IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 2, 2019, accepted November 28, 2019, date of publication December 12, 2019,
date of current version December 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2958927

Android Malware Detection Based on
Factorization Machine

CHENGLIN LI, KEITH MILLS 1, DI NIU®?, RUI ZHU®!, HONGWEN ZHANG 2, (Member, IEEE),
AND HUSAM KINAWI“2, (Member, IEEE)

! Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
2Wedge: Networks, Calgary, AB T3J 5K1, Canada

Corresponding authors: Chenglin Li (ch11@ualberta.ca) and Keith Mills (kgmills@ualberta.ca)
This work was supported by Wedge Networks Inc., MITACS, and the NSERC of Canada.

ABSTRACT As the popularity of Android smart phones has increased in recent years, so too has the number
of malicious applications. Due to the potential for data theft that mobile phone users face, the detection of
malware on Android devices has become an increasingly important issue for the field of cyber security.
Traditional methods like signature-based routines are unable to protect users from the ever-increasing
sophistication and rapid behavior changes in new types of Android malware. Therefore, a great deal of
effort has been made recently to use machine learning models and methods to characterize and generalize
the malicious behavior patterns of mobile apps for malware detection. In this paper, we propose a novel
and highly reliable classifier for Android Malware detection based on a Factorization Machine architecture
and the extraction of Android app features from manifest files and source code. Our results indicate that the
numerical feature representation of an app typically results in a long and highly sparse vector and that the
interactions among different features are critical to revealing malicious behavior patterns. After performing
an extensive performance evaluation, our proposed method achieved a test result of 100.00% precision score
on the DREBIN dataset and 99.22% precision score with only 1.10% false positive rate on the AMD dataset.
These metrics match the performance of state-of-the-art machine-learning-based Android malware detection

methods and several commercial antivirus engines with the benefit of training up to 50 times faster.

INDEX TERMS Android Malware detection, factorization machine, sparse representation.

I. INTRODUCTION

Smartphone usage is prevalent in our daily lives. According to
surveys on global OS market shares [7], [32], Android is the
visibly dominant mobile OS with a solid hold of around 75%
market share across all mobile devices and 85.1% dominance
for smartphones specifically in 2018. The rapid growth of
mobile device usage, coupled with the majority market share
that the Android OS enjoys have not only brought about
opportunities for Android app development, but also serve
to emphasize the challenge involved in defending devices
from malware. According to Kaspersky’s Mobile Malware
Evolution Reports for 2016 through 2018 [4], [33], [34],
the number of malicious installation packages amounted
to 8,526,221, 5,730,916 and 5,321,142, respectively. While
these numbers indicate a downward trend, one should not
be fooled as the number of new Trojans targeting finan-
cial information was 128,886, 94,368, and 151,359 each
year, respectively, indicating that these classes of malicious,

The associate editor coordinating the review of this manuscript and
approving it for publication was Christian Esposito

184008

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

theft-enabling software constitute a larger proportion of
Android malware each year - from 1.51% in 2016 to 1.65%
in 2017 to an alarming 2.84% in 2018.

To win the battle and protect mobile phone users, a number
of anti-virus companies, like McAfee and Symantec, provide
software products as a major defense against these kinds
of threats. These products typically use a signature-based
method [35] to recognize threats. Signature-based methods
involve the generation of a unique signature for each pre-
viously known malware, while detection involves scanning
an app to match existing signatures in a malware database.
On the other hand, the heuristic-based method, introduced in
the late 1990s, relies upon explicit expert rules to distinguish
malware, giving rise to errors induced by human bias. In fact,
both methods will be less effective if the development of the
malware database or expert rules cannot keep pace with the
speed at which new malware emerges and evolves.

To overcome the aforementioned problems, an alternative
emerging approach is to develop intelligent malware detec-
tion techniques based on Machine Learning (ML), whose
generalization capabilities include discovering unintuitive

VOLUME 7, 2019

https://orcid.org/0000-0001-7477-7945
https://orcid.org/0000-0001-6054-1798
https://orcid.org/0000-0002-5250-7327
https://orcid.org/0000-0002-5924-454X
https://orcid.org/0000-0002-6619-9425
https://orcid.org/0000-0001-6044-0962
https://orcid.org/0000-0002-0085-0748

C. Li et al.: Android Malware Detection Based on FM

IEEE Access

patterns in previously undetected malware samples. One
major type of machine learning-based malware detection
method is called static analysis [2], [37], which can make
decisions about an app without executing it in a sandbox,
thus incurring a low overhead for execution. Static analysis
has two phases: feature extraction and classification. In the
first phase, various features such as API calls and binary
strings are extracted from an original file. In the second
phase, an ML model learns to automatically categorize the
file sample into malware or benign-ware based on a vector-
ized representation of the file. For example, DroidMat [37]
performs static analysis on the manifest file and the source
code of an Android app to extract multiple features, including
permissions, hardware resources, and API calls. It then uses
k-means clustering and k nearest neighbor (k-NN) classifica-
tion to detect malware. DREBIN [2] extracts similar features
from the manifest file and source code of an app and uses
a Support Vector Machine (SVM) for malware classification
based on one-hot encoded feature vectors.

However, existing machine learning techniques for mal-
ware detection have yielded limited accuracy with high false
positive rates, mainly due to the use of first-order mod-
els or linear classifiers, such as SVM [2]. These are insuf-
ficient to discover all malicious patterns. A natural idea to
introduce non-linearity into malware detection is to consider
the interaction between features, or in other words, feature
crossing or basis expansion. For example, an app concur-
rently requesting both GPS and SEND__SMS permissions may
be attempting to execute a location leakage, while the pres-
ence of either one of such requests alone does not point to any
malicious behavior. However, ML models involving feature
crossing are not scalable to long feature vectors.

For example, a total number of 545, 000 features are used
by DREBIN [2], the SVM-based detector, which means that
more than 297 billion interactions need to be considered if
feature crossing was used. One could expect this number to
be even larger in a more recent dataset; the Android Malware
Dataset (AMD) [36], which contains more file samples thus
exposing more features. Moreover, although the total num-
ber of features is large, the number of features activated by
each file sample is usually much smaller, leading to a sparse
vectorized representation for each individual app. This will
further lead to even sparser interaction terms (the crossed
terms), posing significant challenges to model training—
there are not enough non-zero entries in the dataset to train
the coefficient of each crossed term.

In this paper we aim to accurately model features interac-
tions and efficiently handle long and sparse feature represen-
tations. To this end we propose a novel Factorization Machine
(FM) model for Android malware detection. In contrast to
feature crossing or basis expansion, which suffers from the
model size issue and the sparsity issue mentioned above,
Factorization Machines [27] aim to learn the coefficient
of each interaction as the inner product of two latent vec-
tors, thus effectively reducing the number of parameters to
n - the length of the feature vector. Therefore, we hypothesize

VOLUME 7, 2019

that such a factorization-based approach would not only
able to accurately predict whether a Malware sample is
benign or harmful as accurately as a conventional approach
like a Multi-Layer Perceptron or those utilized by [2], but that
it would also learn to do so much quicker, due to having far
fewer synaptic parameters.

We evaluated our model on two Android malware datasets:
DREBIN [2] and AMD [36], which contain 5,560 and
24,553 samples, respectively. In order to gauge performance,
the metrics we utilized consisted of accuracy, false positive
rate (FPR), precision, recall, F1 and last but not least, training
time.

In addition, we also evaluated the performance when iden-
tifying specific families of malware, which is especially
important given the growing share of banking Trojans on the
internet. With respect to this task, we focused primarily on
accuracy and false positive metrics.

The remainder of this paper is organized as follows:
Section II reviews the background of the Android system
and our feature extraction technique, while Section III
describes the mathematics behind a Factorization Machine.
In Section IV we elaborate on the two datasets used in this
experiment, formally describe the metrics in play before stat-
ing our test results in Section IV-B1 and interpreting them
in Section IV-B2. Next, we compare our test results to sev-
eral several popular antivirus engines and gauge our model’s
detection rating with respect to specific malware families in
Sections IV-C and IV-C2. Finally, we discuss future work
and list a few related research projects in Sections V and VI,
respectively, before concluding in Section VII.

Il. ANDROID FEATURE EXTRACTION

Android applications are written in Java and executed within
a custom Java Virtual Machine (JVM). Each application
package is contained in a jar file with the extension of apk.
Android applications consist of many components of various
types. Each component has an entry point through which
the system or a user can enter the application. In addition,
there are four fundamental building blocks of an Android
app: Activities, Services, Broadcast Receivers and Content
Providers. All components must be declared in the appli-
cation manifest file in order to be used. Communication
between these components is achieved by using intents and
intent filters. Intents are messaging objects that can be used
to request actions from other application components while
intent filters are expressions declared in the application man-
ifest file that specify the intent type that a component will
receive. Since application components interact via the intent
method, it is critical to analyze both the components them-
selves, as well as their communication intents, for security
concerns.

Before classification on any model can be done, raw data
must be processed. The feature engineering section of our
malware detection system consists of three parts: Unpacking
and Decompiling, Feature Extraction, and Encoding — all
shown below in Fig 1.

184009

IEEE Access

C. Li et al.: Android Malware Detection Based on FM

Feature
— ‘ AndroidManifest.xml ‘M
= Unpacking &
o Decompling
LA Feature
. Extraction
L ‘ Smali code ‘

FIGURE 1. System architecture of our Malware detection model.

A. UNPACKING AND DECOMPILING

Each apk file is actually a specialized zipped file that
consists of the application source code, resources, assets,
and manifest file. The source code is encoded as dex files
(i.e., Dalvik Executable Files) that can be interpreted by
the Dalvik VM. The manifest file consists of a number of
declarations and specifications. Finally, other resources may
contain images, HTML files, etc.. Since the dex files are
compiled, binary executable code, and therefore not meant
to be read or interpreted, features cannot be readily extracted
from them directly. Therefore, they must be decompiled into
other formats that can be read and interpreted, such as Smali
code or even Java code. Smali code is an intermediate form
that is decompiled from the dex files; it is essentially the
assembly code format of an application. Only after the apk
files have been decompiled can we continue onto our next
step.

B. FEATURE EXTRACTION

Feature extraction is one of the the most important aspects
involved in the training of a machine learning model. The
upper bound of a given model’s performance directly depends
on the nature of the features used. After performing a study
of the Android system and comparing it to previous work
experience in its field, we chose to extract 7 kind of features
from both the source code and manifest file, of which, the fol-
lowing four types are extracted from a given app’s manifest
file:

1) App components: The components declared in the
manifest file define the different interfaces that exist
between app and end-user as well as the app and the
larger Android OS as a whole. The names of these
components are collected to help identify variants of
well-known malware, for example the DroidKungFu
family share the name of several particular services [2].

2) Hardware features: If an application wants to request
access to the hardware components of the device, such
as its camera, GPS or sensors, then those features must
be declared in the manifest file. Requesting certain
hardware components or pairs of components may have
security implications. For example, requesting usage of
the GPS and network modules may be a sign of location
leakage.

184010

Components

Hardware Feature

Intent-filter

Permissions

Used permissions
Restricted_APIs

Suspicious_APls

Encoding Classification

i
I'l

|[-o2-ococo—~-ococo-oco

3) Permissions: Android uses a permission mechanism
to protect the privacy of users. An app must request
permission to access sensitive data (e.g. SMS), system
features (e.g. camera) and restricted APIs. Malware
usually tends to request a specific set of permissions.
In this respect, this is similar to how we handle hard-
ware features.

4) Intent filter: Intent filters declared within the declara-
tion of components in the manifest file are important
tools for inter-component and inter-application com-
munication. Intent filters define a special entry point for
acomponent as well as the application. Intent filters can
be used for eavesdropping specific intents. Malware is
sensitive to a special set of system events. Thus, intent
filters can serve as vital features.

Furthermore, we also extract another three types of features
from the decompiled application source code (e.g., Smali
code):

1) Restricted APIs: In the Android system, some special
APIs related to sensitive data access are protected by
permissions. If an app calls these APIs without request-
ing corresponding permissions, it may be a sign of root
exploits.

2) Suspicious APIs: We should be aware of a special
set of APIs that can lead to malicious behavior with-
out requesting permissions. For example, cryptography
functions in the Java library and some math functions
need no permission to be used. However, these func-
tions can be used by malware for code obfuscation.
Thus, attention should be paid to the unusual usage of
these functions. We mark these types of functions as
suspicious APIs.

3) Used permissions: We first extract all API calls from
the app source code, and use this to build a set of per-
missions that are actually used in the app by looking up
a predefined dictionary that links an API to its required
permission(s).

C. ENCODING

Next, we encode our extracted features into a common format
that can be fed into any generic classifier. Our method uses
an N-dimensional indicator to encode each application into
a feature representation, where N is the feature dimension.

VOLUME 7, 2019

C. Li et al.: Android Malware Detection Based on FM

IEEE Access

To be specific, suppose all the extracted features form a
feature set § with size |S|, then we will represent each apk
file as a binary vector of length |S|, whose entries are 1 only
if a given feature is used by the app.

For example, suppose we have two Android applications,
A and B, which each request three permissions as illustrated
in Fig. 2.! As there are five unique permissions requested
by A and B, we can then create a vector x4,xp € {0, 1}5
such that each entry represents exactly one permission, e.g.,
the first entry as a blue block represents the permission
SEND_MSG and the second entry represents the permission
BIND_ADMIN. As a result, we can write x4 = (1,1, 1,0, 0)
and xg = (1,0,0, 1, 1). It is straightforward to extend this
idea to all kinds of extracted features as discussed in Sec. 2.
The formal name for this scheme in literature is one-hot
encoding.

A = {SEND_SMS, BIND_ADMIN, BLUETOOTH} — .:[IE
+) B = {SEND_SMS, CHANGE_WIFI_STATE, NFC} > (ED:

S = {SEND_SMS, BIND_ADMIN, BLUETOOTH, CHANGE_WIFI_STATE, NFC}

{

BT T

FIGURE 2. One-hot encoding for string features.

To visualize the effectiveness of our feature extraction and
representation technique in distinguishing between malware
and clean files, we applied a t-SNE [20] algorithm on 2, 000
already encoded samples, 1,000 of which came from the
DREBIN [2] dataset and while the other 1, 000 were clean.
The result is shown in Fig 3. Through this representation
we can clearly see that the malware and clean files have
formed several visibly identifiable, yet overlapping clusters,
which implies the need for a non-linear classifier in order to
accurately discriminate each class.

t-SNE view of feature representation

malwar
20 alware
clean

10

-10

-20

-20 -10 0 10 20

FIGURE 3. t-SNE view of 2000 samples.

'Here we use different color blocks to represent different feature values
in the permission set, although in practice active features are represented by
a ‘1’. White blocks mean the feature is not used (set to ‘0”).

VOLUME 7, 2019

lIl. FACTORIZATION MACHINE FOR MALWARE
DETECTION

Generally, a classification problem in machine learning is to
infer a function 4 : R"* — R for all possible x € R” to predict
how much it belongs to a class. To find such a function, we are
given a set of samples, each of which has been marked as a
“malicious” or “benign”.

In an abstract sense, at the core of this paper is the goal of
achieving a high accuracy on a binary classification problem
using a classifier that is not very well-known when compared
to the peers its performance is contrasted against, and is quick
to learn relative to said peers. Specifically, we have chosen to
use a Factorization Machine [27] to meet this objective, for
reasons to be explained below.

A. LIMITATIONS OF FIRST-ORDER CLASSIFIERS

Given a data sample X, a typical machine learning algorithm
will attempt to determine its class, $(X),> by learning a set of
weights, w, such that,

Y(E) = h(x; w) €]

where h is sometimes known as the transfer function of
the algorithm. For example, in the case of Support Vector
Machines, used by DREBIN [2], & can be written as,

hGE;w) =X w + wo)

where Wy is the intercept coefficient, technically a part of w
but always multiplied by 1. Most of the basic, well-known
classifiers, including Support Vector Machines, Naive Bayes
(NB), and Logistic Regression, operate in a similar manner,
where the input sample is compared to the learned weights
allowing a class decision to then be made.

These models are not suitable for Android malware detec-
tion for two reasons: First, as Figure 2 implies, the feature
vectors from one-hot encoding consist of ones and zeroes and
are likely to be highly sparse. For example, samples in the
benchmark dataset DREBIN [2] will be encoded into vectors
with 93, 324 entries, and on average only 73 features are non-
zero, which makes weight training difficult, because a weight
whose value is 55 is just as useful as one whose value is —249,
in all situations, if both weights are always multiplied by O.

Secondly, these models only exploit the First-Order infor-
mation found within the features — interactions between fea-
tures and weights. They do not take interactions among the
features themselves into account. For example, going back to
Figure 2 again, if a specific class of Malware can be reliably
detected by checking if it requests a certain set of features
(e.g. BLUETOOTH and CHANGE_WIFI_STATE) together -
meaning it requests all of them not just a few - then a good
starting point for a reliable classifier is one that can detect if
that specific set of features are active. This is a second-order
interaction - first-order classifiers such as SVMs and Naive
Bayes cannot handle these automatically unless an interaction

2This is usually a probability (binary) or vector of class probabilities
(multiclass) that are processed later.

184011

IEEE Access

C. Li et al.: Android Malware Detection Based on FM

term between these features was added previously in the
feature engineering stage. The inclusion of these interaction
terms requires a priori knowledge regarding the malware and
also serve to expand the number of features.

B. SECOND-ORDER FEATURE CROSSING AND
FACTORIZATION MACHINES

Typically Multi-Layer Perceptrons (MLP) and Deep Neural
Networks (DNN) are the go-to solution for solving hard
classification problems due to the properties they possess
as universal function approximators [28], [30]. However,
the number of parameters involved in training these models
for a given task involve the tuning of very complex model
with a large number of synaptic weights, even before feature
interactions are introduced. With that in mind, consider a
natural method for learning interactions of different features
is through basis expansion or feature-crossing:

h(x) = wo + Z wix; + Z Z Wiixix;. 3)

i=1 j=i+1

By assigning a welght W;; for each pair of x; and x;,
we have the easiest way to capture pairwise interactions.
However, it is not efficient here due to the large number
of parameters: this model has n(n — 1)/2 free parame-
ters. As stated in Section III-A, the input vector for the
DREBIN [2] dataset has a length of 93, 324 but the number
of nonzero entries is about 73 on average. In this case, full
feature crossing like W would necessitate roughly four billion
weights! This brings heavy burdens on the training process
since the model becomes so complicated it requires large
computational resources and is very time-consuming. This
problem is further compounded by the sparse nature of the
data in this problem, which makes the task of applying mean-
ingful updates to a large number of weights very difficult.
Hence, MLPs are not an optimal solution to this problem.

Popular techniques to overcome the issues mentioned
above and in Section III-A are low-rank or dimension reduc-
tion methods. In particular, we have chosen to use a classifier
that implements feature interactions in the learning stage -
the Factorization Machine [27] (FM), described by Figure 43
More specifically, FM assumes that W is with the largest rank
of k and therefore, we can decompose W = vvT,

If we denote v; as the i-th row of V, FM will train a hidden
vector v; for each x; and models the pairwise interaction
weight w;; as the inner product of the corresponding hidden
vectors of entries x; and x;:

hX) = wg + Zwlxl + Z Z Vi, Vj)XiX;j, “4)

i=1 j=i+1

where (-,-) denotes the dot product of two vectors of
length k:

Z VifVifs ®)

(vi, vj)

3The dark gray node stands for the inner product operator.

184012

XT1 T2 T3 Tg Ty Te T7 T8 T9 T10
Lofafofofafofa]of1]o]

FIGURE 4. The architecture of Factorization Machine model.

The parameters that are learned during the training stage
— wo, wi, v and vj — can be updated using generic stochastic
methods such as gradient descent [15], [27] with augmenta-
tions such as Adam [17]. In practice, the hyperparameter k
is much smaller than the feature dimension n (k < n). Thus,
the number of parameters to be estimated reduces from on?)
to O(nk).

We can further improve the performance of FM by using
more sophisticated feature engineering schemes for cross
terms. For example, by using ‘“partial FM”, which only
involves interactions between selected features, e.g., between
Used permissions and Permissions, thus ignoring
crossed terms that are not relevant to malicious behavior
discovery.

Let us take some toy examples to see how the relationship
between two features can facilitate prediction. If an applica-
tion requests the GPS hardware feature as well as the network
modules permission, it is likely that this application may
attempt to send geo-location information to a command &
control server, therefore it is more prone to perform malicious
behaviors. Another example is that some malware samples
like BaseBridge can collect personal/device information
and send it elsewhere via SMS messages. They will request
two permissions, READ_PHONE_STATE and SEND_SMS,
and this behavior is hardly seen in benign examples. Regard-
less, by encoding these permission requests as input data,
a second-order classifier can learn which pair-wise interac-
tions are indicative of malicious activity without requiring
n(n — 1)/2 free parameters.

This method of classification is naturally resistant to some
of the methods used by malicious programmers to disguise
their malware’s purpose, such as the insertion of lines of code
that are either unreachable or never called and permissions
that may be requested only to never be used. This is because
such methods relay on adding unnecessary information on
top of what already exists, however the crucial interaction
terms that are responsible for executing malicious activity
still exist - those permissions are not hidden and the weight

VOLUME 7, 2019

C. Li et al.: Android Malware Detection Based on FM

IEEE Access

TABLE 1. Performance metrics of Android malware detection.

Metrics Description

TP # of malicious apps correctly detected
TN # of benign apps correctly classified

FP # of false prediction as malicious

FN # of false prediction as clean

ACC (TP+TN)/(TP+TN+FP+FN)

PR TP/(TP + FP)
RC TP/(TP + FN)
F1 2% PR+ RC/(PR + RC)
FPR FP/(FP+TN)

of their interaction can still be computed separately. In fact,
the addition of unused permissions serves to emphasize the
use of a classifier that handles sparse inputs, such as a factor-
ization machine, for while it may be likely that hackers would
insert them into their malware code, it is unlikely that all
hackers will utilize the same unused permissions, thus leading
to an even sparser permission request vector.

IV. EXPERIMENTS

In this section, we evaluate the performance of our Factor-
ization Machine-based Android malware detection system.
We apply our system to malware detection tasks and malware
family identification tasks, based on two public benchmark
datasets: DREBIN [2] and AMD [36]. We also check our FM
model against popular antivirus engines and state the logistics
of our decompilation and feature extraction procedure.

A. ANDROID APK Data
To perform this experiment, we used two public benchmark

datasets: DREBIN [2], which has been mentioned previously,
and AMD [36]:

« DREBIN: Contains 5, 560 malware files collected from
August 2010 to October 2012. All malware samples are
labeled as 1 of 179 malware families. This is one of the
most popular benchmark datasets for Android malware
detection.

o AMD: Known as the Android Malware Dataset, it con-
tains 24, 553 samples that are categorized in 135 vari-
eties among 71 malware families. This dataset consists
of samples collected from 2010 to 2016. This is one of
the largest, public datasets. AMD provides more recent
evolution trends for Android malware when compared
to DREBIN.

Further details regarding these two datasets are shown
in Table 2. When doing experiments on the AMD dataset,
we evaluated all 16, 753 clean files. When evaluating on the
DREBIN dataset, we randomly sampled 5, 600 clean files
to match the number of malware samples in this dataset.
To simplify our terminologies, the DREBIN dataset (or the
AMD dataset) consists of both clean samples and malware
samples in the subsequent to this section. Also, from Table 2

VOLUME 7, 2019

TABLE 2. Datasets for detection performance evaluation.

Dataset Malware Clean files Total Features
DREBIN 5,560 5,600 11,160 93,324
AMD 24,553 16,753 41,306 294,019

we see that the overall feature set size grows from 93,324 to
294,019 as the dataset size grows from 11,160 to 41,306.

We also collected a number of real-world Android
applications from the internet. Resources of these files
include apkpure [1] with 5,400 samples, 700 samples
from 360 .com and 13K commercial applications from the
HKUST Wake Lock Misuse Detection Project [19]. In total,
we have 19, 100 real-world applications. Then, we uploaded
all these files to VirusTotal, a public anti-virus service with
78 popular engines, and inspected scanning reports for each
file as a check to ensure that they were truly clean files.
Each engine in VirusTotal would show one of three detection
results: True for “malicious”, False for “clean’, and NK
for “not known”, respectively. If an application had more
than one True result, we labeled it as malware; otherwise,
we considered it as clean. Thus, only 16, 753 out of 19K
collected samples are labeled as clean, and we will only
use these samples in further experiments.

In our system, we used APKtool [6] to decompile the
source code into Smali code and extract information from the
AndroidManifest.xml file. We found this procedure to
be quite time-consuming. However, for different applications
this would often take a fixed processing time due to the
fixed feature space size. Therefore, we focused on evaluating
the processing time for unpacking, decompiling and feature
extraction, then give out an average processing time for all
applications on the encoding and prediction phase.

B. CLASSIFIER EVALUATION
We first evaluated our proposed FM-based method and com-
pared it with other existing baseline algorithms, including
SVM with a Logistic Kernel, which is used in DREBIN [2] to
achieve an accuracy (ACC) score of 93.9%, classical machine
learning algorithms such as Naive Bayes using Gaussian,
Bernoulli and Multinomial Kernels [37] and shallow, one-
hidden layer neural networks [28].# In addition, we also sent
all samples, including malware samples, to the VirusTotal
service and compared it with commercial anti-virus engines.
The dataset was randomly split into training (80%) and
testing (20%) sets for both experiments in accordance with
the pareto principle. All models were trained using strati-
fied 5-fold cross validation for hyper parameter tuning and
then tested for performance evaluation. The hyperparameters
turned for baseline algorithms and our proposed method were

4Throughout this paper, we use some abbreviations to denote these
baseline algorithms for figures and tables. In particular, the name of
Algorithm “NB-Bernoulli” (NB-B) refers to the Naive Bayes classifier
using Bernoulli kernel, and the same for “NB-Multinomial” (NB-M) and
“NB-Gaussian” (NB-G).

184013

IEEE Access

C. Li et al.: Android Malware Detection Based on FM

TABLE 3. DREBIN test results.

ALG | SVM NB-G NB-B NB-M MLP FM

ACC | 9565 97.72 9471 9471 99.73 99.46
PR | 9634 9625 9025 90.86 99.91 100.00
RC | 9487 99.28 99.82 9937 99.55 98.92
F1 | 95.60 97.74 9495 9493 99.73 99.46

FPR | 3.57 3.84 1035 9.90 0.09 0.00

TABLE 4. AMD test results.

ALG | SVM NB-G NB-B NB-M MLP FM

ACC | 92.69 9353 9042 86.24 99.05 99.05
PR | 93.87 9039 8635 8135 99.24 99.22
RC | 93.65 9956 99.60 9932 99.14 99.16
F1 | 9376 9475 9251 8944 99.19 99.19

FPR | 8.69 15.04 2236 3236 1.07 1.10

trained and tested in the same manner. Finally, we recorded
the time it took to re-train the best model chosen by cross-
validation over the entire training set. With exception to our
FM, all models were trained using Sci-kit Learn’s [25] API
while we used Polylearn [22] to train our FM. All experiments
were done on a computer equipped with a stock Intel Core
19-9900X processor with 128GB of RAM running Ubuntu
18.04 LTS.

Moreover, the metrics we utilized for performance evalu-
ation - all expressed as percentages - are listed in Table 1.
Specifically, we focused on precision (PR), recall (RC), F1
and False Positive Rate (FPR).> The Factorization Machine,
Multi-Layer Perceptron and Naive Bayes models all produce
probabilities that a given sample is malware. If this probabil-
ity was greater than a certain threshold, 0.5 in this experiment
unless otherwise stated, it was classified as malware for the
purposes of cross-validation and out-of-sample test results.

1) HYPERPARAMETER SPECIFICATIONS

The best hyperparameters for each algorithm we used —
except for Naive Bayes which had no hyperparameters for
cross validation to tune — are as follows: SVM with a Logis-
tic Kernel preferred a penalty of 1 and kernel coefficient,
y of 5e> when the malware and benign classes were weighted
equally. The best MLP performance was found by updating
the weights in accordance with the Adam [17] learning rule,
the ReLU [21] activation function, with hidden layers that
consisted of 150 and 200 neurons for the DREBIN and AMD

SNote that in the literature, recall and false positive rate corresponds to
malware detection rate and false alarm rate for the detection system.

TABLE 5. Out-of-sample training times; H:MM:SS format.

sets, respectively with a batch size of 200. For our FM models
we found a value of k£ = 10 to be the most optimal. Finally,
both the MLP and FM models were trained for 200 epochs.

2) INTERPRETATION

Next, Tables 3, 4 and 5 illustrate the effectiveness of our FM
classifier with respect to SVM with a Logistic Kernel and
Gaussian Naive Bayes and especially an MLP. From the first
two figures it is clear that the most relevant algorithms are
the Mutli-Layer Perceptron and the Factorization Machine.
Both classifiers are neck-and-neck with each other; on the
DREBIN set the MLP edges out the FM in terms of accuracy
with a score of 99.73% to 99.46%, however the FM achieved
perfect precision and false-positive scores of 100% and 0%,
respectively. The situation is even tighter when looking at the
AMD set, with both classifiers achieving matching accuracy
and F1 scores of 99.05% and 99.19%, again, respectively.
ROC Curves, Figures 5 and 6 show that FMs pulled ahead
of MLPs slightly in terms of area-under-curve (AUC).

DREBIN ROC Curves

1.00
0.95 A "
0.901 :
£ 085 H
- ,' —— SVM Logistic (AUC = 0.991)
0.80 1 —— FM (AUC = 1.000)
0.75 , —— MLP (AUC = 0.997)
] == Naive Gaussian (AUC = 0.947)
0.70 1

0.0 0.2 0.4 0.6 0.8 1.0
FPR

FIGURE 5. ROC curves for high-performing algorithms on the DREBIN set.

AMD ROC Curves

1001 m=======

- T
0954 | 'l
| 1
0904 |i !
o | 1
& 0.85 A : 1
! —— SVM Logistic (AUC = 0.980)
0.80 1 H —— FM (AUC = 0.999)
0.75 4 " == MLP (AUC = 0.990)
I == Naive Gaussian (AUC = 0.835)
0.70 L

0.0 0.2 0.4 0.6 0.8 1.0
FPR

FIGURE 6. ROC curves for high-performing algorithms on the AMD set.

Our Factorization Machine pulled ahead of Support
Vector Machines with a Logistic Kernel, verifying our asser-
tion that interaction terms are important for revealing mali-
cious behaviour patterns. However, they also cast doubt on
our additional assertion that the large number of adjustable,
synaptic weights used by an MLP would make it hard to train

ALG SVM NB-G NB-B NB-M MLP FM
DREBIN | 0:01:40 0:00:13 12ms 9ms 0:09:01 0:00:35
AMD 0:21:41 0:02:38 54ms 34ms 2:13:42 0:02:40

184014

VOLUME 7, 2019

C. Li et al.: Android Malware Detection Based on FM

IEEE Access

given the sparse data involved. As a universal approximator
[13], [30], MLPs used the same datasets to produce top-
notch results at the cost of taking much more time to train
a classifier.

Taking a look at Table 5, we can see that our Factorization
Machines trained much faster than our single hidden-layer
MLPs. Specifically, the FM trained 15 times faster than the
MLP on DREBIN and 50 times faster on AMD. This advan-
tage cannot be understated, especially when we consider how
much quicker the FM was to train on the AMD set, which
was more difficult across the board to get an accuracy score
above 99%. This emphasis is compounded by the fact that
AMD is newer, larger, more recent and therefore relevant
than the DREBIN data. Also, note that the MLPs used very
basic — wide and shallow — and that their training time would
only be increased with the additional parameters added by
stacking more layers. In short, when compared to Multi-
Layer Perceptrons, Factorization Machines trade universal
approximation for second-order interactions while striking a
balance between time, accuracy, and complexity.

C. COMMERCIAL ENGINES AND FAMILY DETECTION

We also compared the performance of our malware detection
algorithm with existing commercial Anti-Virus engines on
VirusTotal [31]. The critical point to mention is that all of
the truly clean files used in our experiments are actually
labeled by these AV engines using the rule described in
subsection IV-A. Therefore, AV engines are supposed to
have a better false positive rate than their normal perfor-
mance. Tables 6 and 7 summarize the scanning results of
the best performing and popular commercial AV engines
on VirusTotal, such as Kaspersky, Cylance and
McAfee on the DREBIN [2] and AMD [36] sets.

TABLE 6. Test performance of VirusTotal - DREBIN.

Scanner PR RC F1 FPR
McAfee 99.91 98.74 9932 0.089
CAT-QuickHeal | 99.64 99.46 99.55 0.357
Symantec 99.91 99.28 99.59 0.089
Kaspersky 99.63 97.21 9841 0.357
Cylance 50.09 9991 66.73 98.66
Qihoo-360 97.78 9496 96.35 2.141

TABLE 7. Test performance of VirusTotal - AMD.

Scanner PR RC F1 FPR
McAfee 99.73 93.82 96.69 0.358
CAT-QuickHeal | 99.70 98.84 99.27 0418
Symantec 99.57 6726 80.29 0.42
Kaspersky 99.84 5335 6954 0.119
Cylance 58.86 99.64 74.00 98.96
Qihoo-360 97.50 6892 80.76 2.507

VOLUME 7, 2019

To show our model’s capacity to distinguish one malware
family from other families as well as clean files, we deter-
mined whether each input sample belonged to a specific
malware family. Here we regard clean files as a special
family named ‘“‘clean”. We further evaluated our Factor-
ization Machine model for this task on the AMD dataset.
Specifically, we used all samples from the 7 largest malware
families in the AMD dataset as well as 1, 500 clean samples.

1) COMPARISON WITH COMMERCIAL ENGINES

We can compare our test results in Tables 3 and 4 with
existing commercial Anti-Virus engines available on Virus-
Total [31] in Tables 6 and 7. Our results are competitive
with the most popular engines listed in the latter two tables,
however our most accurate classifiers did fall a little short
of the best classifiers available — McAfee, Symantec and
Cylance for DREBIN, Kasperskey and Cylance for
AMD. Although we did not record the accuracy of these AV
engines, we can see that precision, a metric that measures
how many times a classifier accurately deemed a sample to be
malware, recall, a measure of how many malware samples the
classifier detected in total, and F1, the harmonic mean of both,
only fell below 99% for FM on the DREBIN set — all other
times the FM and MLP scores were over 99%. The critical
point to mention is that all of the fruly clean files used in our
experiments are actually labeled by these AV engines using
the rule described in Subsection IV-A. Therefore, AV engines
are supposed to have a better false positive rate than their
normal performance.

2) DETECTION OF SPECIFIC MALWARE FAMILIES

Finally, using Table 8, we can see that the easiest malware to
detect was the Mecor family, which is Trojan Spyware [36],
while the hardest to detect was Youmi — Adware. The brand of
malware that was detected with the smallest FPR was Fake-
Installer, which is a Trojan that wrecks havoc on the device’s
SMS services. Out of the families listed in in Table 8, the one
that is potentially very dangerous yet did not receive one of
the highest scores was Fusob [36], ransomware which can
lock down the device until certain conditions, which usually
involve monetary payment to the hacker in question, are met.
However, our FM design scored over 99% in the fields of

TABLE 8. Malware family classification by FM - AMD.

Family Samples PR RC F1 FPR
Airpush 7606 99.54 99.72 99.63 0.17
Youmi 1256 97.53 9875 98.14 0.09
Mecor 1762 99.77 99.89 99.83 0.11
Fakelnstaller 2129 99.57 99.57 99.57 0.05
Fusob 1238 99.68 99.52 99.60 0.48
Kuguo 1122 99.64 99.82 99.73 0.18
Dowgin 3298 98.52 99.63 99.07 0.07
Clean 1500 95.58 9730 96.43 0.22
Average — 98.73 99.27 99.00 0.17
184015

IEEE Access

C. Li et al.: Android Malware Detection Based on FM

precision, recall and F1 on this scarce family of 1, 238 entries.
Ironically, our classifier had a harder time deeming apk files
to be clean than it did detecting any brand of malware, but as
the saying goes better safe than sorry.

D. FEATURE PROCESSING OVERHEAD

Now we evaluate pre-processing time which consists of
decompiling the apk files to Smali code and then extracting
the features listed in Section II. All work relating to this
subsection was done on a virtual machine hosted on ESXi.
The VM was running Ubuntu 16.04 with a memory of 4G
and 2 CPUs. For this task we randomly sampled 3, 794 AMD
samples, 6, 120 clean files and all 5, 560 DREBIN samples.
Histograms for dex code size and processing time for all
15,474 samples are given in Figures 7 and 8, respectively.
The results of processing time vs. size-on-disk are shown
in Figure 9; the three figures in the first row show the rela-
tion between dex source code size and processing time. The
figures in the second row show the relation between apk file
size and processing time.

Source code size distribution

[=2]
o
o
o

4000

Number of samples
N
o
S
o

0 2 4 6 8
Dex code size (MB)

FIGURE 7. Dex source code size distribution.

Processing time distribution

N w
o o
o o
o o

Number of samples

=
o
o
o

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Processing time (s)

FIGURE 8. Processing time distribution.

1) DISCUSSION OF RESULTS

With respect to apk file decompiling and feature extraction,
Figures 7, 8 show us that over 78% of samples have a dex
code size of less than 3MB and over 70.6% of samples have a
processing time of less than 5 seconds. On the same samples
we also measured the mean time for encoding and prediction.
Figure 9 tells us that the relationship between processing time
and dex code size is almost linear and that for the samples in
all three datasets the slopes are in the neighborhood of 0.4.

184016

Conversely, the three top graphs of Figure 9 indicate no fixed
relation between apk file size and processing time, but rather
that the relationship between apk size and processing time
has a rough upper and lower bound. It is likely that this
decoupling of processing time between apk file size and dex
code size is because in addition to the dex code and manifest
file, an apk file also contains other resource files like HTML,
figures, which can vary wildly from app-to-app.

Compared with DREBIN [2], it seems that our system does
not have much of an advantage in processing time. However,
this is not the case. To begin with, the test is done on a
system that is not fully integrated, the output of Smalisca is
first written into a json file and then reload into RAM for
further processing. The I/O between RAM and flash storage
would often take a long time. Secondly, the feature sets
used in our system are simpler and smaller than sets used in
DREBIN, so under same condition our system should take
less processing time than DREBIN.

V. LIMITATIONS AND FUTURE WORK

While machine learning techniques such as ours provide a
powerful tool for automatically inferring models, they require
a representative dataset for training. That is, the quality
of the detection model depends on the availability, quality
and quantity of both malware and benign applications. While
it is straightforward to collect benign applications, gathering
recent malware samples is a non-trivial task that requires
some technical effort. Fortunately, offline analysis meth-
ods, e.g. RiskRanker [12], can help to acquire malware
and provide the samples for updating and maintaining a
representative dataset in order to continuously update our
model.

Outside of model training times, the major limitation of our
architecture is the decompilation and feature extraction pro-
cess. We plan to integrate our system into Wedge Networks’
in-line, real-time security solution which only allows us to
have millisecond-scale processing time. For encoding and
prediction our system takes about 4.8ms on average, however,
decompiling and feature extraction is on the order of seconds.
Fortunately, methods exist that will allow us to improve our
system’s time efficiency. Such techniques include reducing
I/O and finishing all work at once on a computer with a large
amount of main memory (RAM), or even using Application-
Specific Integrated Circuits (ASIC) such as FPGAs for speed
up. In addition, we noted that decompiling apk files can fail
when using some existing tools.

Finally, in our experiments, we observed failures for some
files, more with malware samples than clean files. This is
expected as malware samples may use some additional tech-
niques such as code obfuscation [5] that may lead to decom-
piling failures. While this limits the effectiveness of Android
malware detection schemes that extract features from apk
files, it is a fault of the decompiling tools available, is tan-
gential to the main topic of this paper, but may also serve as
an avenue for future research.

VOLUME 7, 2019

C. Li et al.: Android Malware Detection Based on FM

IEEE Access

Clean files DREBIN files AMD files
10 6 . .
@ 8 - @° . @6 . .
= = . = .
[} [} 4 [}
N 6 N N
@ @ 3 w4
[[[
g 4 ° . °
o o o
o o2 o
x x x 2
[[[
o 2 [ag] o
0 ol 0
0 10 20 30 0.0 2.5 5.0 7.5 10.0 125 0 5 10 15 20
Processing time (seconds) Processing time (seconds) Processing time (seconds)
Clean files DREBIN files AMD files
25 . . 50 .
20 * 40
o o o
= 215 =30
[[[
N N . N
wn))
¥ v 107, v 20
o o o
< < <
5 ° 10
o3 0
0.0 2.5 5.0 7.5 10.0 125 0 5 10 15 20

Processing time (seconds)

FIGURE 9. Scatter plot of processing time vs. file size.

VI. RELATED WORK

Many recent papers have tried to find malicious behavior
patterns through control flow graphs or call graphs, although
these can be obfuscated by ‘“method overloading” [5].
AppContext [38] classifies applications using machine learn-
ing based on the contexts that trigger security-sensitive
behaviors. It builds a call graph from an application source
code and extracts the context factors through information
flow analysis. It is then able to obtain the features for
the machine learning algorithms from the extracted context.
In that paper, 633 benign applications from the Google Play
store and 202 malicious samples were analyzed. AppCon-
text correctly identified 192 of the malware applications
with an accuracy of 87.7%. [11] also utilized call graphs
to detect malware. After extraction of call graphs from
Android applications, a linear-time graph kernel was applied
in order to map call graphs to features. These features were
then given as input to SVMs to distinguish between benign
and malicious applications. They conducted experiments on
135, 792 benign and 12, 158 malware applications, detect-
ing 89% of the malware with an FPR of 1%. This kind of
method relies heavily on the accuracy of call graph extraction.
However, current works like FlowDroid [3] and IC3 [23]
cannot fully solve the construction of Inter-component con-
trol flow graphs (ICFQG), especially the inter-component links
involving intents and intent filters.

Other works focus on the detection of specific malicious
behavior such as privacy breaches and over privilege usage.
For example, [16] goes through the source code with prede-
fined sources and sinks to find potential privacy breaches. [9]
further examines all the URL addresses to see if the app is
trying to steal users’ private information. Fuchs et al. [10]
uses data flow analysis for security certification. However,

VOLUME 7, 2019

Processing time (seconds)

Processing time (seconds)

static taint-analysis and over privilege are prone to false
positives.

Studies closer to the one performed in this paper, such
as [14], [26] try to directly classify an application as mali-
cious or benign through permission request analysis for
application installation [8], or control flow analysis [18].
These works take different approaches in both the feature
extraction and the classification phase. [26] used permissions
and API calls as features for SVM and Decision Tree Ensem-
ble classifiers. Hindroid [14] built a structured heterogeneous
information network (HIN) with an Android application and
related system APIs as nodes and their rich relationships
as links, and then used meta-paths for malware detection.
DREBIN [2] extracted features from manifest files and source
code, including permissions, hardware, system API calls
and even all the URLSs, and then used an SVM as the final
classifier for malware detection. However, DREBIN only
achieved a test detection rate of 93.90% on their full dataset.
Sahs and Khan [29] used a one-class SVM with kernels
and as general classifier, but only used 2,081 benign and
91 malicious applications. Next, [39] used Deep Neural Net-
works for malware detection, but they restricted themselves to
only 500 apk files and achieved an test accuracy of 96.5%.
Finally, in an extensive study that tested the ability of past
malware’s effectiveness at training classifiers to deal with
new malware, [24] used a mix of call graphs and Markov
Chains for prediction. However, their metrics focused on
the F-measure® and their results greatly varied depending on
across different sets of data. By contrast the accuracy scores
of our single hidden-layer MLP and FM models, were each
above 99% on both datasets.

6Generalization of the F1 score.

184017

IEEE Access

C. Li et al.: Android Malware Detection Based on FM

We believe one of the reasons behind these high scores
is that we differentiated ourselves from existing works and
instead of only focusing on feature engineering and ignoring
the importance of choosing a suitable algorithm, after acquir-
ing the feature representations of apps, we first made two crit-
ical observation regarding the interaction between features
and the sparsity of the feature vectors. Then, the optimum
machine learning algorithm designed to appropriately handle
our problem was chosen for malware detection based on those
observations and assumptions.

VIi. CONCLUSION

In this paper, we raised the issue of considering interaction
terms across features for the discovery of malicious behavior
patterns in Android applications. The features used to rep-
resent an apk file consisted of app components, hardware
features, permissions and intent filters from the manifest file,
as well as restricted APIs, suspicious APIs and used per-
missions from source code. Based on the extracted features,
a highly sparse vector representation was constructed for each
application using one-hot encoding. We then proposed the use
of a Factorization Machine-based malware detection system
to handle the high sparsity of vector representation and model
interaction terms at the same time.

To the best of our knowledge, this is a first for using
FM models for malware detection. A comprehensive exper-
imental study on two real sample malware collections,
the DREBIN and AMD datasets, alongside clean applications
collected from online app stores were performed to show
the effectiveness of our system on malware detection and
malware family identification tasks. Promising experimen-
tal results with accuracy, precision, recall and F1 scores of
around or above 99% demonstrated that our method matches
the performance of commercial antivirus engines and holds
steady against the incredible results produced by Multi-Layer
Perceptrons with the benefit of taking up to 50 times less time
to train.

REFERENCES

[11 (2018). Apkpure. Accessed: May 9, 2018. [Online]. Available: https://
apkpure.com/

[2] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “DREBIN: Effective and explainable detection of Android
malware in your pocket,” in Proc. NDSS, vol. 14, 2014, pp. 23-26.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps,” ACM
SIGPLAN Notices, vol. 49, no. 6, pp. 259-269, 2014.

[4] R.Unuchek. (2017). Mobile Malware Evolution 2016. [Online]. Available:
https://securelist.com/mobile-malware-evolution-2016/77681/

[5] M. Chua and V. Balachandran, “Effectiveness of Android obfuscation on
evading anti-malware,” in Proc. 8th ACM Conf. Data Appl. Secur. Privacy
(CODASPY), 2018, pp. 143-145.

[6] C.Tumbleson and R. Wisniewski. (2018). Apktool. Accessed: May 9,2018.
[Online]. Available: https://ibotpeaches.github.io/ Apktool/

[7] International Data Corporation. (2018). Smartphone Market Share.
[Online]. Available: https://www.idc.com/promo/smartphone-market-
share/os

[8] A.P Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: User attention, comprehension, and behavior,” in Proc. 8th
Symp. Usable Privacy Secur., 2012, p. 3.

184018

[9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

H. Fu, Z. Zheng, S. Bose, M. Bishop, and P. Mohapatra, ‘“LeakSemantic:
Identifying abnormal sensitive network transmissions in mobile applica-
tions,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), May 2017,
pp- 1-9.

A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automated
security certification of Android,” Dept. Comput. Sci., Univ. Maryland,
College Park, MD, USA, Tech. Rep. CS-TR-4991, Nov. 2009.

H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, ““Structural detection of
Android malware using embedded call graphs,” in Proc. ACM Workshop
Artif. Intell. Secur., 2013, pp. 45-54.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “‘RiskRanker: Scalable
and accurate zero-day Android malware detection,” in Proc. 10th Int. Conf.
Mobile Syst., Appl., Services, 2012, pp. 281-294.

K. Hornik, M. Stinchcombe, and H. White, ‘“Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359-366, 1989.

S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “HinDroid: An intelligent
Android Malware detection system based on structured heterogeneous
information network,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2017, pp. 1507-1515.

Y. Hu, D. Niu, and J. Yang, “A fast linear computational framework for
user action prediction in tencent MyApp,” in Proc. 27th ACM Int. Conf.
Inf. Knowl. Manage. (CIKM), 2018, pp. 2047-2055. [Online]. Available:
http://doi.acm.org/10.1145/3269206.3272015

J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “ScanDal: Static analyzer
for detecting privacy leaks in Android applications,” MoST, vol. 12, no. 1,
pp. 1-10, 2012.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. Int. Conf. Learn. Represent., Dec. 2014, pp. 1-15.

S. Liang, W. Sun, and M. Might, “Fast flow analysis with godel hashes,”
in Proc. IEEE 14th Int. Working Conf. Source Code Anal. Manipulation
(SCAM), Sep. 2014, pp. 225-234.

Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni, ‘‘Understanding and detect-
ing wake lock misuses for Android applications,” in Proc. 24th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2016, pp. 396-409.

L. van der Maaten and G. Hinton, ‘“Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010,
pp- 807-814. [Online]. Available: http://dl.acm.org/citation.cfm?id=3104
322.3104425

V. Niculae. A Library for Factorization Machines and Polynomial
Networks for Classification and Regression in Python. Accessed:
May 13, 2019. [Online]. Available: https://github.com/scikit-learn-
contrib/polylearn

D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, ““Composite
constant propagation: Application to Android inter-component communi-
cation analysis,” in Proc. 37th Int. Conf. Softw. Eng., vol. 1, May 2015,
pp. 77-88.

L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models (extended version),” ACM Trans.
Privacy Secur., vol. 22, no. 2, pp. 14:1-14:34, Apr. 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825-2830, Oct. 2011.

N. Peiravian and X. Zhu, “Machine learning for Android malware detec-
tion using permission and API calls,” in Proc. IEEE 25th Int. Conf. Tools
Artif. Intell. (ICTAI), Nov. 2013, pp. 300-305.

S. Rendle, “Factorization machines,” in Proc. IEEE 10th Int. Conf. Data
Mining (ICDM), Dec. 2010, pp. 995-1000.

D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter,
“The multilayer perceptron as an approximation to a Bayes optimal dis-
criminant function,” IEEE Trans. Neural Netw., vol. 1, no. 4, pp. 296-298,
Dec. 1990.

J. Sahs and L. Khan, “A machine learning approach to Android mal-
ware detection,” in Proc. European Intell. Secur. Inform. Conf. (EISIC),
Aug. 2012, pp. 141-147.

F. Scarselli and A. C. Tsoi, “Universal approximation using feedforward
neural networks: A survey of some existing methods, and some new
results,” Neural Netw., vol. 11, no. 1, pp. 15-37, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S089360809700097X

VOLUME 7, 2019

C. Li et al.: Android Malware Detection Based on FM

IEEE Access

[31] H. Sistemas. VirusTotal: Analyze Suspicious Files and URLs to Detect
Types of Malware, Automatically Share Them With the Security Com-
munity. Accessed: May 22, 2019. [Online]. Available: https://www.virus
total.com

[32] StatCounter. (2018). Mobile Operating System Market Share Worldwide.
[Online]. Available: http://gs.statcounter.com/os-market-share/mobile/
worldwide/2018

[33] StatCounter. Mobile Malware Evolution 2017. 2018. [Online]. Available:
https://securelist.com/mobile-malware-review-2017/84139/

[34] V. Chebyshev. (2019). Mobile Malware Evolution 2018. [Online]. Avail-
able: https://securelist.com/mobile-malware-evolution-2018/89689/

[35] D. Venugopal and G. Hu, “Efficient signature based malware detection on
mobile devices,” Mobile Inf. Syst., vol. 4, no. 1, pp. 33-49, 2008.

[36] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current Android malware,” in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment (DIMVA). Bonn, Germany: Springer,
2017, pp. 252-276.

[37] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and API calls tracing,” in
Proc. 7th Asia Joint Conf. Inf. Secur. (Asia JCIS), Aug. 2012, pp. 62—69.

[38] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppContext:
Differentiating malicious and benign mobile app behaviors using context,”
in Proc. IEEE 37th Int. Conf. Softw. Eng. (ICSE), vol. 1, May 2015,
pp. 303-313.

[39] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-Sec: Deep learning in
Android malware detection,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 371-372, 2014.

CHENGLIN LI received the B.Eng. degree from
the University of Science and Technology of China
(USTC), in July 2016, and the M.Sc. degree
in computer engineering from the University of
Alberta, in 2018, where he is currently pursuing
the Ph.D. degree. His current researches focus on
mobile sensing and distributed machine learning.

KEITH MILLS received the B.Sc. degree (Hons.)
in computer engineering from the University of
Alberta, in 2018, where he is currently pursuing
the M.Sc. degree. His current research interests
include, but are not limited to, the optimization and
innovation of specialized actor and critic neural
networks used in deep reinforcement learning
tasks as well as neural network distillation through
neural architecture search and evolutionary
algorithms.

DI NIU received the B.Eng. degree from Sun
Yat-sen University, in 2005, and the M.Sc. and
Ph.D. degrees from the University of Toronto,
in 2009 and 2013, respectively. He is currently
an Associate Professor with the Department of
Electrical and Computer Engineering, University
of Alberta, specialized in the interdisciplinary
areas of distributed systems, data mining, machine
learning, text mining, and optimization algorithms.
L . He was a recipient of the Extraordinary Award of
the CCF-Tencent Rhino Bird Open Grant 2016 for his research on natural
language processing and machine learning for web document understanding
at scale.

VOLUME 7, 2019

RUI ZHU received the master’s degree from
Xidian University, in 2014. He was a Ph.D. stu-
dent, from September 2014 to December 2018.
He enjoys understanding some elegant mathemat-
ical theories, utilizing them to enhance system
performance, as well as implementation. In par-
ticular, he worked on adapting tools from opti-
mization, graph theory, and information theory
to design algorithms for large-scale distributed
machine learning and statistical machine learning
systems.

HONGWEN ZHANG received the M.Sc. degree
in computer engineering, and the Ph.D. degree in
computer science. He previously co-founded the
24C Group Inc., which pioneered the first digital
receipts infrastructure for secure electronic com-
merce, and was a principal of Servidium Inc.,
a global leader in agile development methodology.
Throughout his 25+ years career and leadership
in the enterprise software industry, he has been
instrumental in launching several commercially
successful cyber security and safety products into the global market. This
has resulted in large customer adoptions. He has served as the Chair for
the Metro Ethernet Forum’s (MEF) Security-as-a-Service Working Group,
which defined the practices of Managed Security Service Providers (MSSPs)
for many of the largest telecom service providers in the world. He is a speaker
and writer in the areas of security and cloud computing. As a co-founder
of Wedge Networks, he has led the design, implementation, and launch of
the firm’s patented, award-winning Deep Content Inspection and Security
Services Orchestration platform.

HUSAM KINAWI received the Ph.D. and M.Sc.
degrees in computer science from the Universi-
ties of Calgary, Canada, and London, U.K. Within
his role at Wedge Networks as the President and
Chief Scientist, he works with Wedge’s customers,
R&D, and engineering teams to cater to customer
requirements and demands, while ensuring that the
company’s product and IP portfolio is continu-
ally updated and relevant within the fast moving
security industry. Prior to Wedge Networks, he
also co-founded M power Technologies Inc., a wireless telecommunications
software company, in 1997, and Activelq.com (NASDAQ: AIQT), a Boston-
based e-Business applications firm, in 1999. He is a co-founder of Wedge
Networks. He is an innovator with more than 17 years of research and
development experience working with industry leaders such as Newbridge
(Alcatel), Siemens, United Technologies, and Apple in the areas of dis-
tributed information systems, embedded applications, and wireless Internet
solutions.

184019

