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ABSTRACT In clinical practice, doctors are using bedside tests to assist in the diagnosis of paraparesis. The
disadvantage is that it depends on the doctor’s clinical experience and the supervisor’s judgment. Therefore,
there is an urgent need for an objective and efficient diagnostic equipment. With the rapid development of
wireless technology, ubiquitous RF signals become a promising sensing technology. In this study, we propose
a non-contact wireless sensing method based on RF signals to detect paraparesis. Our system can reduce the
burden on doctors and improve work efficiency. Outlier filters and wavelet hard threshold decomposition
are used to filter the wireless signal. A 1D-CNN model is designed to automatically extract valid features
and classifications. The results analyze in two bedside tests, our system perform efficiently and accurately
patient screening with suspected paraparesis. This provide more effective guidance and assistance for
further treatment. The proposed method has an average accuracy of 99.4% and 98.5% in the Barre test

and Mingazzini test respectively.

INDEX TERMS Barre, CNN, lower limb paraparesis, Mingazzini, wireless sensing.

I. INTRODUCTION

Paraparesis may be caused by a variety of neuromuscular
diseases. For example, cerebral palsy, stroke, Charcot-Marie-
Tooth disease and so on. Paraparesis can lead to the weaken-
ing or disappearance of the patient’s voluntary movements,
causing serious psychological harm to the patient, bring a
great burden to families and society, and affecting the quality
of life of the patient. Generally speaking, doctors can do para-
paresis tests to diagnose mild paraparesis when they are not
sure about the general method used. However, such clinical
examinations often have disadvantages such as subjectivity
and low sensitivity. An accurate diagnosis is a prerequisite
for providing a reasonable treatment or rehabilitation plan for
the patient [1]. With the rapid development of wireless tech-
nology, a non-contact diagnostic paraparesis scheme based
on wireless channel information (WCI) is proposed in this
paper. This method is efficient and fast, and can provide refer-
ence for the diagnosis of lower limb paraparesis. In addition,
it is also encouraging because patients do not be required
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professional skills to install and can use the system at home
and in the community.

In the clinical practice, the lower limb drop test is used t in
diagnosis of paraparesis. The Barre test and the Mingazzini
test are also often used. In 2015, Hirose [2] reviewed a
large number of literatures and expounded the importance
of Barre test and Mingazzini test in clinical practice of
paraparesis. It is concluded that the diagnosis of parapare-
sis is based on the observation of premature leg droop in
the leg test. Teitelbaum er al. [3] performed a Barre test,
a Mingazzini test, a finger tap, a forearm tumbling, a seg-
mental force, and an anterior cyclone drift in 180 patients
with no lesions in the area of exercise. They found that
the Barre test, finger tapping and Mingazzini test were the
most reliable and time-effective tests for detecting subtle
motor injuries. This exercise detection has high sensitivity
and detection efficiency and can be used as a powerful tool
for emergency doctors when assessing patients with possi-
ble minor sports injuries. Landon-Cardinal et al. [4] found
that combining some functional tests and endurance tests
(Barre/Mingazzini) is a reliable, time-saving method for
assessing patients with active myositis in everyday clinical
practice. Early prognosis and functional recovery of lower
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limb functional disorders has been an important issue in clin-
ical practice. Smania et al. [5] collected data on active ankle
flexion and Mingazzini movements in 53 patients with stroke.
These simple bedside tests are based on previous studies
of lower extremity paraparesis, and the Barre test and the
Mingazzini test are considered to be the basis for assessing
paraparesis of the lower extremities.

As described in [2], in order to find a slight limb parapare-
sis, the so-called Barre test and Mingazzini test have been
routinely applied in the clinic. The Barre test or Mingazzini
test is positive if it shows symptoms of paralysis or para-
paresis, and if they are absent, it is negative. Feil et al. [6]
found that these two bedside test combinations are the most
sensitive and time-saving methods for detecting minor lesions
in the lower extremities. This simple, non-invasive test is a
valuable diagnostic tool for clinical diagnosis. Bed side tests
are described as follows:

Mingazzini test: The Mingazzini experiment performed in
this paper is referred to [3]. The experiment required the
participants to lie on their backs. The hips are bent at an angle
of 75 to 80° and the knees are held at an angle of 100° to
level the calf and bed. The ankle is dorsiflexed 90°. A healthy
person can maintain this posture for a long time. However,
after a few seconds, the person whose limbs could not be
supported and drooped showed an early paraparesis.

Barre test: Participants try to keep their muscles relaxed.
The subjects are instructed to lie prone with their legs flexed
atright angles. After a few seconds, the affected leg will grad-
ually drop. The test is positive and indicate early paraparesis.

In this paper, Mingazzini test and Barre test are used to
aid in the detection of paraparesis. We design a set of OFDM
transceivers. Transmitters and receivers are placed on both
sides of the participants. The center frequency of the trans-
mitted signal is 5.32 GHz. During the above bedside test,
we use wireless sensing technology to continuously monitor
the movement of participants. The movement of lower limbs
affects the transmission of wireless signals. We obtain the
frequency response of the wireless channel caused by lower
limb motion through channel estimation in the receiver. The
wireless channel information (WCI) records all motion infor-
mation during the participant’s bedside test. It is expressed
as the phase information and amplitude information of each
subcarrier. Then, wavelet filtering technology and artificial
intelligence algorithm are used for data preprocessing and
recognition.

Wavelet decomposition has obvious advantages such
as low entropy, multi-resolution and de-correlation in
de-noising. Its results have been widely used in image pro-
cessing, speech synthesis, and seismic exploration. In practi-
cal engineering applications, most signals are non-stationary
and contain many spikes and mutations. Signal de-noising
by wavelet can well preserve the abrupt part of the useful
signal. In this paper, the appropriate wavelet and wavelet
decomposition level are selected to filter the wireless signal.

Traditional machine learning and neural network can solve
many problems successfully in some fields. But the main
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problem of traditional machine learning is insufficient gener-
alization ability. That is, the model has been trained to recog-
nize samples that have not been seen. This disadvantage is not
obvious when dealing with low-dimensional problems. Once
dealing with high-dimensional data, the difficulty of solving
generalization problem increases exponentially. Deep learn-
ing can solve this problem. Convolutional neural networks
play an important role in deep learning. Enlightened by the
biological visual nervous system, CNN has designed sparsely
connected neural networks in the field of image processing,
and medical image processing in the field of speech recog-
nition has achieved great success. CNN combines several
convolution layers and sampling layers to process the input
signal, and then establishes the mapping between the full
connection layer and the target. The input signal is extracted
by convolution filter, and the input signal is subsampled in
pooling layer, so that useful information can be retained
while reducing the amount of data. Our system continuously
monitors the channel changes affected by the paraparesis
detection performed by volunteers. In fact, the data we col-
lected are time series signals of one dimension. Therefore,
we use 1D-CNN to ‘““feature learning” for Wireless Channel
Information (WCI).

The main contribution of this article:

1) To the best of our knowledge, this is the first work to
detect paraparesis using non-contact wireless sensing
technology. We used the wireless channel information
from the physical layer to monitor volunteers’ lower
limb activities during the implementation of the clinical
test.

2) We propose a 1-D CNN deep neural network to diag-
nose whether participants are positive in the sputum
test. And compared to other models, the model is
proved to have higher performance.

3) The experimental results show that the average accu-
racy of our system in the Barre test and Mingazzini
test is 99.4% and 98.5% respectively. Our system can
be used as a screening tool for people suspected of
having paraparesis of the lower extremities. There-
fore, non-contact detection technology will play an
important role in the early detection and treatment of
diseases.

The rest of this article is organized as follows. Section 2,
introduces previous work on wireless sensing. Section 3,
proposed system is presented, Section 4, experimental setup
is discussed. Section 5 methods applied for diagnosis of
Paraparesis. Section 6, Results and evaluate the performance
of the proposed system. Section 7. Finally, the conclusions
are summarized.

Il. PREVIOUS WORK ON WIRELESS SENSING

In recent years, with the rapid development of wireless
technology. The ubiquitous RF signal has become a novel
sensing technology and has attracted the attention of many
researchers. During wireless signal propagation, moving
objects can cause wireless signal reflection, multipath effects,
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or frequency selective fading. Combined with signal process-
ing technology and machine learning, researchers can use RF
signals to implement gesture recognition [7], [8], intrusion
detection [8], [9], and respiratory detection [11], [12]. Most
current wireless sensing solutions are based on channel detec-
tion technology or frequency modulated continuous wave
radar. Adib et al. [13] proposed a Vital-radio system based
on low-power FM continuous wave. The system can remotely
monitor the vital signs of up to 3 people, including breath-
ing and heartbeat, in a non-contact manner. Khan ez al. [14]
built a USRP-based OFDM transmitter and receiver that can
acquire wireless channel information. The platform can be
used for human activity monitoring, security, medical mon-
itoring and so on. Wang et al. [15] designed a universal
deep learning framework for IoT RF sensing. They used the
proposed framework for indoor positioning, activity identifi-
cation, health care, etc., and received exciting results.

1IIl. PROPOSED SYSTEM

In this research, non-contact Paraparesis clinical diagnosis
system based on three main stages. In first stage data is
collected through wireless sensing technology. When we
obtained enough WCI data through a lot of bedside testing.
In the next stage data preprocessing through Hampel and
wavelet decomposition are used to process signal waveform,
and data calibration is used to rapidly increase sample data.
In final stage, the processed data are input into CNN classifier
to detect paralysis as shown in Fig. 1.

Ve N\ :
/" Data preprocessing N\
WCI collection =P
-~/
Outlier filtering
( classification )

Wavelet
decomposition

Data calibration

Paraparesis
detection

-

FIGURE 1. Workflow of the proposed system.

IV. EXPERIMENTS

The Barre test and Mingazzini test for the detection of
lower extremity paraparesis were performed in our laboratory
(7m x 4m) as shown in Fig. 2. Our system is a single
input multiple output (SIMO) system. The wireless signal
transmitter consists of an industrial control system and an
omnidirectional antenna. The receiver consists of an indus-
trial control system and three omnidirectional antennas. The
distance between transmitter and receiver is 2m. The trans-
mitter transmits at a rate of 100 packets per second. The trans-
mitter transmits the wireless signal with the center frequency
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FIGURE 2. Experimental setup.

of 5.32GHz at the transmitting power of 15dBm. We monitor
each bedside test for 20s. We place the antenna close to the
lower limb in order to effectively capture the wireless signal
disturbance caused by the leg movement. In this study, our
focus is on the feasibility of detecting paraparesis; therefore,
simulated patients were considered. Before the experiment,
we fully informed the participants of all relevant matters and
contents of the clinical experiment. All participants received
rigorous training by watching videos of bedside tests and
reading related literature [2]-[6]. 10 people (9 males and
1 female) participate in the experiment. During the experi-
ment, 5 volunteers simulate patient behavior and perform the
experiment in strict accordance with the patient’s behavior as
described in [3]. Each volunteer performed 20 times Barre
and Mingazzini test, respectively. The other 5 volunteers
perform the bedside test normally.

V. METHODLOGY

Following methods and approaches are applied to Barre test
and Mingazzini test for the detection of lower extremity
paraparesis.

A. DATA COLLECTION

In wireless communication systems, the received signals fluc-
tuate over time due to the shadow effect caused by obstacle
blocking between the receiver and the transmitter. The wire-
less channel information is used to evaluate the quality of
the transmitted signal and the reliability of the transmission.
Specifically, the wireless channel information includes infor-
mation such as multipath fading, scattering, reflection, and
other information during propagation of the signal between
the transmitter and the receiver.

Y=HxX+N (1)

where H is used to characterize the channel matrix of the
channel frequency response (CFR) of the communication
link. The channel matrix H contains amplitude information
and phase information of a carrier acquired by the receiver
through the measurement channel. The signal is modulated
using orthogonal frequency division in the IEEE 802.11n/a/c
standard. Specifically, high-speed serial data (20 MHz)
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converts 56 parallel low-speed data streams, each data corre-
sponding to one sub-carrier, and each sub-carrier is orthog-
onal to each other. A pair of transceiver antenna pairs in
our wireless sensing system can acquire 30 subcarriers.
Therefore, the channel frequency response of each pair of
transceiver antennas is:

H = [hy,hy,h3... 5] (2

where £, is the CFR of the ny, subcarrier, and each £, is a
complex number containing the amplitude and phase infor-
mation of the sub-carrier. The amplitude value is obtained by
calculating the absolute value of #,, and the inverse tangent
of h, is calculated to obtain the phase. The Fig.3 shows
the amplitude and phase of the subcarriers measured in the
absence of any moving objects:
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Index of package 0 o
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FIGURE 3. (a) Row amplitude information of WCI. (b) The row phase
information of WCI.

From Fig. 3(b), we find a lot of noise in phase data.
The reason is that carrier frequency offset (CFO), sampling
frequency offset (SFO), packet detection delay (PDD) [8]
and so on are caused by the asynchronization of receiver and
transmitter and the imperfection of hardware. These reasons
lead to phase information distortion cannot be used directly.
In this paper, we only use the robust amplitude information
of WCI which is used to diagnose lower limb paraparesis.
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B. DATA PREPROCESSING

During continuous channel monitoring, there will be out-
liers which are not caused by participants’ actions. In the
non-linear time series, Hampel filter uses appropriate local
values to replace the detected abnormal values. In this paper,
the variance of three sigma statistical rules with strong robust-
ness to outliers is used. As shown in the Fig. 4. the abnormal
point marked by the white square is not caused by the volun-
teer’s knee flexion.
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FIGURE 4. Outlier removal on amplitude.

After the outlier detection, the amplitude data still has
noise. These noises tend is of high frequency signals,
however, we focus on the low frequency information of
non-stationary time series. Compared with the traditional
filtering method, the wavelet filtering method has unique
advantages such as time-frequency localization and multi-
resolution. In addition, wavelet decomposition preserves the
signal mutation while de-noising. In this paper, the wavelet
decomposition is selected to de-noise the amplitude data after
the outlier processing. We use sym6 wavelets with better sym-
metry and regularity. In general, after wavelet decomposition,
the coefficient of the signal is greater than the coefficient of
noise. The appropriate number A is used as the threshold.
A decomposition coefficient greater than the critical thresh-
old A is caused by the signal and is retained [16]. Then
reconstruct with wavelet coefficients. The threshold function
is expressed as follows:

w o w| >\
Whew = - 3
new {() |vv| < )' ( )

where wy,,, and w are wavelet transform coefficients before
and after wavelet denoising, respectlvelfr The threshold A is
set to o2log(M), where o = |me{ga6(7|:gk ) is an estimate of
the noise level and M is the length of the signal. When the
absolute value of wavelet coefficient is less than the given
threshold value, it is set to O; when it is greater than the
threshold value, it remains unchanged. Finally, reconstruction
of the signal can achieve the purpose of signal denoising.
We use wavelet hard threshold filtering to filter the signal pro-
cessing by the outliers. The results of the three-level wavelet
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decomposition filtering of 5 Mingazzini data are shown in the
Fig.5. We find that the filtered signal become clean.
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FIGURE 5. Waveform after wavelet decomposition.

As mentioned above in data collection, we collect 30 sub-
carriers per pair of transmit and receive antennas. However,
we found that the received 30 subcarrier amplitude data are
not consistent. The main reason is that there are different DC
components. In this paper, the amplitude data is calibrated
by subtracting its DC component from each subcarrier. The
result is shown in the Fig.6 (b) we find that the amplitude data
of all carriers after calibration is consistent.

Amplitude

0 500 1000 1500 2000
Packets index

(a)

Amplitude

] 500 1000 1500
Packets index

(b)

2000

FIGURE 6. (a) Un-calibrated amplitude information. (b) Calibrated
amplitude information.

It is encouraging that all the waveforms of the
pre-processed carriers are similar. Therefore, we treat each
subcarrier as a sample in our SIMO (1 x 3) system. In one
experiment we could get 3*30 = 90 samples, where 3 rep-
resents the number of receive antennas and 30 represents the
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number of subcarriers. In addition, five simulated paraparesis
volunteers and five healthy volunteers were tested in each
experiment, and each volunteer was tested 20 times in each
paraparesis test. Therefore, we can get 5*90*20 = 9000 sam-
ples in each test. We can quickly increase our data through
this strategy. All sample data are shown in the Table 1. In each
clinical test sample, we chose 70% of the data for training and
the remaining 30% for testing.

TABLE 1. Distribution of data for each bedside test.

Number of abnormal Number of normal

samples samples
Barre test 9000 9000
Mingazzini test 9000 9000
Total 18000 18000

C. CLASSIFICATION

The convolutional layer is the most important part of CNN
and completes most of the calculations. It is also the key
to making convolutional neural networks successful in the
fields of image recognition and speech recognition. The conv
layer is generated by convoluting the previous layer with W
kernels of receptive filed R and depth ¢ which is equal to the
number of channels in the previous layer. The convolution
layer Y={yj,: 1 <1 < W,1 < m < W} can be obtained
by convolving X={x;; : 1 <i <¢,1 <j <z}, wherec
is the number of channels in the layer and z is the number of

neurons in each channel, with W kernelsw!, I = 1,2,..., W
each of receptive field R and depth c,
c R
_ !
Yim = Zd:1 Ze=1 Wd.eXg exm )

where W is the number of channels in this layer and m is
the number of neurons in each channel [17]. The convolution
result introduces nonlinearity through the activation function.
The activation function used in this paper is Relu.

The pooling layer is often inserted behind the convolution
layer. The purpose of this layer is to reduce the number
of features, thus reducing the parameters required by the
network, the amount of calculation of network training, and
also avoiding over-fitting. In practical application, the most
commonly used method is maximum pooling.

The fully connected layer integrates highly abstracted
features after multiple convolutions. When solving multi-
classification problems, the softmax layer is enabled to output
the probability of each class.

The proposed CNN model for detecting lower limb para-
paresis is shown in the Fig. 7. The first layer is the input
layer, whose input signal is the wireless sensor signal after
calibration. The proposed network architecture consists of
two convolution layers and two pooling layers. In the first
convolution layer, we use 100 filters with 10 lengths and out-
put 100 feature maps after convolution. In order to introduce
nonlinearity, sparsity, and greatly increase the training speed,
all the feature maps are corrected by Relu. The pooled layer
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connected layer
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FIGURE 7. The architecture of the proposed model.

(3 x 1) after the activation layer subsamples the corrected fea-
ture map, reducing the amount of data while retaining useful
information. To reduce the risk of overfitting, we randomly
discard some of the neurons with a 50% probability after
the sampling layer and the fully connected layer. The second
convolutional layer and the pooled layer are identical in struc-
ture to the first convolutional layer and repeat the process of
the first convolutional layer and the pooled layer. In the fifth
layer of the model is a fully connected layer, which integrates
highly abstracted features after multiple detections and maps
them into a 1-D vector. The output layer is the number of
classes to be identified. In this study, we aimed to screen
patients suspected of paralyzed lower limbs. So the output
layer has two neurons. The probability of each class output by
the softmax function. Thereby detecting whether the patient
has early paraparesis. In this study, the cross-entropy loss
function and the Adam algorithm are used to update the
weight of the neural network [18]. The Adam optimization
algorithm is an extension of the stochastic gradient algorithm.
Adam designs an adaptive learning rate for different param-
eters by calculating the first moment and second order esti-
mation of the gradient. Compared to the stochastic gradient
algorithm, Adam requires less resources and makes the model
converge faster. The number of iterations in training is set
to 50 small batches of data 25. Among them, the number of
training samples and test samples are 70% and 30% of the
total number of samples.

VI. RESULTS AND DISCUSSION

A. BARRE TEST RESULTS

All volunteers performed the task as described in Section I.
The Fig. 8. (a) shows the amplitude data of the channel fre-
quency response of the normal participants that were continu-
ously acquired during the experiment. At the beginning of the
experiment, the volunteers prone and flexed their knees to a
vertical position and maintained this posture. It can be clearly
seen that the amplitude of the carrier wave in the red frame
region exhibits short-term up and down fluctuations which
shows that our system detects knee flexion. And because the
normal participants can maintain this pose for a long time,
the amplitude data in the green frame area remains stable.
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FIGURE 8. (a) WCI amplitude of the healthy participant Barre test.
(b) WCI amplitude of the patient Barre test.

The Fig.8 (b) shows the carrier amplitude data collected from
participants with simulated paraparesis. As described above,
when the knee flexion is performed, the moving lower limb
is regarded as an obstacle and hinders the propagation of
the wireless signal. When the received signal collected by
the receiving end receives interference, the amplitude will
fluctuate up and down. Participants hold the pose for several
seconds, during which there is no moving object between
the receiver and the transmitter. Therefore, this state can be
considered as a static environment. There is no interference in
the process of wireless signal transmission, so the amplitude
in the green frame region remains stable. However, patients
with lower limb paraparesis could not maintain this posture
for a long time and the affected limbs will gradually sag.
As shown by the amplitude of the yellow box area, the drop of
the affected limb interferes with the propagation of wireless
signals, resulting in amplitude fluctuations.

B. MINGAZZINI TEST RESULTS

All volunteers performed the experiment as described in
Section I. The wireless signal information of the healthy
participant performing the Mingazzini test collected by the
receiver is shown in the Fig. 9(a). At the beginning of the
implementation of the Minkasini test, the Volunteers lie on
their backs and bend their knees at right angles. As shown in
the red area, the knee bend affects the propagation of wireless
signals resulting in short fluctuations in amplitude. Normal
volunteers can maintain this knee posture for a longer period
of time. Therefore, the subsequent waveform will remain sta-
tionary as shown in the green box area. At the beginning of the
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of the collected wireless signals from first to fourth levels is
carried out in this paper. Our goal is to determine the appro-
priate decomposition level that will help diagnose lower limb
paraparesis. The Fig.10. Shows the effect of different wavelet
decomposition levels on the performance of the proposed
CNN model:
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FIGURE 9. (a) WCI amplitude of the health participant Mingazzini test.
(b) WCI amplitude of the patient Mingazzini test.

1500 2000

detection of lower extremity palsy volunteers. The wireless
signal fluctuates due to the influence of the knee flexion.
The volunteer then keeps the position for a few seconds.
The static state does not interfere with wireless signal, so the
carrier amplitude in the green frame region does not fluctuate
significantly. However, after a period of time, the lower limb
paraparesis patients could not maintain this posture for a long
time, making the lower leg of the paralytic side gradually
fall. This behavior results in a change in the wireless channel
leading to a short fluctuation in the amplitude as shown in the
yellow box.

C. INFLUENCE OF WAVELET DECOMPOSITION LEVEL

This paper uses wavelet decomposition to de-noise wire-
less signals. Wavelet decomposition has non-smoothness that
causes the wavelet to remove the noise of the signal, preserv-
ing the abrupt portion of the wanted signal, regardless of their
frequency range. Wavelet decomposition level is an important
factor affecting the result of noise removal. Therefore, it is
important to determine decomposition level. If the number
of decomposition layers is too small, the decomposed signal
may still contain noise. The results of the experiments are
not satisfactory. Similarly, if the number of decomposition
layers is too large, the filtering effect is improved and the
amount of calculation is increased. The most important point
is that it filters out signals with a large number of features.
Excessive number of decomposition layers can also lead to a
decrease in recognition accuracy. The wavelet decomposition
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FIGURE 10. (a) Comparison of different wavelet decomposition levels in
Barre datasets. (b) Comparison of different wavelet decomposition levels
in Mingazzini dataset.

The Fig.9 shows the variation of the Barre test and
Mingazzini test detection accuracy with the number of
wavelet decomposition layers. From the above figure,
the results show that with the increase of wavelet decompo-
sition levels, the accuracy of paraparesis detection increases,
and then decreases with the increase of decomposition levels.
Moreover, we found that the proposed model can achieve
higher accuracy when processing the original experimental
data. The average accuracy of the Barre and Mingazzini
experiments was 97.8% and 96.9%, respectively. Our CNN
model uses three-level wavelet decomposition to demonstrate
the high performance of Mingazzini and Barre experimental
data. The accuracy in the Barre test is 99.4%, and the average
accuracy of the Mingazzini test is 98.5%.

D. COMPARED WITH MACHINE LEARNING

In order to evaluate the performance of our proposed CNN
model, Machine learning algorithms such as SVM and KNN
are used to compare with our model. The performance metrics
recall, precision, accuracy and F-measure.

In the SVM-based classification model, hyperparameter
optimization is the key to achieving high accuracy. Therefore,
we performed a grid search regularization parameter (C)1 to
100 and gamma parameter () 0.001 to 1 to obtain the lowest
error rate. The radial basis function (RBF) is used as the
kernel function of SVM. K-NN is a commonly used method
of supervised learning. It classifies based on the similarity
between the predicted object and the known object. The key
to the K-NN algorithm is to choose a suitable K value, which
is the neighboring number. In this study, the value range of K
value is [1, 10]. We traverse all values in the value range of
K value to minimize the error rate of the result.

In this paper, in order to objectively compare the perfor-
mance of each model, all classifiers process the same patient
data and normal person data. Specifically, we did not extract
features from the preprocessed data. The preprocessed data is
directly imported into each classifier. It is worth emphasizing
that the advantage of our proposed model is that it does not
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FIGURE 12. (a) Diagnostic accuracy of patients in the Barre test.

(b) Diagnostic accuracy of healthy people in the Barre test. (c) Diagnostic
accuracy of patients in the Mingazzini test. (d) Diagnostic accuracy of
healthy people in the Mingazzini test.

require artificial feature extraction. The Fig.11 shows the
results of each classifier. We can find that the performance of
the CNN-based classification model proposed in this paper is
better than other classification models. In the Barre test data,
k-NN has the poorest classification performance. In contrast,
compared with the K-NN classification model, the recall rate
of the CNN-based classification model increased by 3.7%,
the precision increased by 4%, the accuracy increased by
3.7 %, and Fl-score increased by 3.9%. In the Mingazzini
test, the SVM-based classification model shows the poorest
performance. Compared with the CNN model proposed in
this paper, the recall rate of our model increased by 5.1%,
precision increased by 3%, accuracy increased by 4%, and
F1-score increased by 4%. All in all, the proposed model has
better performance on various performance indicators and is
more suitable for detecting lower limb paraparesis than other
models.

E. PARTICIPANT DIAGNOSIS

In this experiment, there were 10 participants, 5 are lower
extremity patients and 5 are healthy participants. All partic-
ipants conducted the Barre test and the Mingazzini test. The
Fig.12 show the results of the classification of the positive and
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negative participants in the Barre test. The (c) and (d) show
the results of the classification of the positive and negative
participants performing the Mingazzini test. The average
accuracy of the proposed model for the positive participants
who performed the Barre experiment is 98%, and the average
recognition accuracy for healthy participants is 99.3%. The
average accuracy of the proposed model for the Mingazzini
test is 99.2%. The average recognition accuracy for healthy
people is 99.2%. The experimental results are encouraging
that the average accuracy of our system is almost 99%.

VII. CONCLUSION
Lower limb paraparesis affects patient standing posture and
walking style etc. and also effect quality of life of the patient.
It can cause serious harm to the patient’s mind and bring a
small burden to the family and society. In this article, early
detection of paraparesis of the lower extremities to improve
the accuracy of prediction. A non-contact detection system
driven based on wireless channel information is designed to
diagnose paraparesis. We obtain the wireless channel infor-
mation of the physical layer through the continuous detec-
tion channel. Make full use of the advantages of WCI to
perceive the information of volunteers’ buckling behavior.
The noise corresponding to the channel is removed using a
Hampel filter and a wavelet hard threshold filter. In particular,
the advantages of OFDM multi-carrier modulation are used
to rapidly increase data samples. In order to improve the
accuracy of recognition, 1D-CNN is used to automatically
extract features of wireless signals and detect paraparesis.
The experimental results show that our method is reliable
and accurate. Two tests (Barre/Mingazzini), which are widely
used in the clinic, are considered in this paper. The exper-
imental results show that the accuracy of the original data
recognition after 3 levels of wavelet hard threshold filtering
is 2% higher than that of the original data. The performance
we obtained in our experiments is a sensitivity of 99% and
a specificity of 98%. Compared with other state-of-the-art
models, the proposed 1D-CNN model has improved perfor-
mance by 3%.
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