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ABSTRACT Joint moment is an important parameter for a quantitative assessment of humanmotor function.
However, most existing joint moment prediction methods lacking feature selection of optimal inputs subset,
which reduced the prediction accuracy and output comprehensibility, increased the complexity of the input
sensor structure, making the portable prediction equipment impossible to achieve. To address this problem,
this paper develops a novelmethod based on the binary particle swarm optimization (BPSO)with the variance
accounted for (VAF) as fitness function to reduce the number of input variables while improves the accuracy
in joint moment prediction. The proposed method is tested on the experimental data collected from ten
healthy subjects who are running on a treadmill with four different speeds of 2, 3, 4 and 5m/s. The BPSO is
used to select optimal inputs subset from ten electromyography (EMG) data and six joints angles, and then
the selected optimal inputs subset be used to train and predict the joint moments via artificial neural network
(ANN). Prediction accuracy is evaluated by the variance accounted for (VAF) test between the predicted joint
moment and multi-body dynamics moment. Results show that the proposed method can reduce the number
of input variables of five joint moment from 16 to less than 11. Furthermore, the proposed method can
better predict joint moment (mean VAF: 94.40±0.84%) in comparison with the state-of-the-art methods, i.e.
Elastic Net (mean VAF: 93.38±0.96%) and mutual information (mean VAF: 86.27±1.41%). In conclusion,
the proposed method reduces the number of input variables and improves the prediction accuracy that may
allow the future development of a portable, non-invasive system for joint moment prediction. As such, it may
facilitate real-time assessment of human motor function.

INDEX TERMS Joint moment prediction, artificial neural network, binary particle swarm optimization,
feature selection.

I. INTRODUCTION
Joint moment is an important parameter to quantitative eval-
uate human motor function [1]. These predictions can play
a very important role in rehabilitation [2], athlete training
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evaluation [3], [4], and prosthesis and orthosis design [5]–[7].
However, due to the complexity of coordination of muscles in
human motion, it is difficult to directly measure human joint
moment in vivo at present [8].

It can be calculated in vivo by using computational models,
such as inverse dynamic analysis [9], [10], and EMG-driven
model [11], [12]. Nevertheless, the computational models
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face a challenge to represent the neuro-musculoskeletal sys-
tem in a precisely way, because of individual difference in
anatomic and functional characteristics [8]. Previous stud-
ies [13]–[17] indicate that Artificial Neural Network(ANN)
is good at adapting to individual characteristics in biome-
chanics when the mathematical relationship between input
and output is unknown. For example, Uchiyama et al. [18]
used 7 EMG signals and 5 EMG signals with shoulder and
elbow joint angles as the inputs of ANN to predict the elbow
joint moment, respectively. Luh et al. [19] utilized 6 EMG
data, elbow joint angle and angular velocity to investigate
the elbow isokinetic moment. Song and Tong [20] utilized
3 EMG data, elbow joint angle and angular velocity to inves-
tigate the elbow dynamic moment. Hahn [21] included the
inputs of age, gender, height, body mass and EMG signals to
predict the isokinetic knee extensor and flexor moment.

As listed, all the above studies just give the input variables
without feature selection of optimal inputs subset, which
cannot effectively reduce the number of input sensor and
therefore presents a key challenge to portable joint moment
prediction. To address this problem, we used feature selec-
tion to select optimal input subsets, which are enough and
necessary for joint moment prediction. Feature selection is an
effective data analysis preprocessing technique that improves
prediction accuracy by reducing the amount of data needed
in the learning process and enhancing output comprehen-
sibility [22]. For examples,, Ardestani et al. [1] utilized
mutual information to select ground reaction force (GRFs)
and EMG signals as input to reduce information redundancy
in the prediction of lower extremity joint moment. Similarly,
Xiong et al. [23] used the Elastic Net algorithm to reduce
input variables for calculating lower extremity joint moment.
However, mutual information has no theoretically justified
stopping criterion in the feature selection procedure and does
not consider the interrelationship between variables [24],
while the Elastic Net involves the linear regression method,
whichmay not be able to optimize the non-linear system [25].
The BPSO is a typical nonlinear optimization algorithm,
which can be used to solve this problem.

The BPSO was first introduced by Kennedy and Eberhart
for discrete optimization problems in 1997 [26]. Recently,
the BPSO has been successfully used to solve prediction
problems in various areas, such as blasting environmental
impacts [27], hydrological modeling [28], cancer classifica-
tion [29] and other areas where BPSO can be applied. In this
paper, a BPSO based feature selection approach for joint
moment prediction is developed based the BPSO’s fitness
function and evaluated by the variance accounted for.

The method is tested on the data recorded from ten healthy
subjects who are running on a treadmill at different speeds,
i.e. 2, 3, 4 and 5 m/s. Based on the EMG driven muscu-
loskeletal model taking EMG signals and joint angles data
as inputs to predict the joint moments of human body [12],
ten major EMG signals and six joint angles of the right leg
are used as candidate signal sets in this study. The BPSO is
then used to select the optimal input variables for the right

lower limb’s five joint moment prediction, i.e. hip flexion
extension (Hip FE) moment, hip adduction abduction (Hip
AA) moment, hip rotation ( Hip R) moment, knee flexion
extension (Knee FE) moment and ankle plantar dorsiflexion
(Ankle PDF) moment. To evaluate the prediction ability of
our method, a generic ANN is designed and trained with
all four speeds data. The ANN predictions are validated by
multi-body dynamics [9], [10], using variance accounted for
(VAF) [30], and compare with Elastic Net [23] and mutual
information [1].

II. MATERIALS AND METHODS
A. EXPERIMENTAL DATA
Experimental data for biomechanical model calibration and
dynamic moment prediction of lower limb was acquired
from a publicly available database (https://simtk.org/projects/
nmbl_running; accessed on, 2 April 2019), which was
obtained from ten healthy male subjects (age 29±5 years,
height 1.77±0.04 m, mass 70.9±7.0 kg). The data include
EMG signals of gastrocnemius medialis, gastrocnemius lat-
eralis, tibialis anterior, vastus medialis, biceps femoris long
head, gluteusmaximus, rectus femoris, vastus lateralis, soleus
and gluteus medius. In the experiment, the subjects run on
a treadmill at different speeds, i.e. 2, 3, 4 and 5 m/s. The
corresponding data over 6 gait cycles per speedwere recorded
of each subject. The right leg moment of hip-flexion- exten-
sion (Hip FE), hip-adduction-abduction (Hip AA), knee-
flexion-extension (Knee FE), and ankle-plantar-dorsiflexion
(Ankle PDF) are calculated by using the multi-body dynamic
method [9], [10] with opensim software according to the
experimental data of the open-access database. In order to
analyze every gait cycle without the influence of speed, the
EMG signals, motion data and ground reaction force were
filtered and resampled to obtain 101 time points of each gait.
For a complete description of this publicly available database,
see [31].

B. FEATURE SELECTION
A large number of input variables do not necessarily translate
into high prediction accuracy. In some cases, irrelevant and
misleading features may reduce the accuracy and speed of
the prediction algorithm [22]. For joint moment prediction,
the number of input variables not only affects the efficiency
of the algorithm, but also increases the complexity of the
input sensor structure, which makes the portable predic-
tion equipment impossible to achieve. Therefore, reducing
the number of input variables through feature selection
is an effective means to realize the portability of joint
moment prediction, while improve the efficiency of predic-
tion algorithm [32], [33]. Considering the nonlinearity of
joint moment prediction model and the problems of fea-
ture selection methods such as mutual information [24],and
Elastic Net [25], we used BPSO to get the optimal inputs
subset for joint moment prediction. The BPSO is an effective
method for solving discrete optimization problems based on
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FIGURE 1. Flow chart of particle swarm optimization.

population which was first introduced by Kennedy and Eber-
hart for discrete optimization problems in 1997 [26]. Since
BPSO is a robust global search algorithm [34], it can be used
to determine optimal inputs subset. The fitness function of the
BPSO is evaluated by the variance accounted for (VAF) [30]

VAF = [1−
var (̂y− y)
var(y)

] ∗ 100% (1)

where ŷ represents predicted joint moment and y represents
the multi-body dynamics moment.

From EMG-driven model [12], we know that EMG sig-
nals and joint angles as inputs can be used to predict joint
moments. Therefore, subjects’ ten EMG signals and six
joint angles (hip flexion extension angle (Hip FE angle),
hip adduction abduction angle (Hip AA angle), hip rotation
angle (Hip R angle), knee flexion extension angle (Knee FE
angle), ankle plantar dorsiflexion angle (Ankle PDF angle)
and subtalar eversion inversion angle (Subtalar EI angle))
are selected as candidate input signals to predict lower limb
joint moments (A total of 16 variables as candidate sets).
The BPSO is designed to select the optimal set of input
variables in the candidate sets. Its processing flow chart is
shown in Fig. 1.

TABLE 1. The sum of ten subjects’ selected input variables about the
output joint moment.

It can be seen from Fig.1 that the BPSO based method
is performed as follows: Firstly, the positions X and the
velocities V of N particles are randomly generated. Since
there are 16 variables in the candidate set, the position of each
particle is a 16-dimensional 0/1 discrete binary vector. The
selected input variables are determined by the 0/1 value of
the particle’s position, where 1 represents the selected and 0
represents the unselected. Then the selected input variables
are used to train the neural network, and the VAF of the
test set after training is calculated, and the fitness function
is updated by the VAF value. Finally, the values of locally
optimal ‘‘pbest’’ and globally optimal ‘‘gbest’’ are updated,
and the d-th dimension of the i-th particle’ s velocity Vid and
position Xid are updated with the following formulas:

Vid = ωVid + C1random(0, 1)(Pid − Xid )

+C2random(0, 1)(Pgd − Xid ) (2)

Xid =


1

1
1+ exp(−Vid )

>
6 ∗ random(0, 1)

3+ exp(−0.2796 ∗ T )

0
1

1+ exp(−Vid )
<=

6 ∗ random(0, 1)
3+ exp(−0.2796 ∗ T )

(3)

where ω is the inertia factor, C1 and C2 are the acceleration
constant, C1 = C2 ∈ [0, 4]. Random (0,1) represents
random numbers on [0,1]. Pid represents the extreme value
of the d-th dimension of the i-th particle. Pgd represents the
d-th dimension of the global optimal solution, T is the total
number of iterations.

Using the BPSO described above, statistical data of the
ten subjects’ selected input variables of hip-flexion- exten-
sion (Hip FE) moment, hip-adduction-abduction (Hip AA)
moment, hip rotation( Hip R) moment, knee-flexion-
extension (Knee FE) moment and ankle-plantar-dorsiflexion
(Ankle PDF) moment are shown in Table 1.

As TABLE 1 shows, the optimal input variables for each
subject’s joint moment prediction are different for the gap of
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TABLE 2. The globally optimal position of the input variable about the
output joint moments.

FIGURE 2. Structure of the designed ANN.

subject living habits and muscular synergy in the process of
humanmovement. Therefore, we use the statistical sum of ten
subjects to determine whether the input variable is selected
about the output. The expressions are as follows:
GX jm = 1

10∑
i=1

GX jmi > 5

GX jm = 0
10∑
i=1

GX jmi <= 5

(m = 1, 2, 3, . . . , 16, j = 1, 2, 3, 4, 5) (4)

whereGX jmi is the optimal position of the m-th input variable
about the j-th joint of the i-th subject, GX jm is the optimal
position of the m-th input variable about the j-th joint. From
Eq. 4, the optimal inputs subset respect to the joint moments
are obtained, which are shown in TABLE 2.

C. ARTIFICIAL NEURAL NETWORK (ANN)
After obtaining optimal inputs subset by BPSO, we designed
anANNmodel to train and predict jointmoment. Considering
the successful application of ANN in joint moments pre-
diction [18]–[20], [1], [35]–[38], a three layers ANN model
(Fig.2) is utilized to construct a model describing the relation

TABLE 3. Performances of joint moment prediction, evaluated by
variance accounted for (VAF) in percentage (%).

between joint moment and inputs. Since the optimal input
subset are obtained by the BPSO, the unit number of input
layer are determined by TABLE 2. The neurons number of
output layer and hidden layer are 1 and 20. The ANN model
is run by using the neural network toolbox of MATLAB
(v. 2016a, The Math Works, Inc., Natick, MA).

D. PREDICTION EVALUATION
We design a generic ANN model (three layers, 20 hidden
neurons) and train it with four speeds (i.e. 2, 3, 4 and 5 m/s).
In the test, we randomly select 4 gait cycles (4 ∗ 101 = 404
time points) data from each speed for training, the rest 2 gait
cycle (101 time points) for testing. The accuracy of the ANN
is evaluated by VAF between predicted joint moment and
multi-body dynamics moment.

III. RESULTS
The prediction results of joint moment at each speed are
shown in Fig. 3 for a typical subject. Multi-body dynamics
moments are compared. As shown in Fig. 3, the general pat-
tern of lower extremity joint moments can be well predicted
at all speeds. Compared with the reference joint moments
(multi-body dynamics moment), the predicted waveforms
only have some difference in maximum and minimum values
(cross-correlation coefficient > 0.957). TABLE 3 show the
mean VAF (± standard deviation) of joint moment prediction
for Hip FE, Hip AA, Hip R, Knee FE, and Ankle PDF are
95.33±1.88%, 90.48±3.04%84.53±12.46%, 95.67±3.67%
and 94.83± 6.01%.

We also compared our method (mean VAF: VAF =
94.40±0.84%) with Elastic Net(mean VAF: VAF = 93.38±
0.96%) [23] and mutual information(mean VAF: VAF =
86.27 ± 1.41%) [1]. Considering that there is no theoret-
ically reasonable stopping criterion for mutual information
in the process of feature selection, we select as many input
variables as BPSO according to reference [1]. So, the num-
ber of selected input variables and the number of selected
EMG signals of the three methods are shown in TABLE 4.

182292 VOLUME 7, 2019



B. Xiong et al.: Feature Selection of Input Variables for Intelligence Joint Moment Prediction Based on BPSO

FIGURE 3. A typical subject’s joint moment prediction at each speed.

TABLE 4. The number of selected input variables/the number of selected
EMG signals of the three methods.

Take BPSO(VAF = 94.40%) as a reference and compare
with Elastic Net(VAF = 93.38%) and mutual information
(VAF = 86.27%), it is found that the VAF of the moment
predicted by the Elastic Net(VAF = 93.38%) and mutual
information( VAF = 86.27%) are almost reduced by 1.08%
and 8.61% as show in TABLE 5. In order to further analyze
the differences between BPSO and Elastic Net, the VAF of
each joint moment prediction value with optimal inputs sub-
set as input obtained by BPSO and Elastic Net are calculated
in TABLE 6.

IV. DISCUSSION
This study demonstrated that ANN with the input variables
determined by BPSO could be used to predict joint moments
under different gait speeds. This method effectively reduces
the input variables, reduces the complexity of the input sen-
sors, and makes it possible for portable online joint moment
prediction equipment. Different from the previous stud-
ies [1], [18]–[21], [35], [39]–[46] on joint moment prediction
using ANN model, this research obtains the optimal input
variables from the non-linear system by the BPSO algorithm,
which can be measured online; It reduces the input of EMG
signals and makes it possible to predict joint moment using
EMG signals of large muscle groups as input; It also avoids
the use of ground reaction force and marker trajectories
which need special equipment and can be time-consuming.
Our novel method yields a high accuracy of prediction with

TABLE 5. Comparison performances of BPSO, mutual information and
Elastic Net, evaluated by variance accounted for in percentage (%).

VAF=94.40± 0.84%. Thus, the proposedmethod is suitable
for exoskeleton robot control and quantitative online analysis
of gait that requires the detection device to be portable.

Unlike the inverse dynamic analysis [9], [10], and
EMG-driven model [11], [12], our method can predict joint
moments and release the necessity of 3D motion capture
which makes it possible to predict joint moments in hospitals,
research laboratories and in free state. It also can be adapted
to the individual differences in the training process, which
does not need a musculoskeletal model or a subject-specific
scaling, and therefore reduces the error caused by individual
differences.

Comparing the BPSO (VAF = 94.40%) with mutual
information (VAF = 86.27%), the latter’s VAF reduced by
8.61%. We can see that the prediction accuracy decreases
considerably when the same input variables, especially the
EMG signals increase, because the correlation between
variables is not considered. Therefore, when using mutual
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TABLE 6. Comparison performances of BPSO and Elastic Net in each joint
moment, evaluated by variance accounted for in percentage (%).

information, we should consider the relationship between
variables to effectively reduce the information redundancy
of input variables. Comparing BPSO (VAF = 94.40%)
with Elastic Net (VAF = 93.38%), the latter’s VAF only
reduced by 1.08%. We can see that the prediction accuracy
does not change much. But from TABLE 4, we know that
the number of BPSO’s optimal inputs subset are less than
that of Elastic Net exception of Hip AA and Ankle PDF. we
further analyze TABLE 6 and find that the BPSO’s Ankle
PDF moment prediction more accurate, but BPSO’s Hip AA
moment prediction worse than Elastic Net. Therefore, it can
be inferred that the optimal inputs subset of Hip AA obtained
by BPSO is the local optimal solution. We need to improve
this algorithm in the future.

It is worth mentioning that there are few limitations of the
current study at present. Firstly, we developed our method
based on BPSO which may obtain suboptimal solution for
the limitation of BPSO algorithm. Secondly, we developed
our method based on the EMG data recorded from only
10 muscles of the right leg, which cannot represent all the
muscles associated with the joints. In the future, we will test
the proposed method in a larger dataset. In addition, the gait
patterns of the experimental data are very limited and only
include the gait patterns of running. More gait patterns data
will be collected in our future study, such as cutting, squatting
and so on. Finally, the joint moments were estimated by using
multi-body dynamics, where the error between predicted
moment and the real moment may not be assessable.

V. CONCLUSION
The method proposed in this paper can be developed as an
artificial intelligence algorithm, which can be used to esti-
mate human joint moment with fewer input variables and
may allow the future development of a portable, non-invasive
system for joint moment prediction. As such, it may facilitate
real-time assessment of human motor function.
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