Because the total number of nodes and the
link size of ARPA network and CERNET network are small,
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FIGURE 15. Influence of parameter θc on the robustness of CERNET network at different levels of τ . (a) τ = 0.2 (b) τ = 0.8.

FIGURE 16. Influence of parameter τ on the robustness of ARPA network at different levels of θc . (a) θc = 1.42 (b) θc = 1.48.

FIGURE 17. Influence of parameter τ on the robustness of CERNET network at different levels of θc . (a) θc = 1.38 (b) θc = 1.45.

a certain proportion of random attack may cause instanta-
neous collapse of the network, which is not conducive to
studying the robustness law under various parameters in
depth. Hence, attack times is set to be T = T0 = 1. In this
section, experiments 1 and 2 study the influence of phase

transition critical factor θc on the robustness of two actual
networks at different levels of τ , as shown in Fig. 14 and
15. Experiments 3 and 4 study the influence of control node
load intensity τ on the robustness of two actual networks at
different levels of θc, as shown in Fig. 16 and 17.
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We can observe fromFig. 14 and 15 that whether parameter
τ of ARPA network and CERNET network is located at the
left side or right side of the critical area, the critical state
factor θc is always negatively correlated to the robustness at
this time. Under the condition that the critical state of phase
transition remains unchanged, when the control load strength
τ is small (τ = 0.2), the R (T0) of two networks decrease
with the increase of kj, and when the control load strength
τ is large (τ = 0.8), the R (T0) of two networks increases
with the increase of kj. It is consistent with the results of the
experiment in Fig. 9.

We can observe from Fig. 16 and 17 that whether it is
ARPA network or CERNET network, when the critical state
factor θc is at a high level or a low level, τ is always
positively correlated to R (T0). When θc is at a low level
(θc = 1.38, 1.42), with the increase of τ value, the attacked
node with small degree has stronger ability to resist damage
than the node with large degree. When θc is at a high level
(θc = 1.45, 1.48), the overall robustness reflected when
the node with large degree is attacked is good. Therefore,
the appropriate comprehensive control of load strength τ
and θc values promotes the network to maintain its func-
tional attributes as much as possible under the random
attack, so as to mitigate the cascading failure of the network.
The correctness of the mitigation strategy proposed in this
paper is verified by comparing the results of experiment
in Fig. 10.

VII. CONCLUSION
The cascading failure models of classical and actual networks
under the external random attack are constructed based on
the optimal probability distribution mechanism of neighbor
node load and the node failure capacity control function, and
through controlling the changes of important parameters in
the model, the corresponding indexes are used to analyze
the cascading failure mechanism of each node of the net-
work and their influence on some characteristics of cascad-
ing failure model. The mains conclusions are summarized
as follows.

1) Theoretical analysis and simulation results show that the
analytic evolution model of node failure constructed based
on two classical networks and two actual networks as well as
the cascading failure model based on the optimal probability
allocation mechanism are reasonable, which has provided a
theoretical basis for the study of the cascading failure mech-
anism and the making of mitigation strategies of complex
networks in real world.

2) The adjustable parameter τ influences the phase transi-
tion critical factor θc of the network with different topology
structures and different degrees of attacked nodes, thus inten-
sifying the network cascading failure. No matter what topol-
ogy structure a network has, when τ is small, θc decreases
with the increase of parameter kj; when τ is large, θc increases
with the increase of parameter kj. Therefore, when the actual
networks are attacked randomly by the external world, the

network failure can be mitigated by comprehensively adjust-
ing the network structure, control node load intensity τ and
the degree of attacked node, so as to minimize the damage.

3) Under a certain control node load intensity τ , the attack
strength µ is positively correlated with the phase transition
critical factor θc of the network. When µ is small, θc of
two classical networks and two actual networks decreases
with the increase of the degree of attacked node, and the
network structure is relatively stable; when µ is large, θc
of the classical networks and the actual networks increase
with the increase of the degree of attacked node, and the
network structure is more likely to be damaged. If the nodes
have low ability to control load in the actual networks,
the node with larger degree can used as the communication
network node, and vice versa, so as to mitigate the dam-
age caused by cascading failure of the nodes in the whole
network.

4) The robustness of communication network with cascad-
ing failure is limited by control node load intensity τ and
phase transition critical factor θc in a certain range. When τ
is constant, the robustness function R (T ) is negatively cor-
related with θc; when θc is constant, the robustness function
R (T ) is positively correlated with τ . And under the condition
of same θc, when τ is large, the network with large kj are more
robust than the network with small kj; similarly, under the
condition of same τ , when θc is large, the robustness of the
network with large kj is stronger than that of the network with
small kj. Therefore, to improve the robustness of the actual
communication network and mitigate the cascading failure,
within the possible scope of adjustment, the two mitigation
strategies are proposed. Strategy 1: take the attacked node
with smaller degree as the node in the actual network, and
appropriately reduce the parameter τ to make θc as small as
possible; or for the network with attacked node with large
degree, appropriately increase the parameter τ to make θc as
small as possible. Strategy 2: for the network with attacked
node with large degree, increase the parameter τ moderately
to make θc as large as possible; for the network with attacked
node with small degree, increase the parameter τ moderately
to make θc as small as possible.

Of course, the model constructed in this paper is an
improvement and in-depth study of the cascading failure
models of classical networks and actual networks under the
random attack mode of complex networks by the external
world. In reality, complex network facilities are often sub-
jected to deliberate attack or random-deliberate attack, while
most of the topology structures of actual networks are more
complex and larger in scale. Furthermore, to simplify the
discussion, this paper takes the approximation in the mini-
mum degree, distribution parameter, attack strength as well
as the homogeneity of 〈kτ 〉 in the cascading failure model of
ER random network, which is an idealized case. Therefore,
the mitigation strategy for cascading failure of real-world
complex networks such as the dependent network will be
further improved next.
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