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ABSTRACT DNA N6-methyladenine (6mA) is related to a vast range of biological progress like transcrip-
tion, replication, and repair of DNA. The precise discrimination of the 6mA sites plays a vital role in the
understanding of its biological functions. Even though biochemical experiments produced positive results,
they were inefficient in terms of cost and time. Therefore, to facilitate the identification of 6mA sites it is
important to develop a robust computational model. In this regard, we develop a deep learning-based com-
putational model named as iIM-CNN for the identification of N6-methyladenine sites from DNA sequences.
The iIM-CNN is capable of extracting important features using a convolution neural network (CNN). The
proposed model achieves the Mathew correlation coefficient (MCC) of 0.651, 0.752 and 0.941 for cross-
species, Rice, and M. musculus genome respectively. The comparison of the outcomes depicts that the
proposed model outperforms the existing computational tools for the prediction of the 6mA sites. Finally,
a publically available user-friendly web server is available at https://home.jbnu.ac.kr/NSCL/iIMCNN.htm

INDEX TERMS DNA N6-methyladenine, sequence analysis, cross-species, deep learning, convolution
neural network.

I. INTRODUCTION
DNAN6-methyladenine (6mA) is non-canonical methylation
on adenine by attaching a methyl group to the sixth location
of the Adenine purine ring [1]. It has been spotted in three
kingdoms of life namely bacteria, archaea, and eukaryotes
out of six kingdoms [2]. Current research has established that
6mA modification is intimately related to several biological
processes, for instance, DNA replication [3], transcription [4]
and repair [5]. The uneven dissemination of 6mA positions
through the genome suggests that, for consideration of its
biological functions in more detail, it is essential to indicate
its location in the genome.

Diverse experimental techniques have been proposed for
the identification of 6mA modifications. The first method
was proposed about the combination of ultraviolet absorption
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spectra, electrophoretic mobility, and paper chromatographic
movement. But comparatively, this technique was not effec-
tual due to which it cannot be utilized for the detection
of 6mA modifications in animals [6]. Another method,
restriction enzyme was introduced for the discovery of 6mA
modification which was only able to identify the modified
Adenosines that exist in the target motifs [7].

Also, various experimental procedures have been carried
out for the detection of 6mA sites in both eukaryotes
and prokaryotes, for instance, sequencing of methylated
DNA immunoprecipitation [8], capillary electrophoresis with
laser-induced fluorescence [9], single-molecule real-time
sequencing [10], ultra-high-performance liquid chromatog-
raphy and mass spectrometry [11]. After the experimen-
tal procedure such as 6mA immunoprecipitation sequencing
(6mA-IP-Seq), 84% of 6mA modification were found in
Chlamydomonas genes [12]. The identification of 6mAmod-
ification in vertebrates consists of the human, mouse, and
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Xenopusdot using HPLC, blots, and subsequently, sequenc-
ing of methylated DNA Immunoprecipitation (MeDIP-
seq) [13]. Through the single-molecule real-time SMRT
sequencing, it was detected that 2.8% of initial-diverged fungi
were belonging to all adenines of methylated sites [14]. Also,
in the rice genome, it was found that 0.2% of adenines were
6mA methylated as a result of using 6mA immunoprecip-
itation, mass spectrometry, and SMRT [15]. Even though
experimental techniques are time-consuming and costly to
perform genome-wide detection for 6mA sites these methods
show important roles by providing significant indications in
promoting the progress of this valuable area.

To optimize the time and cost, many computational models
were proposed by researchers for the identification of 6mA
modifications. Recently, the prediction methods such as
iDNA6mA-PseKNC [16] and csDMA [17] are freely avail-
able for the identification of DNA6mAmodification in cross-
species, rice genome, and Mus musculus genome. They were
based on machine learning algorithms. These computational
models require the field knowledge for manual construction
of the features which are built in such a way that should
provide the information of a pattern in a sequence to be taken
into consideration. While predictors based on deep learning
can consequently extract the most significant features of 6mA
from input sequences which enables us to design robust
models using raw sequences and without using handy crafted
features. Deep learning-based algorithms achieved flourish-
ing outcomes in the field of image recognition [18]–[20],
natural language processing [21] and speech recognition [22].
Presently, deep learning-based bioinformatics predictors such
as iDeepS [23], branch point selection [24], Deep Splicing
Code [25], iRNA-PseKNC(2methyl) prediction model [26],
and DeePromoter [27] have been proposed.

In this regard, we propose a novel deep learning-based
model to classify the DNA N6-methyladenine sites using
convolutional neural networks (CNN). CNN is capable of
extracting the most important features from the data to make
an intelligent predictive model. We used the grid search for
the hyperparameter selection method to choose the optimal
parameters. The evaluation of the model’s performance was
based on the k-fold cross-validation method by using the
value of k= 5. The achievements of the proposed model out-
performed the state-of-the-art machine learning models [17].
A user-friendly web server was made freely accessible at
https://home.jbnu.ac.kr/NSCL/iIMCNN.htm

II. MATERIALS AND METHODS
A. BENCHMARK DATASETS
The benchmark dataset of DNA 6mA for this study was
downloaded from (https://github.com/liuze-nwafu/csDMA).
It consists of benchmark datasets of rice genome [28], M.
musculus genome [16], and using these two benchmark
datasets a cross-species dataset [17] was created. For the
reduction of sequence redundancy in the dataset, the thresh-
old value was set to 0.8 using CD-HIT-EST software [29].

TABLE 1. Summary of dataset.

The benchmark dataset of rice genome [28] consists
of 1760 sequences from which 880 sequences are regarded
as the positive samples and 880 sequences are regarded
as negative samples. The benchmark dataset of M. muscu-
lus genome [16] has 3868 sequences from which 1934 are
the positive samples and 1934 are negative samples. The
dataset of cross-species [17] has 5484 sequences from which
2768 sequences are positive samples and 2716 sequences are
negative samples. In all of the benchmark datasets, the length
of each sequence is 41nt. Details of the datasets are shown
in Table 1.

In reference to literature, the benchmark dataset mostly
consists of a training dataset and a testing dataset. The train-
ing dataset is typically for the learning of the model while
testing data is used as a trial of the model. On the other hand,
as stated in Chou and Shen [30], for a high-quality bench-
mark dataset, it would be appropriate if the model is tested
by a jackknife or a subsampling (K-fold cross-validation)
test [31], as a result we obtain a mixture of different inde-
pendent test datasets.

B. THE PROPOSED MODEL
We proposed an efficient deep learning model based on a
convolution neural network that identifies the DNA 6mA
modification of different species. It is capable of learning the
most significant features from raw sequences automatically
while training the model. The input of iIM-CNN has a DNA
sequence Q = {Q1,Q2, . . . ,Qn} where n = 41 and it should
be in vector form. For vectorization of input sequences one-
hot encoding was used in which each nucleotides A, C, G,
T of a sequence was represented as (1, 0, 0, 0), (0, 1, 0, 0), (0,
0, 1, 0), (0, 0, 0, 1) respectively as a four-channel input vector.
During the learning process of the model, different hyper-
parameters were used which were tuned by the grid search
algorithm. The tuned parameters consist of convolution lay-
ers, filters, filter size, pool-size, stride length, and dropout
values. The scales of these hyper-parameters are enumerated
in Table 2.

The most efficient parameters were chosen on the base of
least validation loss that avoids overfitting and underfitting
problems. We implemented a classical CNN model, which
consists of two 1-D convolution layers with the number
of filters are 32, having filter size 5 with the stride of 1.
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FIGURE 1. The architecture of the proposed model.

TABLE 2. Hypter-parameter preferences.

Each filter is responsible for finding the patterns in sequences
to differentiate the positive and the negative samples of 6mA
sites. Each convolution layer used the ReLU activation func-
tion as an argument of the layer which is known as a rectified
linear unit. Max pooling layer with pool-size of 2 and stride
of 2, is used in both layers to decrease the dimensionality of
the features from the previous outputs, and a dropout layer
with the probability of 0.4 after each convolution layer, which
turn off the effect of some hidden neurons by setting the out-
put of those neurons to zero at training. At the training time,
the Maxpooling and dropout are regularization techniques
used to avoid overfitting. Thus, some transitional features are
eliminated which prevents overfitting and escalates the con-
sistency of the model. We used flatten function to assimilate
the intermediary features and to feed a fully connected layer,
along with a sigmoid activation function for the prediction
of 6mA sites. Sigmoid function squeezes the output results
between 0 and 1, which assigns the probability values to the
input data. If the probability is more than 0.5 then the model
recognizes the sequence as a positive 6mA site, on the other
hand, if it is less than 0.5 then the model distinguishes it as a
negative 6mA site.

TABLE 3. The architecture of the proposed model.

TABLE 4. The performance results of iIM-CNN.

Table 3, depicts the operations of the proposed model,
where Conv1D (t, s, d) operator is a one-dimensional con-
volution layer where t is the number of filters, s is the sizes
of the filters and d is the stride. The Maxpooling1D (p, e)
operator is a max-pooling layer where p is the pool-size and
e is the stride. The Dropout (r) represents a dropout layer
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TABLE 5. Result comparison of state-of-the-art predictors with our model (iIM-CNN) by using three benchmark datasets.

FIGURE 2. Graphical illustration of iIM-CNN results on different species
with standard error.

with a probability of r . Dense (n) is a fully connected layer
with n nodes. Finally, the Sigmoid () function is a nonlinear
activation function that squeezes the output in the range [0-1]
and represents the probability of having 6mA and non-6mA
sites. Figure 1 shows the detailed architecture of the proposed
model.

The iIM-CNN was implemented by using Keras frame-
work [32]. In the proposed model Adam optimizer was uti-
lized for optimization of the predictor with the learning rate
of 0.006. The batch size was set to 32 and binary cross-
entropy was used as a loss function [33]. The number of
epochs was set to 80 and the early stopping method was
used on validation loss, which means that training iterations
will halt when the model performance stops improving the
validation loss. Patience level for early stopping was set to 11,
it means that after 11 iterations it would stop training if there
would be no improvement in validation loss.

C. PERFORMANCE EVALUATION
For evaluating the performance of the proposed model,
we used a 5-fold cross-validation method. Each subset was
iteratively chosen as a test set in a separate cross-validation
fold, while the remaining four subsets were used for the

FIGURE 3. The auROC of different datasets in the proposed model.

training of the model. The average results of the five trials
were finally used as the performance estimation of the pro-
posed model.

Several recent publications have used the following stan-
dard measures [34]–[39]. The definition of these mea-
sures,Accuracy (ACC),Sensitivity (SN), Specificity (SP),
Matthews Correlation Coefficient (MCC), and F1 score, are
described as:

ACC = 1−
M+− +M

−

+

M+ +M−
(1)

SN = 1−
M+−
M+

(2)

SP = 1−
M−+
M−

(3)
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−
+

M++M−√
(1+ M−+−M

+
−
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−
+
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F1 = 2
M+ −M+−

2M+ −M+− + N
−

+

(5)

where M+ and M− represent the number of samples as
positive or negative, respectively. M+− is the number of
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FIGURE 4. Confusion matrix of the proposed model iIM-CNN on 3 datasets. (a) Cross-species,
(b) Rice, and (c) M. musculus.

FIGURE 5. Result comparisons of iIM-CNN model on three datasets with state-of-the-art models.
(a) Cross Species. (b) Rice. (c) M. musculus.

positive examples that were identified as negatives, M−+
states the number of negative samples that were predicted
as positives samples. MCC depicts the prediction model

performance for the skewed dataset. To calculate the success
rate of the prediction model the receiver operating character-
istic curve (ROC curve) was used. While the auROC (area
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under the ROC curve) and F1 score are the significant mea-
sures for calculating a binary classifier’s prediction quality
and test accuracy respectively.

III. RESULT AND DISCUSSION
We evaluated iIM-CNN on three benchmark datasets contain-
ing 6mA sites sequences from the genomes of cross-species,
rice, and Mus musculus respectively. Figure 2 and Table 4
depict the results of the proposed model, while Figure 3 and
Figure 4 show the auROC curves of all species along with the
visual representation of the confusion matrix, respectively.

To show the dominance of iIM-CNN, a thorough com-
parison with state-of-the-art-predictor csDMA [17] is shown
in Table 5 and Figure 5 by using 5-fold cross-validation
both of the predictors were evaluated on the same datasets.
For the Cross-species, iIM-CNN enhanced the sensitivity,
specificity, accuracy,MCC, auROC, F1 by 0.3%, 4.5%, 2.5%,
4.8%, 1.3%, 0.02%. respectively. For the rice genome, speci-
ficity, accuracy, MCC, auROC, F1 were improved by 3.4%,
1.4%, 2.9%, 1.1%, 1.2%. respectively. Finally, in the case of
the Mus musculus genome, the sensitivity, accuracy, MCC,
F1 were improved by 0.6%, 0.3%, 0.6%, 0.3% respectively.
These results show that iIM-CNN outperforms the state-of-
the-art csDMA [17] predictor which were achieved without
handy crafted feature extraction from raw DNA sequences
using CNN.

IV. WEBSERVER
As publicly accessible webservers have considerably
increased the effects of bioinformatics on the research com-
munity and medical science [40] we made the (iIM-CNN)
publically accessible at https://home.jbnu.ac.kr/NSCL/
iIMCNN.htm. The webserver was built using Python and
Flask library. It supports direct input sequence processing
and uploading a FASTA file for processing. The allowed
input sequence length is 41nt. The users can select the
species types such as Mouse, Rice, and Cross-spices. The
maximum number of the allowed sequence for processing is
1000 sequences.

V. CONCLUSION
In this study, we introduced an effective deep learning model
called iIM-CNN for DNA N6-methyladenine (6mA) site
prediction. The proposed model iIM-CNN used a convolu-
tion neural network for the automatic extraction of features
from raw DNA sequences which is a major advantage in
comparison with the state-of-the-art models. The achieved
outcomes outperformed the current state-of-the-art models.
The iIM-CNN is projected to be potentially effective in drug
discovery and bioinformatics research. Finally, a web server
has been established and made publicly and freely available
at https://home.jbnu.ac.kr/NSCL/iIMCNN.htm

ACKNOWLEDGMENT
(Abdul Wahab and Syed Danish Ali contributed equally to
this work.)

REFERENCES
[1] G.-Z. Luo and C. He, ‘‘Dna n6-methyladenine in metazoans: Functional

epigenetic mark or bystander?’’ Nature Struct. & Mol. Biol., vol. 24, no. 6,
p. 503, 2017.

[2] Z. K. O’Brown and E. L. Greer, ‘‘N6-methyladenine: A conserved and
dynamic dna mark,’’ in DNA Methyltransferases—Role and Function.
Switzerland: Springer, 2016, pp. 213–246.

[3] J. L. Campbell and N. Kleckner, ‘‘E. Coli oric and the dnaa gene promoter
are sequestered from dam methyltransferase following the passage of the
chromosomal replication fork,’’ Cell, vol. 62, no. 5, pp. 967–979, 1990.

[4] J. L. Robbins-Manke, Z. Z. Zdraveski, M. Marinus, and J. M. Essigmann,
‘‘Analysis of global gene expression and double-strand-break formation in
dna adenine methyltransferase-and mismatch repair-deficient escherichia
coli,’’ J. Bacteriol., vol. 187, no. 20, pp. 7027–7037, 2005.

[5] P. J. Pukkila, J. Peterson, G. Herman, P. Modrich, and M. Meselson,
‘‘Effects of high levels of dna adenine methylation on methyl-directed mis-
match repair in Escherichia Coli,’’ Genetics, vol. 104, no. 4, pp. 571–582,
1983.

[6] D. Dunn and J. Smith, ‘‘Occurrence of a new base in the deoxyribonucleic
acid of a strain of bacterium coli,’’Nature, vol. 175, no. 4451, p. 336, 1955.

[7] A. P. Bird, ‘‘Use of restriction enzymes to study eukaryotic dna methyla-
tion: Ii. the symmetry of methylated sites supports semi-conservative copy-
ing of the methylation pattern,’’ J. Mol. Biol., vol. 118, no. 1, pp. 49–60,
1978.

[8] K. R. Pomraning, K. M. Smith, and M. Freitag, ‘‘Genome-wide high
throughput analysis of dna methylation in eukaryotes,’’ Methods, vol. 47,
no. 3, pp. 142–150, 2009.

[9] A. M. Krais, M. G. Cornelius, and H. H. Schmeiser, ‘‘Genomic n6-
methyladenine determination by MEKC with LIF,’’ Electrophoresis,
vol. 31, no. 21, pp. 3548–3551, 2010.

[10] B. A. Flusberg, D. R. Webster, J. H. Lee, K. J. Travers, E. C. Olivares,
T. A. Clark, J. Korlach, and S. W. Turner, ‘‘Direct detection of dna methy-
lation during single-molecule, real-time sequencing,’’ Nature Methods,
vol. 7, no. 6, p. 461, 2010.

[11] E. L. Greer, M. A. Blanco, L. Gu, E. Sendinc, J. Liu,
D. Aristizábal-Corrales , C.-H. Hsu, L. Aravind, C. He, and Y. Shi,
‘‘Dna methylation on n6-adenine in c. Elegans,’’ Cell, vol. 161, no. 4,
pp. 868–878, 2015.

[12] Y. Fu, G.-Z. Luo, K. Chen, X. Deng, M. Yu, D. Han, Z. Hao,
J. Liu, X. Lu, L. C. Doré, X. Weng, Q. Ji, L. Mets, and C. He,
‘‘N6-methyldeoxyadenosine marks active transcription start sites in
chlamydomonas,’’ Cell, vol. 161, no. 4, pp. 879–892, 2015.

[13] M. J. Koziol, C. R. Bradshaw, G. E. Allen, A. S. Costa, C. Frezza, and
J. B. Gurdon, ‘‘Identification of methylated deoxyadenosines in verte-
brates reveals diversity in dna modifications,’’ Nature Struct. & Mol. Biol.,
vol. 23, no. 1, p. 24, 2016.

[14] S. J. Mondo, R. O. Dannebaum, R. C. Kuo, K. B. Louie, A. J. Bewick,
K. LaButti, S. Haridas, A. Kuo, A. Salamov, and S. R. Ahrendt,
‘‘Widespread adenine n6-methylation of active genes in fungi,’’ Nature
Genet., vol. 49, no. 6, p. 964, 2017.

[15] C. Zhou, C. Wang, H. Liu, Q. Zhou, Q. Liu, Y. Guo, T. Peng, J. Song,
J. Zhang, and L. Chen, ‘‘Identification and analysis of adenine n6-
methylation sites in the Rice genome,’’ Nature Plants, vol. 4, no. 8, p. 554,
2018.

[16] P. Feng, H. Yang, H. Ding, H. Lin,W. Chen, and K.-C. Chou, ‘‘IDNA6mA-
PseKNC: Identifying DNA N6-methyladenosine sites by incorporating
nucleotide physicochemical properties into PseKNC,’’Genomics, vol. 111,
no. 1, pp. 96–102, 2019.

[17] Z. Liu, W. Dong, W. Jiang, and Z. He, ‘‘CSDMA: An improved bioinfor-
matics tool for identifying dna 6 ma modifications via chou 5-step rule,’’
Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[19] H. Tayara andK. T. Chong, ‘‘Object detection in very high-resolution aerial
images using one-stage densely connected feature pyramid network,’’
Sensors, vol. 18, no. 10, p. 3341, 2018.

[20] H. Tayara, K. G. Soo, and K. T. Chong, ‘‘Vehicle detection and counting
in high-resolution aerial images using convolutional regression neural
network,’’ IEEE Access, vol. 6, pp. 2220–2230, 2018.

[21] T. Young, D. Hazarika, S. Poria, and E. Cambria, ‘‘Recent trends in deep
learning based natural language processing,’’ IEEE Comput. Intell. Mag.,
vol. 13, no. 3, pp. 55–75, Aug. 2018.

178582 VOLUME 7, 2019



A. Wahab et al.: iIM-CNN: Intelligent Identifier of 6mA Sites on Different Species by Using CNN

[22] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, ‘‘Speech recog-
nition using deep neural networks: A systematic review,’’ IEEE Access,
vol. 7, pp. 19143–19165, 2019.

[23] X. Pan, P. Rijnbeek, J. Yan, and H.-B. Shen, ‘‘Prediction of rna-protein
sequence and structure binding preferences using deep convolutional and
recurrent neural networks,’’ BMC Genomics, vol. 19, no. 1, p. 511, 2018.

[24] I. Nazari, H. Tayara, and K. T. Chong, ‘‘Branch point selection in RNA
splicing using deep learning,’’ IEEE Access, vol. 7, pp. 1800–1807, 2018.

[25] Z. Louadi, M. Oubounyt, H. Tayara, and K. T. Chong, ‘‘Deep splicing
code: Classifying alternative splicing events using deep learning,’’ Genes,
vol. 10, no. 8, p. 587, Aug. 2019.

[26] M. Tahir, H. Tayara, and K. T. Chong, ‘‘Irna-pseknc (2methyl): Identify rna
2’-o-methylation sites by convolution neural network and chou’s pseudo
components,’’ J. Theor. Biol., vol. 465, pp. 1–6, Mar. 2019.

[27] M. Oubounyt, Z. Louadi, H. Tayara, and K. T. Chong, ‘‘Deepromoter:
Robust promoter predictor using deep learning,’’ Frontiers Genet., vol. 10,
p. 286, Apr. 2019.

[28] W. Chen, H. Lv, F. Nie, and H. Lin, ‘‘I6ma-pred: Identifying dna
n6-methyladenine sites in the rice genome,’’ Bioinformatics, vol. 35,
no. 16, pp. 2796–2800, Aug. 2019.

[29] L. Fu, B. Niu, Z. Zhu, S.Wu, andW. Li, ‘‘Cd-hit: Accelerated for clustering
the next-generation sequencing data,’’ Bioinformatics, vol. 28, no. 23,
pp. 3150–3152, 2012.

[30] K.-C. Chou and H.-B. Shen, ‘‘Recent progress in protein subcellular
location prediction,’’ Anal. Biochem., vol. 370, no. 1, p. 1, 2007.

[31] K.-C. Chou and C.-T. Zhang, ‘‘Prediction of protein structural classes,’’
Crit. Rev. Biochem. Mol. Biol., vol. 30, no. 4, pp. 275–349, 1995.

[32] F. Chollet. (2015). Keras: Deep Learning Library for Theano and Tensor-
flow. [Online]. Available: https://keras

[33] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, ‘‘A tuto-
rial on the cross-entropy method,’’ Ann. Oper. Res., vol. 134, no. 1,
pp. 19–67, 2005.

[34] M. Tahir, H. Tayara, and K. T. Chong, ‘‘Ipseu-cnn: Identifying rna
pseudouridine sites using convolutional neural networks,’’ Mol. Therapy-
Nucleic Acids, vol. 16, pp. 463–470, Jun. 2019.

[35] I. Nazari, M. Tahir, H. Tayara, and K. T. Chong, ‘‘In6-methyl (5-step):
Identifying rna n6-methyladenosine sites using deep learning mode via
chou’s 5-step rules and chou’s general pseknc,’’ Chemometrics Intell. Lab.
Syst., vol. 193, Oct. 2019, Art. no. 103811.

[36] M. Tahir, H. Tayara, and K. T. Chong, ‘‘Idna6ma (5-step rule): Identifi-
cation of dna n6-methyladenine sites in the Rice genome by intelligent
computational model via chou’s 5-step rule,’’ Chemometrics Intell. Lab.
Syst., vol. 189, pp. 96–101, Jun. 2019.

[37] H. Tayara, M. Tahir, and K. T. Chong, ‘‘Identification of prokaryotic
promoters and their strength by integrating heterogeneous features,’’
Genomics, 2019, doi: 10.1016/j.ygeno.2019.08.009.

[38] J. Khanal, I. Nazari, H. Tayara, and K. T. Chong, ‘‘4mccnn: Identification
of n4-methylcytosine sites in prokaryotes using convolutional neural net-
work,’’ IEEE Access, vol. 7, pp. 145455–145461, 2019.

[39] B. Liu, S. Wang, R. Long, and K.-C. Chou, ‘‘IRSpot-EL: Identify recombi-
nation spots with an ensemble learning approach,’’ Bioinformatics, vol. 33,
no. 1, pp. 35–41, Jan. 2017.

[40] K. C. Chou, ‘‘Impacts of bioinformatics to medicinal chemistry,’’ Med.
Chem., vol. 11, no. 3, pp. 218–234, 2015.

ABDUL WAHAB received the B.Sc. degree in
computer science from the University of the Pun-
jab, Lahore, Pakistan, in 2014. He is currently pur-
suing the master’s degree with the Department of
Electronics and Information Engineering, Chon-
buk National University, Jeonju, South Korea. His
research interests include bioinformatics, artificial
intelligence, deep learning, machine learning, and
image processing.

SYED DANISH ALI received the B.Sc. degree
in electronics engineering from the Ghulam Ishaq
Khan Institute of Engineering Sciences and Tech-
nology, Pakistan, in 2013, and the M.Sc. degree
in electrical engineering from Abasyn Univer-
sity, Pakistan, in 2018. He is currently pursuing
the Ph.D. degree in electronics and information
engineering from Chonbuk National University,
Jeonju, South Korea. He is currently working with
the Department of Electrical Engineering, The

University of Azad Jammu and Kashmir, Pakistan. His research interests
include bioinformatics and machine learning.

HILAL TAYARA received the B.Sc. degree in
computer engineering from the University of
Aleppo, Aleppo, Syria, in 2008, and the M.S. and
the Ph.D. degrees in electronics and information
engineering from Chonbuk National University,
Jeonju, South Korea, in 2015 and 2019, respec-
tively. He is currently a Researcher with Chonbuk
National University. His research interests include
bioinformatics, machine learning, and image
processing.

KIL TO CHONG received the Ph.D. degree in
mechanical engineering from Texas A&M Uni-
versity, in 1995. He is currently a Professor with
the School of Electronics and Information Engi-
neering, Chonbuk National University, Jeonju,
South Korea, and the Head of the Advanced
Research Center of Electronics. His research inter-
ests include the areas of machine learning, signal
processing, motor fault detection, network system
control, and time-delay systems.

VOLUME 7, 2019 178583

http://dx.doi.org/10.1016/j.ygeno.2019.08.009

	INTRODUCTION
	MATERIALS AND METHODS
	BENCHMARK DATASETS
	THE PROPOSED MODEL
	PERFORMANCE EVALUATION

	RESULT AND DISCUSSION
	WEBSERVER
	CONCLUSION
	REFERENCES
	Biographies
	ABDUL WAHAB
	SYED DANISH ALI
	HILAL TAYARA
	KIL TO CHONG


