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ABSTRACT Visual analytics for time series data has received a considerable amount of attention. Different
approaches have been developed to understand the characteristics of the data and obtain meaningful statistics
in order to explore the underlying processes, identify and estimate trends, make decisions and predict the
future. The machine learning and visualization areas share a focus on extracting information from data.
In this paper, we consider not only automatic methods but also interactive exploration. The ability to embed
efficient machine learning techniques (clustering and classification) in interactive visualization systems is
highly desirable in order to gain the most from both humans and computers. We present a literature review of
some of the most important publications in the field and classify over 60 published papers from six different
perspectives. This review intends to clarify the major concepts with which clustering or classification
algorithms are used in visual analytics for time series data and provide a valuable guide for both new
researchers and experts in the emerging field of integrating machine learning techniques into visual analytics.

INDEX TERMS Time series data, clustering, classification, visualization, visual analytics.

I. INTRODUCTION AND MOTIVATION

Recent years have seen an increasing use of time-oriented
data in many fields such as networks and systems, meteorol-
ogy, social media, behavior analysis, trajectory data, biolog-
ical science, finance, and the like, where data is measured
at a regular interval of (real) time. In this research work,
we focus on time series data; it is therefore important to
agree on a formal definition. Time series data is defined as
an ordered collection of observations or sequence of data
points made through time at often uniform time intervals [1].
Also, because of its diversity of sources, its complexity, and
its various underlying structures, we categorize time series
data, used in our surveyed papers, into four categories based
on their structure: univariate, multivariate, tensor fields and
multifield.

Machine learning gives computers the ability to learn with-
out explicit programming [2]. Alpaydin [3] gives a concise
description of machine learning, which is “optimizing a per-
formance criterion using example data and past experience’.
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Data plays a major role in machine learning where the learn-
ing algorithm is utilized to discover and learn knowledge
or properties from the data (learn from experience) with-
out depending on a predetermined equation as a model [4].
In supervised learning, the dataset (the training set) is com-
posed of pairs of input and desired output and learning aims to
generate a function that maps inputs to outputs. Each example
is associated with a label or target. In unsupervised learning,
the dataset (the training set) is composed of unlabeled inputs
without any assigned desired output and the aim is to find
hidden patterns or substantial structures in data [5]. There
are different types of supervised and unsupervised machine
learning techniques and under each approach has different
algorithms taking various approaches to learning. Our focus
in this work will be on classification as a supervised learning
technique and clustering as an unsupervised learning tech-
nique with time series data.

Sacha et al. [6] highlight two main functions for machine
learning. The first is to transform unstructured data into
a form which facilitates human exploration, analysis and
understanding. The second is to utilize unsupervised or
semi-supervised algorithms to direct the analysis itself by
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recommending the best visualizations, verification, succes-
sions of steps in the exploration, etc., where the algorithm
can automatically discover complex patterns from the raw
data directly. This user-centric approach of interactive visu-
alization utilizes human vision scalability for analyzing,
exploring and understanding such data. It also assists data
analysts in solving complex problems interactively by inte-
grating automated data analysis and mining, such as machine
learning-based methods, with interactive visualizations [7].

Machine learning algorithms provide a collection of auto-
mated analyses which can be much more efficient, accurate
and objective in solving time series tasks. Machine learn-
ing also focuses on prediction [8] which has useful and
widespread real-world applications.

The machine learning and visualization communities have
been addressing time series issues from different perspec-
tives. Machine learning has a strong algorithmic focus while
interactive visualization has a strong human/visualization
focus [9]. Therefore, the essential difference between the
fields, is the role of the user in data exploration and mod-
eling. In machine learning, the goal is to dispose of the user,
so everything is automated. In this case, the user can play a
limited role such as selecting the type of algorithm, where
their influence should be restricted to a minimum. In an
interactive visualization, a completely opposite point of view
is offered, where visual representations are leveraged by the
user to extract knowledge from the data, discover patterns,
adjust models of the data under user steering. This main
difference in philosophy may explain why both communities
have remained relatively disconnected [10].

Based on the above, there is a strong incentive for both
communities to be synergized in order to make progress and
benefit from one another [7]. Combining automated analysis
methods and interactive visualization has been shown to be an
efficient approach for visual analytics. The visual analytics
process aims to tightly couple automatic analysis methods
and interactive visualization in order to gain knowledge from
raw data and present a chance for analysts, through interac-
tion tasks, to analyze, explore, reason, discover, and under-
stand the data.

A. SURVEY SCOPE AND INTENDED AUDIENCE

Our focus will be on two important machine learning tasks,
namely clustering and classification, and how they are inte-
grated into visual analytics systems for time series data.
From a broader point of view, existing works come from
two different fields which can be classified into two cate-
gories: data mining approaches [1], [11]-[14] and visualiza-
tion approaches [15]-[17].

1) FROM A DATA MINING PERSPECTIVE

Several surveys are available on clustering and classi-
fication for time series data. Liao [11] and Aghabo-
zorgi et al. [12] provide an overview on clustering time series
data. Xing et al. [13] present a review for time series data
classification. Moreover, Yahyaoui and Al-Mutairi [14] also
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discuss some classification algorithms that are used with
sequence data. Fu [1] provides an overall picture of the cur-
rent time series data mining techniques including clustering
and classification tasks. These previous works discuss in
detail a wide range of clustering and classification algorithms
that have been proposed and employed on time series data
with a strong algorithmic focus. However, user influence is
not considered in most of these works.

2) FROM THE VISUALIZATION PERSPECTIVE

Aigner et al. [15] provide a complete classification scheme
for time-oriented data. A large part of their work involves
a structured survey of existing techniques for visualiz-
ing time-oriented data, illustrated with numerous examples.
Bach er al. [16] review a range of temporal data visualization
techniques and classify them from a new perspective by
depicting each technique as series of operations performed on
a conceptual space-time cube. However, their work does not
provide much guidance for interaction design. Additionally,
Ko et al. [17] present a survey that categorizes financial
systems from the visual analysis perspective. Their focus is on
financial data, which is one of several different kinds of time
series data. In contrast, our work looks at time series data in
general, primarily emphasizing clustering and classification
tasks with a variety of visual analytics systems, which focus
on combining machine learning algorithms and visualization
techniques.

3) TOWARDS INTEGRATION AND CONVERGENCE

The idea of integration between machine learning algorithms
and interactive visualization has been encouraged and pro-
moted from both the visualization and machine learning com-
munities. For example, several recent initiatives have been put
into place to bring the two domains closer, such as the annual
CD-MAKE conference and the MAKE-Journal [18], [19].
The recently organized Dagstuhl Seminars titled “Informa-
tion Visualization, Visual Data Mining and Machine Learn-
ing” (12081) [10] and ““Bridging Information Visualization
with Machine Learning” (15101) [7] are other examples of
efforts to bring researchers from both domains together to
discuss important challenges and corresponding solutions for
integrating the two fields.

To understand this interplay between both domains,
the working group in the Dagstuhl Seminar “Bridging Infor-
mation Visualization with Machine Learning” (15101) [7]
developed a framework which conceptualizes how the incor-
poration of interactive visualizations and machine learning
algorithms can be performed. This framework was inspired
by Keim et al. [20] visual analytics framework. The group
attempts to identify aspects of machine learning by the user
such as adjusting the parameters of models or switching
between different model kinds. Montes et al. [21] present
a work which is considered as one of the groundbreaking
works in this trend. They combine visualization with machine
learning techniques (clustering and classification) over time
series data to understand the behavior of complex distributed
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FIGURE 1. This survey focuses on the intersection between time series
data, machine learning techniques (clustering and classification), and
interactive visualizations.

systems. Recently, Sacha et al. [22] developed an ontology
which maps out all major processes in machine learning and
aims to provide visual analytics practitioners with a means
to “‘navigate” the intricate landscape of machine learning,
in order to uncover aspects which might be improved by
introducing more machine or human capabilities.

To the best of our knowledge, there are no previous survey
papers that offer a systematic review of the literature for time
series clustering and classification that combine visualization
techniques and machine learning algorithms for visual ana-
lytics. In this work, we specifically look at the convergence
between automatic methods and interactive exploration, and
how such automatic methods have been used in visual ana-
lytics systems (as shown in Fig. 1).

We provide a comprehensive and detailed survey on clus-
tering and classification in visual analytics systems that have
been applied to time series data. Although a large enough
body of literature has covered the clustering and classification
of time series data, their focus is either on algorithms or
interactive visualization. However, the idea of integration
and convergence between both domains is beneficial; for
instance, clustering is one of the most popular algorithms to
have been incorporated into visual analytics systems. Since
visual representations are quite significant for interpreting
and understanding the characteristics of clusters output by
algorithms, direct adjustment of clustering algorithms is often
facilitated through interactive interfaces that present new
results “on-demand” [23].

4) CLUSTERING AND CLASSIFICATION OF TEMIPORAL AND
NON-TEMPORAL DATA
For time series data the presence of noise, its high dimen-
sionality and high feature correlation pose challenges for
designing effective and efficient clustering and classifi-
cation algorithms compared to data without a temporal
component [15], [24].

Analyzing time series data is nontrivial and can even vary
over time due to complex interrelations between time series
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variables. Xing et al. [13] mention three major challenges for
time series analysis especially in classification. First, many
methods can only take input data as a vector of features.
Unfortunately, there are no explicit features in sequence data.
Second, feature selection is not easy because the dimension-
ality of the feature space can be high and computation can
be costly. Third, since there are no explicit features, building
an interpretable sequence classifier is burdensome in some
applications.

Computing the similarity between two data objects is con-
sidered one of the main differences between clustering and
classification of temporal and non-temporal data [11], [25].
The unique characteristics of time series data such as noise,
including outliers and shifts and the varying length of
time series has made similarity measures one of the main
challenges for clustering and classification of time series
data [12]. When dealing with time series data, the biggest
challenge lies in replacing the distance/similarity measure for
static data with a suitable one for time series data because it
may be scaled and translated differently both on the temporal
and behavioral dimensions [24], [26]. In the context of visu-
alization, classification and clustering tasks share a common
goal which is data abstraction. This is for subsequent visu-
alization, to decrease the workload when computing visual
representations and to minimize the perceptual effort required
to interpret them.

Keim et al. [27] present the visual analytics mantra: “Anal-
yse First - Show the Important - Zoom, Filter and Anal-
yse Further - Details on Demand”. Accordingly, it is not
enough to only recover and display the data using visual-
ization techniques; rather, it is essential to analyze the data
according to its value of interest, displaying the most relevant
aspects of the data, and at the same time providing interaction
techniques, which assist the user to gain details of the data
on demand. Automatic analysis techniques are critical to
the visual analytics process and are essential to incorporate
in parallel with the interactive visual representation. Also,
analysis techniques such as feature selection, dimensionality
reduction and clustering, support gaining insight into data and
support human cognition to process large volumes of data,
enabling visualization to scale. Visual analytics also allows
users to interact with these algorithms, in some cases, through
interactive interfaces such as directing the modification of
algorithms, accepting user input or switching between algo-
rithms and display new results “‘on-demand” [20].

5) CLASSIFICATION

We classify the surveyed papers from six different perspec-
tives, these being Time series Data Structures, Similarity
Measures and Feature Extraction for Time series Data, Time
series Analysis Techniques (Clustering and Classification),
Visualization Analysis, and Evaluation Approaches.

6) SURVEY SCOPE
A variety of concepts and methods are involved in achieving
the goal of extracting useful structures from large volumes of
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TABLE 1. The selected visual analytics papers of time series data. The table provides an overview of the surveyed papers regarding similarity measures
and feature extraction, time series analysis techniques (clustering or classification), visualization techniques, visualization tasks and interaction methods,

evaluation approaches, and distribution of papers by year of publication.
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data including statistics, machine learning, neural networks,
data visualization, pattern recognition, and high-performance
computing [15]. Time series analysis is dominated by tra-
ditional statistical methods such as autoregressive moving
average (ARMA) and autoregressive integrated moving aver-
age (ARIMA) as well as machine learning techniques such as
k-means and support vector machine (SVM). Machine learn-
ing methods have also shown ability for time series analysis.
They also enable analysis tasks such as clustering, classifi-
cation and prediction [28], [29]. Recently, Neural networks
have been increasingly used with sequential data such as text
data analysis where the recurrent neural network (RNN) has
received popularity.

Aigner et al. [15] gave a brief overview of analytical meth-
ods for time-oriented data including clustering, classification,
search and retrieval, pattern discovery and prediction where
visualization of temporal data can highly benefit from the
analytical support. In this survey, we focus on clustering
and classification. Other analytical tasks such as search and
retrieval and pattern discovery are indirectly addressed by our
inclusion of similarity measures, clustering and classification
since these operations are the bases of pattern discovery
or search. Other analysis tasks that are not in the focus
in this survey, but are widely used in the context of time
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series analysis, include prediction which targets to deduce
from data collected in the past and display how the data
will develop in the future. Linear regression, recurrent neu-
ral network (RNN), and Long short-term memory (LSTM)
are the most recently used techniques for this task besides
the common statistical techniques such as the autoregressive
moving average model (ARIMA) and box-Jenkins method.

To fulfill the scope of our survey, we have selected papers
which focus on machine learning algorithms for time series
clustering and classification tasks in visual analytics systems.
The sixty-five publications which have been selected span
a period of thirteen years. For all papers, we pay attention
to time series similarity measures and feature extraction,
clustering and classification algorithms, and visual analytics.
We categorize the nature of time series data and evaluation
techniques. Our findings on these are summarized in Table 1.
Papers that focus on time series text visualization are out of
our survey’s scope.

B. INTENDED AUDIENCE

The intended audience of this survey are those who already
have a background in visualization and possibly want to
know more about machine learning tasks, in particular
clustering and classification. These tasks could help them
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FIGURE 2. The time series data pipeline used to structure our surveyed papers. From the surveyed papers the items in the cloud are usually integrated
into one visual analytics system which is evaluated using the various evaluation approaches surveyed in Section VI.

analyze, understand and visualize time series data. As aresult,
we do not go into detail about visualization (visualization
techniques or visualization tasks and interaction methods)
but focus more on machine learning tasks (clustering and
classification) and how these algorithms have been adapted
into visual analytics systems.

C. SEARCHED VENUES

For paper collection, we mainly used IEEE Xplore (e.g.
TVCG, VAST and PacificVis), Springer (e.g. Visual Com-
puter), ACM, Wiley (which includes Eurovis papers), Sci-
enceDirect and SAGE. Using IEEE Xplore, forty-three
papers were obtained mostly from IEEE Transactions on
Visualization and Computer Graphics, IEEE on Visual Ana-
lytics Science and Technology (VAST), and IEEE Pacific
Visualization Symposium (PacificVis). We include six papers
from Springer, and six papers from ACM. The other eleven
examined papers have been obtained from other digital
libraries.

D. SURVEY STRUCTURE
Figure 2 shows the structure of this survey, which is derived
from the main steps of the selected papers. We start with time
series data structures where we provide a general classifica-
tion for time series data. All data structures, as described in
Section II, refer to the main definition of time series data, and
this section answers questions such as how time series data
structures are different, along with providing some examples
of this kind of data.

In Section III, we discuss similarity measures and fea-
ture extraction which are important for time series data as,
usually, the quality of analysis techniques (clustering and
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classification) are significantly influenced by its selection.
Moreover, in this section we show how these techniques,
along with clustering and classification techniques, have been
adapted to gain and visualize relevant knowledge from the
data.

Section IV reviews the time series analysis tasks. We pro-
vide a comprehensive explanation for popular clustering and
classification algorithms that have been used in the surveyed
visual analytics papers, how they are used with time series
data, and how they have been adapted to interactive visual-
ization.

Section V summarizes visualization techniques, visualiza-
tion tasks and interaction methods that are used in surveyed
visual analytics systems. Some of these techniques and tasks
are beneficial for time series data, while others are shared
when working with other kinds of data. We focus more on
illustrating how these techniques and tasks are performed and
adapted to assist in analyzing time series data. The evaluation
approaches for the surveyed visual analytics systems are
discussed in Section VI.

Our survey presents a structured review of the concept of
integrating interactive visualizations and analysis techniques
(clustering and classification) into the visual analytics sys-
tems for time series data. Through this, we have determined
different research trends as well as some of the limitations
and challenges involved in the integration and convergence
of machine learning algorithms and interactive visualization.
These are summarized in Section VII.

Il. TIME SERIES DATA STRUCTURES
We classify time series data that has been used in our sur-
veyed papers into four categories. This classification can be
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subsumed under the concepts of univariate, multivariate, ten-
sor fields, and multifields. Hotz and Peikert [30] discuss
the complex structure of scientific data and provide a clear
definition of a multifield. Our four types or categories are
generalized to include many related subtypes of time series
data structures in order to achieve a comprehensive classifi-
cation for time series data structures that can be embodied
in visual analytics systems. The prevalent representatives in
our surveyed papers are multivariate time series and tensor
fields.

A. UNIVARIATE

The univariate time series is a sequence that contains only one
data value per temporal primitive [15], [31]. It is a field of a
single variable captured or observed through time. Tempera-
ture in a city spanning a period of time is a clear example of
this type of data structure.

B. MULTIVARIATE

Multivariate time series is a set of time series which have
the same timestamps [15], [31]. This kind of time series data
structure is an array of variables or numbers at each point in
time and can be a collection of multiple univariate captured
through time, such as temperature and pressure readings,
or associative multivariate, such as 3-D acceleration mea-
sured from a tri-axial accelerometer, where each component
of the multivariate has the same units and sensor source.
As time series data structures are an ordered collection of
observations or sequence of data points made through time,
most of the surveyed papers adopt this type of structure.
This special type of multivariate time series data is rele-
vant in many application fields including biology, medicine,
finance and animation. Multivariate time series data have
been also used in manufacturing systems and predictive main-
tenance [32], [33]. In the surveyed visual analytics papers,
time series data, e.g., obtained from gene expression mea-
surement [34]-[37] can be used by biologists to understand
the correlation between different types of genes, analyze gene
interactions, and compare regulatory behaviors for interesting
genes. Moreover, medical experts utilize time series data
e.g., blood pressure measurements [38], to understand and
deal with different cases such as monitoring illness progres-
sion, and understanding ecological and behavioral processes
related to a disease which may lead to improved disease diag-
noses. Furthermore, time series data, e.g., obtained from sam-
pled transactions over a period of time [39]-[41], stock mar-
kets [42], [43], and international financial markets [44], [45]
can be used in the financial field and is usually analyzed
to understand and forecast the market situation. It is useful
to find correlations between the data and test hypotheses
about the market, which helps to make the best decisions at
the appropriate time under different business and economic
circumstances. A multivariate can also present time series
data obtained from various data sets including metadata e.g.
patient records [46], [47], employment records [48], [49], and
others [50], [51].
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C. TENSOR FIELDS

These are an array of data arranged on a regular grid with
a variable number of axes [4]. They can be described as a
quantity which is associated to each point in space-time as
it has been extended to functions or distributions linked to
points in space-time [30]. Dealing with spatio-temporal data,
this type of time series data structure is generalized to include
many related subtypes: time series of graphs and networks,
time series of spatial positions of moving objects, and time
series of spatial configurations/distributions.

1) TIME SERIES OF GRAPH AND NETWORK

Time series data in the form of networks consist of associated
attributes such as nodes and edges that reflect different kinds
of behavior over time. Node or edge attributes of dynamic
graphs can be introduced as time series. This kind of time
series data helps understand different temporal patterns and
evaluate the network dynamics in general [52]-[56]. The
network view helps to visualize the connectivity of the sen-
sors, which can enhance analysis, detection and exploration.
As each machine (e.g. engines or computers) typically con-
sists of a large number of sensors that produce massive data,
time series data can be obtained from the nodes of such
machines over a period of time, such as CPU load, memory
usage, network load, and data center chiller sensor, helping
to improve the understanding of how machines are used in
practice and analyze the performance and behaviors of such
systems [57]-[63]. Indeed, analyzing this data helps users and
experts understand and evaluate the network dynamics.

2) TIME SERIES OF SPATIAL POSITIONS OF MOVING
OBJECTS

Spatial positions of moving objects data with an associated
time component classifies as trajectory data. It presents differ-
ent places over time, providing a clear idea of spatio-temporal
changes. A combination of interactive visualizations and
automated analysis has together been shown to be an efficient
approach in analyzing, tracking, and representing this type
of data in order to understand and recognize the mobility
of a diversity of moving objects, such as vehicles [64]-[71],
and aircraft [66], [67], which can lead to path discovery,
movement analysis, and location prediction.

3) TIME SERIES OF SPATIAL CONFIGURATIONS AND
DISTRIBUTIONS

Being able to extract useful insight from time series of
spatial distributions and configurations is becoming more
important due of the massive growth in data science and
the rapid advancement of many technologies. In our sur-
veyed papers, we consider discovering behavioral patterns
and finding interesting events that might take place in certain
municipalities [72] and public or business sectors as spatial
configurations and distributions. This identification of regu-
lar configurations and distributions over time is represented
by a total number of events and behaviors extracted from
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achosen spatial scale. Personal mobility behaviors and move-
ment patterns [73]-[81], behaviors of animals [82], [83],
pattern changes in climate (weather) and the ozone layer [81],
[84]1-[90], and behavior capture data made through time at
often uniform time intervals [91]-[96] can be regarded as
instances for this type of data structure that take a place in
specific spatial identification.

D. MULTIFIELD

This kind of data, defined as a set of fields, provides enough
flexibility to capture most types of compound datasets that
occur in practice [30]. Combining multiple modality sensors
such as gyroscopes, magnetometers and accelerometers with
other environmental sensors is a good example of such data
structure type.

Ill. SIMILARITY MEASURES AND FEATURE EXTRACTION
FOR TIME SERIES DATA

Large time series data requires adequate preprocessing to
gain an appropriate approximation of the underlying data
representation. The aim of feature extraction is to generate a
higher-level abstraction which represents the data while pre-
serving the shape characteristics of the original data during
dimensionality reduction. There are several dimensionality
reduction techniques specifically designed for time series
which exploit the frequential content of the signal and its
usual sparseness in the frequency space [97]. In general terms,
choosing the distance measure is important and assists in
dealing with outliers, amplitude differences and time axis
distortion. Furthermore, choosing important features in the
data requires sufficient communication of knowledge from
domain experts. Thus, the quality of mining approaches is
significantly affected by the choice of similarity measures and
feature extraction techniques to obtain relevant knowledge
from the data. Similarity measures and feature extraction
techniques used in the surveyed visual analytics papers are
summarized in Table 1.

A. RAW DATA SIMILARITY

Most mining approaches often utilize the concept of similar-
ity between a pair of time series. While dealing with time
series data, efficiency and effectiveness are the main tar-
gets of representation methods and similarity measures [98].
Tornai et al. [99] argue that the distance between two
sequences as a measurement plays an important role in the
quality of clustering and classification algorithms. The accu-
racy of such algorithms can be significantly impacted by the
choice of similarity measures. Yahyaoui and Al-Mutairi [14]
and Wang et al. [98] present a comprehensive review for
time series measures, classifying them into four major cat-
egories: lock-step measures (e.g. Euclidean distance and
Manhattan distance), elastic measures (e.g. longest common
subsequence [LCSS] and dynamic time warping [DTW]),
pattern-based measures (e.g. spatial assembling distance
[SpADe]) and threshold-based measures (e.g. threshold
query based similarity search [TQuEST]). Pattern-based
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measures and threshold-based measures are out of this work’s
scope as they are not used in the surveyed visual analytics
papers.

Euclidean distance (ED) is a commonly used metric for
time series. It is defined between two-time series X and Y
having length L; therefore, the Euclidean distance, between
each pair of corresponding points X and Y, is the square root
of the sum of the squared differences [100]. Thus, the two
time series that are being compared must have the same
length, and the computational cost is linear in terms of tempo-
ral sequence length [101]. Along the horizontal axis, the dis-
tance between two-time series is calculated by matching the
corresponding points [102]. The Euclidean distance metric is
very sensitive to distortion and noise [13], and it is not able
to handle one of the elements being compressed or stretched
[83]; therefore, this approach is not reliable, especially when
computing similarity between time series with different time
durations [103].

Dynamic Time Warping (DTW) is another distance mea-
sure that is proposed to overcome some Euclidean distance
limitations such as non-linear distortions. In DTW, the two-
time series do not have to be the same length, and the idea is
to align (warp) the series before computing the distance [13].
However, two temporal points with completely different local
structures might be mistakenly matched by DTW. This issue
can be addressed by improving the alignment algorithm, e.g.
shape dynamic time warping. It considers point-wise local
structural information [104].

Due to its quadratic time complexity, DTW does not scale
very well when dealing with large datasets. In spite of this,
it is widely used in different applications, such as in bioinfor-
matics, finance and medicine [105]. DTW has several local
constraints, namely boundary, monotonicity and continuity
constraints [103]. Moreover, some common misunderstand-
ings about DTW are that it is too slow to be useful and the
warping window size does not matter much; Wang et al. [98]
and Mueen and Keogh [106] have attempted to correct these
notions. Kotas et al. [107] have reformulated the matrix of
the alignment costs, which led to a major increase in the
noise reduction capability. Other surveys review distance
measures such as Euclidean Distance (ED) [108], Dynamic
Time Warping (DTW) [109], [110], and distance based on
Longest Common Subsequence (LCSS) [98], [111].

Correlation is a mathematical operation which is widely
used to describe how two or more variables fluctuate together.
Different types of correlation can be found by considering
the level of measurement for every variable. Distance cor-
relation can be used as a distance measure between two
variables that are not necessarily of equal dimension. In time
series data, it is used to detect a known waveform in ran-
dom noise. Unlike DTW and LCS, correlation also offers a
linear complexity frequency space implementation in signal
processing [83], [112].

Cross-correlation is the correlation between two signals
which shape a new signal, and its peaks can indicate the
similarity between the original signals; it is used as a distance
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metric [12]. However, cross-correlation can be carried out
more efficiently in frequency domain [112]. Autocorrelation
occurs when the signal is correlated with itself, which is
useful for finding repeating patterns [83]. Walker et al. [83]
demonstrate that cross-correlation is a slow operation in time
series space, but it corresponds to point-wise multiplication
in frequency space. It is also considered as the best distance
measure to detect a known waveform in random noise. When
processing the signal, the correlation has a linear complexity
frequency space implementation which cannot be achieved
by DTW.

From a data mining perspective, Aghabozorgi and
Shirkhorshidi [12] state that Euclidean Distance and DTW
are the most popular distance measures in time series data;
however, Euclidian Distance is the most widely used dis-
tance measure in the surveyed visual analytics papers e.g.
[34], [43], [44], [501, [52], [53], [561, [57], [59], [60], [66],
[67], [69], [70], [75], [81], [85], [88]-[91], [93], [95], [96],
[113]-[115] as it is the most straightforward distance measure
compared to others. DTW has only been used in [48], [53],
[56], [79] to calculate the similarity of time series data, and
papers [34], [35], [61], [72], [83], [85], [86] use correlation
and cross-correlation in their works.

B. FEATURE EXTRACTION

Feature extraction is a form of dimension reduction which
helps to lower the computational cost of dealing with
high-dimensional data and achieve higher accuracy of clus-
tering and classification [116]. Matching features from
time series data should be extracted before applying
learning algorithms to the vector of extracted features.
Several feature-based techniques have been proposed to rep-
resent features with low dimensionality for time series data.
Wang et al. [98] list several methods for reducing time
series dimensionality as feature extraction, including Dis-
crete Fourier Transformation (DFT), Discrete Wavelet Trans-
formation (DWT), Discrete Cosine Transformation (DCT),
Single Value Decomposition (SVD), Adaptive Piecewise
Constant Approximation (APCA), Piecewise Aggregate
Approximation (PAA), Chebyshev polynomials (CHEB), and
Symbolic Aggregate approXimation (SAX). The types of
methods we discuss below are intended to provide examples
of popular feature-based techniques, not to define a rigid
taxonomy of methods.

Principal Component Analysis (PCA), as an eigen-
value method, is a technique which transforms the original
time series data into low-dimensional features. As a fea-
ture extraction method, PCA is effectively applied to time
series data [117]-[120]. PCA [4] transforms data to a new
set of variables whose elements are mutually uncorrelated,
thus learning a representation of data that has lower dimen-
sionality than the original input. PCA has been used as an
effective dimensionality reduction method that eliminates the
least significant information in the data and preserves the
most significant. In the surveyed visual analytics papers,
[41], [50], [54], [70], [84], [87], [91], [96] use PCA to
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reduce high-dimensional data and analyze the similarity of
the time series data. PCA is a linear dimensionality reduction
technique.

Multidimensional Scaling (MDS) is a very popular
non-linear dimensionality reduction technique that is use-
ful for effectively representing high-dimensional data in
lower dimensional space. This technique has been used in
the surveyed papers [36], [48], [54], [56], [57], [63], [78],
[81], [84]. MDS is a useful technique which effectively rep-
resents high-dimensional data in lower dimensional space;
however, it struggles to separate k-Means clusters [84].
Jeong et al. [36] use MDS to gain a better understanding of
gene interactions and regulatory behaviors. Thus, two differ-
ent MDS representations are considered with respect to the
time series data. One representation shows local differences
among genes in the same cluster group while the other shows
global differences among all genes in all the clusters. It is also
used to reveal the distributions of the time series data, helping
to visualize the relations among time series [48].

Transforming time series data into a set of features cannot
capture the sequential nature of series. k-gram is an example
of a feature-based technique that aims to maintain the order
of elements in series using short sequence segments of k
consecutive symbols [14]. k-grams [121] represent a feature
vector of symbolic sequences of k-grams in time series data.
Given a set of k-grams, this feature vector can represent the
frequency of the k-grams (i.e. how often a k-gram appears in
a sequence). It has only been mentioned in [47], [92].

Discrete Fourier Transform (DFT) and Discrete
Wavelet Transform (DWT) are rarely used in the surveyed
visual analytics papers [38], [72], [82]. However, these
techniques are used in the data mining field and achieve
good results, encouraging visual analytics researchers to
adopt these techniques in future research. Discrete Fourier
Transform (DFT) is one of the most common transfor-
mation methods [1]. It has been used to transform origi-
nal time series data into low dimensional time-frequency
characteristics and index them to obtain an effective sim-
ilarity search [122]. DFT is used to perform dimension-
ality reduction and extract features into an index used
for similarity searching. This technique has been contin-
ually improved and some of its limitations have been
overcome [108], [123], [124].

Discrete Wavelet Transform (DWT) has also been used
as a technique to transform original time series and obtain
low-dimensional features that efficiently represent the origi-
nal time series data [99], [125]. Chan and Fu [126] use Haar
Wavelet Transform for time series indexing, which shows
the technique’s effectiveness with regards to the decompo-
sition and reconstruction of time series. With a large set of
time series data, analysis tasks would face certain challenges
in defining matching features; therefore, taking advantage
of wavelet decomposition to reduce the dimensionality of
data is beneficial [127]. The classification task can be accu-
rately performed utilizing the discrete wavelet transforms
technique [128].
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Discretization is usually needed when applying feature-
extraction techniques in time series data; however, its use
can cause information loss [13]. To address this issue,
Ye et al. [129] introduce time series shapelets which can be
directly applied to time series. This technique is based on
comparing the subsection of shapes (shapelets) instead of
comparing the whole time series sequences to measure the
similarity. A binary decision maker decides whether each new
sequence belongs to a class or not. The shapelet classifier has
some limitations with a multi-class problem, and to overcome
this issue, Ye and Keogh [129] use the shapelet classifier
as a decision tree. Xing et al. [130] have shown that early
classification can be efficiently achieved by extracting the
local shapelets features.

IV. TIME SERIES ANALYSIS TECHNIQUES

A. CLUSTERING

Clustering is widely used as an unsupervised learning
method. The aim of time series clustering is to define a
grouped structure of similar objects in unlabeled data based
on their similar features. Consequently, data in one cluster is
homogeneous, while the data in other clusters are dissimilar.
Features do not provide any information about an appropriate
group for its objects, they only describe each object in the
dataset, assisting clustering algorithms to learn and extract
useful information for their structure. Due to the unique
structure of time series data (e.g. high dimensionality, noise,
and high feature correlation), clustering time series differs
from traditional clustering, consequently, several algorithms
have been improved to deal with time series.

Most works involving the clustering of time series can
be classified into three categories [12]. The first category is
whole time series clustering, where a set of individual time
series is given, and the aim is to group similar time series into
clusters with respect to their similarity. The second is sub-
sequence clustering, which involves dividing the time series
data at certain intervals using a sliding window technique to
perform the clustering on the extracted subsequences of a
time series [131]. The third category is a clustering of time
points based on a consolidation of their temporal proximity
and the similarity of the corresponding values. Some points
might not assign to any clusters and are deemed as noise.

Clustering algorithms embedded in visual analytics sys-
tems have received much attention from both the visual
analytics and data mining communities for time series data.
Unlike the classification task, this task does not require
labeled data; therefore, the data is partitioned into groups of
similar objects. Most of the existing works that perform time
series clustering usually fall in one of the previously men-
tioned categories. Projection-based methods have received
a lot of attention because a scatterplot is intuitive and easy
to read. Scatterplots can also provide a unified embedding
space for visualizing data and their similarities and show
the embedded semantic content [132]. Elzen et al. [54] pro-
pose a projection-based method to explore and analyze the
change of dynamic networks by transforming each time-step
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network into a high-dimensional vector which is then
projected onto a two-dimensional space using dimensional-
ity reduction techniques. Dimensionality reduction is per-
formed for each data window separately, which can then
be sequentially visualized, obtaining the similarity across
multiple time points evolving over time. Therefore, using the
projection-based method can assist with clustering similar
time series data so that conventional clustering algorithms can
be applied to the projected data [54], [75], [84].

We provide a review of the existing time series clustering
methods in the surveyed visual analytics papers, along with
the research that has been conducted in the data mining com-
munity. These algorithms can be divided into five methods:
partitioning methods, hierarchical methods, model-based
methods, density-based methods, and grid-based methods.
Table 1 summarizes the clustering algorithms used in the
surveyed papers. Some papers adapted their clustering algo-
rithms, therefore, an additional section has been introduced
in Table 1 to include these clustering algorithms.

1) PARTITIONING METHODS

Partitioning methods are described as a process of parti-
tioning unlabeled data into k groups. The k-Means (KM),
k-Medoids (PAM), Fuzzy c-Means (FCM), and Fuzzy
c-Medoids are the most popular algorithms for partitioning
clustering. Kaufman and Rousseeuw [133] categorize these
algorithms into two categories: crisp (hard) clustering meth-
ods (including: k-Means and k-Medoids) and fuzzy (soft)
clustering methods (including: Fuzzy c-Means and Fuzzy c-
Medoids). While in hard clustering methods, each object is
assigned to only one cluster, in fuzzy clustering methods,
each object is assigned to more than one cluster with a
probability. In such methods, the number of clusters must be
pre-assigned and most partitioning algorithms cannot tackle
the problem of finding the number of clusters [133]. Another
issue is that they are not straightforward when dealing with
time series of unequal length because of the ambiguity of
measuring cluster centers [11].

a: CRISP (HARD) CLUSTERING METHODS
k-Means [134] is a simple and widely used algorithm which
divides a set of data into K groups represented by their
mean values. After K cluster centers (centroids) are randomly
initialized, each example is assigned to the nearest cluster.
It iterates until it converges to a locally optimal partition of
the data. For each iteration, each example is assigned to the
closest cluster center, which will be recalculated based on the
mean value of all examples of that particular cluster [135].
k-Means has been used to cluster time series data, achiev-
ing efficient clustering results due to its speed, simplicity,
ease of implementation, and the possibility to assign the
desired amount of clusters [43], [136]. Most of the surveyed
papers use commonly applied partitioning methods of cluster-
ing, especially the k-Means algorithm [34], [36], [38], [43],
[52], [581, [74], [75], [771, [78], [84], [86], [87], [89], [901,
[95]. k-Means clustering can be performed on multivariate
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time series, where each time point is considered as a vector
and the cluster labels are used as symbols to encode the time
series [43]. Zhao et al. [77], for instance, utilize the k-Means
clustering algorithm to cluster visitors based on the time
they spend at attractions, thus, it assists to group people in
the same cluster if they have similar attraction preferences.
k-Means could also be used with visualization techniques,
as shown by Wu et al. [90], where it is used to determine
the most appropriate and reasonable number of clusters for
visualization. k-Means has also been adopted in a global
radial map to divide all the stations into a number of groups,
each having similar change rates [87]. Li et al. [86] adopt the
k-Means to generate clusters of slopes and map each cluster
onto aring in the global distribution view. In projection-based
methods, k-Means is applied to the projected data [75], [84].

k-Medoids or PAM (partition around medoids) [133]
is another partitioning algorithm. In this algorithm, a set
of k representative samples are initially selected, then each
example in the dataset is assigned to the nearest representa-
tive sample constructing partitioned clusters. Although this
algorithm is like the k-Means algorithm, it is more robust and
only differs in its representation. Instead of implying a mean,
k-Medoids clusters are represented by the representative data
sample in each cluster. This algorithm is often used alongside
the DTW distance measure to cluster time series data [137].
Andrienko et al. [69] use k-Medoids as a clustering algorithm,
which could be better suited than k-Means as it uses medoids
instead of means. However, it still has the same issues as the
k-Means, where the number of subclusters must be known in
advance.

Partitioning has been adopted in some of the surveyed
papers such as [41], [53], [54], [56], [59], [69], [70], [72],
[81], [92], [96], [114], [115]. Even though fuzzy clustering
methods such as Fuzzy c-Means (FCM) or Fuzzy c-Medoids
have rarely been used in visual analytics, these methods have
promising potential for the future of partitioning methods that
can be used in visual analytics systems other than k-Means.
Therefore, we briefly highlight these algorithms, along with
works that have been accomplished with time series data.

b: FUZZY (SOFT) CLUSTERING METHODS

These algorithms aim to minimize an objective function that
usually has numerous undesired local minima [138], allowing
fuzzy partitioning instead of hard partitioning. Thus, each
sample in the dataset could be assigned to more than one
cluster with a membership that measures degrees of asso-
ciation to clusters. Even though fuzzy clustering algorithms
are usually more time consuming, they provide more detailed
information concerning the data structure [133].

Fuzzy c-Means [139], [140] is the most common
fuzzy clustering algorithm and an extended version of
k-Means. It provides both effective and significantly mean-
ingful (fuzzy) data partition [141]. This algorithm was later
improved by many works [141]-[144]. A dataset is divided
into fuzzy groups that differentiate in representatives by min-
imizing the objective function (within groups) of weighted
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coefficients (e.g. distances between objects and cluster cen-
ter), influencing the fuzziness of membership values.

Fuzzy k-Medoids [145] is another fuzzy partition algo-
rithm which is an extended version of k- Medoids. The
candidate medoids are picked (as objective functions located
in the cluster centre) from the dataset to minimize all fuzzy
dissimilar objects in the cluster.

For time series clustering, unsupervised partitioning has
been shown as being efficient in providing good cluster-
ing accuracy. Several partitioning clustering approaches (e.g.
k-Means [136], [137], [146], [146]-[148], k-Medoids [149],
Fuzzy c-Means [142], [150], and Fuzzy c-Medoids [151])
have been used to achieve efficient clustering results for
sequences of time series data.

2) HIERARCHICAL METHODS

Hierarchical clustering defines a tree structure for unlabeled
data by aggregating data samples into a tree of clusters. It can
be used for time series of equal and unequal length [11], [12].
This method does not assume a value of k, unlike k-Means
clustering. There are two main kinds of hierarchical clus-
tering methods - agglomerative (bottom-up) and divisive
(top-down) [12], [152].

An agglomerative algorithm (bottom-up) considers each
object as a cluster, and then progressively integrates clusters.
It is the more commonly used algorithm [11], [12] and is
involved in many visual analytics works for time series data
[85], [92]. The merging process is repeated until eventually,
all items are in one cluster or termination conditions are
satisfied, such as the number of clusters being sufficient. The
divisive algorithm (top-down) starts by grouping all objects
into one cluster then divides the cluster until each object
is in a separate cluster [12], [152]. In their visual analytics
system, Bernard et al. [91] mentioned two advantages of divi-
sive clustering for time series data. Firstly, the hierarchical
structure allows for multiple levels of detail with the same
data elements in respective sub-trees. Secondly, the level of
detail concept can be achieved with a single calculation. How-
ever, both algorithms predominantly suffer from an inabil-
ity to perform adjustments once a combining or dividing
decision has been implemented. Also, they do not have the
ability to undo what has been previously done [133], [135],
[153], [154].

The basic hierarchical clustering algorithm starts with
assigning each vector to its own cluster. Then, it computes
the distances between all clusters and saves these distances
into a distance matrix. Next, it finds, through the distance
matrix, the two closest clusters or objects which will pro-
duce a cluster. It updates the distance matrix and returns
to the previous step until only one cluster remains [153].
Hierarchical algorithms usually use a similarity or distance
matrix to merge or split one cluster, and this can be visualized
as a dendrogram [135]. Lin et al. [155] present Symbolic
Aggregate Approximation (SAX) representation and use
hierarchical clustering to evaluate their work. Hierarchical
clustering methods can also be divided based on the
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way that the similarity measure is calculated; examples
include single-link clustering, average-link clustering, and
complete-link clustering [135]. CURE [156], BIRCH [157],
and Chameleon [158] are some examples for improving the
performance of hierarchical clustering algorithms. Hierar-
chical methods can produce multi-nested partitions that let
different users select diverse partitions based on the similarity
level that is required. However, it suffers from computational
complexity in time and space, and using it to cluster many
objects incurs a massive I/O cost.

For visual analytics, hierarchical clustering is often used
for classifying time series into separate groups, based on
similarities in time series levels [37]. It supports an interactive
exploration on multiple levels of detail [52]. Line plots, heat-
maps, and dendrograms are the most widely adopted visual-
ization techniques with hierarchical clustering e.g. [34], [37],
[39], [46], [50], [52], [60], [85], [891, [91], [92].

The hierarchical method is applied to determine the order
of time series data before visualizing and launching inter-
active exploration [39], [50]. Wijk and Van Selow [159]
conducted one of the first pioneer work in visual analyt-
ics systems. They use a bottom-up hierarchical clustering
approach to identify common and uncommon subsequences
that occur in large time series. Then, users can easily
interact with the visualization which allows them to select
days, find similarities, etc. Battke er al. [34] overcame
the issue of hierarchical clustering speed for large time
series datasets by implementing the rapid neighbor-joining
algorithm [160], and then attaching the produced trees
to heat-map plots, allowing interactive specialized data
exploration.

The hierarchical method creates aggregations which have
been visualized as dendrograms, providing multiple levels
of detail and an initial overview of similar groups. Visual
analytics enhances interactivity, enabling users to change the
level of detail by dragging the aggregation level slider [91] or
by applying multiple-height branch-cuts to manually select
clusters [37].

3) MODEL BASED METHODS

A self-organizing map (SOM), a model-based method
developed by Kohonen [161], is a specific type of neu-
ral network (NN) that is used for model-based clustering.
As an unsupervised learning method, self-organizing neu-
ral networks rely on neurons which are coordinated in a
low-dimensional (often two-dimensional) structure. Those
neurons are iteratively trained by the self-organizing pro-
cedure. SOM is one of the most common neural net-
work models and is often used for data analysis. It is
also described by Kohonen as an analysis and visualiza-
tion tool for high-dimensional data [162]. However, SOM
can also be used for other applications, such as clustering,
sampling, dimensionality reduction, vector quantization, and
data mining [163], [164]. The most important feature of
SOM is produced in the output layer by the neighborhood
relationship [165].
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Various extensions have been developed to enhance
the SOM’s scope and performance, such as adaptive
subspace SOM (ASSOM) [166], [167], the parameter-
ized SOM (PSOM) [168], visualization induced SOM
(ViSOM) [169], [170], and the Self-Organizing Mixture Net-
work (SOMN) [171]. The SOM uses a collection of neurons
usually arranged in a 2-D hexagonal or rectangular grid to
shape a discrete topological mapping of input space. At the
beginning of the training process, weights are initialized by
assigning small random numbers. In this algorithm, each
training iteration has three stages. First, an input is presented
every time, and then the best matching cell, or winning
neuron, is selected. After that, the weight of the winner and
its neighbors are updated. The process is repeated until the
map converges and the weights have stabilized. In the feature
space, the neighboring locations are always represented in the
neighboring neurons in the network because they are updated
at every step. During the mapping, the topology of the data is
maintained as it was in the input space [11], [172], [173].

The self-organizing map (SOM) has been used to analyze
temporal data, and is utilized for pattern discovery in tempo-
ral data with visual analytics e.g. [34], [44], [45], [70], [79],
[91], [114]. Recurrent SOM [174] and Recursive SOM [175]
have enhanced SOM for mapping time series data [172].
Fu et al. [176] use self-organizing maps to gather similar
temporal patterns into clusters. A continuous sliding win-
dow is used to segment data sequences from numerical time
series before applying the SOM algorithm. SOM also is used
in [173] to cluster time series features. In many clustering
works, SOM is chosen due to its advantages with regards to
certain properties such as parameters selection, data analysis,
and better visualization. However, one of its main disadvan-
tages is that it does not work perfectly with time series of
unequal length, as it is difficult to define the dimension of
weight vectors [11].

Due to SOM being a robust algorithm, Schreck et al. [45]
use it to render trajectory prototypes and represent data sam-
ples on the SOM grid using trajectory bundle visualization.
Thus, the trajectory bundles can be visualized at the location
of their underlying prototype pattern on the SOM grid. It also
organizes the space of movement patterns by arranging proto-
type trajectories on the SOM grid; this means that neighbor-
ing patterns can be compared to each other, and the different
patterns smoothly transit over the map. Bernard et al. [91]
also use the SOM method as a projection technique to make
a similarity-preserving color legend for human poses. The
grid of the color legend is the result of a SOM that is trained
using all feature vectors in the manner of a vector quantization
scheme. Thus, the grid structure helps to arrange the most
prominent human poses. Moreover, the SOM algorithm can
support visualization by representing data on the SOM grid
or using the grid of color as a result of the SOM model. The
algorithm has also been used in [44] to visually analyze sets
of trajectory data which are trained in unsupervised mode.
Start and end points of trajectories are indicated over the
SOM grid by different colors. The goal of their visualization
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is to produce maps of user-preferred trajectory clustering.
The surveyed papers have shown that link-nodes and glyphs
are the most widely adopted visualization techniques with
model-based clustering, e.g. [44], [45], [91].

4) GRID-BASED METHODS

One type of clustering method is the grid-based cluster [35].
This method identifies a set of cells in a grid structure,
providing grouped structures in unlabeled data. It is described
as a process of quantizing the space into a set of cells made-up
a grid. These cells are then used to perform clustering. The
fast processing time distinguishes this approach from others.
Instead of depending on the number of data objects, they
depend on the number of cells in each grid [177]. The two
grid-based approaches in [177], [178] are typical examples
of efficient clustering algorithms, particularly for very large
datasets.

In EpiViz [35], a visual analytics tool for epigenetic fea-
tures, the grid algorithm is implemented to find similar genes
based on the values of their measurements and splits the
scatter plot into 5 * 5 cells. Based on their measurements,
one cluster of genes per measurement is created for each
cell. The scatter plot shows a cluster of genes with their
sizes proportional to the number of genes. Thus, it can be
said that the grid algorithm, as a machine learning algorithm,
assists and interacts with the scatter plot as a visualization
technique which provides a classic visual analytics system.
Therefore, the EpiViz paper could provide an idealistic model
with advantageous features resulting from integrating both
machine learning algorithms and visualization techniques to
obtain a very effective visual analytics system.

5) DENSITY-BASED METHODS

In density-based clustering, the cluster continues to expand
if the density of a set of points with its neighbors is closely
packed together, and that cluster is separated by subspaces
where the objects have low density. This kind of algorithm
is more complex than other clustering algorithms such as
partitioning clustering [12]. As it is based on data density,
density-based clustering can distinguish noise data and does
not require a prior number of clustering, which can be more
helpful for non-linear clustering. Landesberger et al. [78]
highlight some of the advantages of using a density-based
clustering technique in their visual analytics methodology for
time series data. They state that a density-based clustering
is a fast algorithm which does not require pre-setting the
number of clusters, is able to detect arbitrary shaped clusters
as well as outliers, and uses easily comprehensible parameters
such as spatial closeness. DBSCAN [179], OPTICS [180] and
LOF [181] are some of the common algorithms that work with
the density-based concept.

Aghabozorgi et al. [12] state that density-based clustering
has not been used broadly for time series data in the data min-
ing community as it has some complexity. However, we found
that many of our surveyed visual analytics papers have
adopted density-based methods [34], [42], [48], [57], [64],
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[66], [67], [69], [71], [73], [74], [77], [78], [89]. Looking
at combinations of visualization with clustering algorithms,
the surveyed papers indicate that the trend is dominated by
trajectory data that often adopts density-based techniques
for clustering compared to other clustering algorithms. For
visualization techniques, maps and the space-time cube are
used by Andrienko et al. [64], [66], [67], [69], [73], providing
mining and visualization techniques which can be applied to
trajectory data.

DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) [179] is one of the most highly cited
density-based methods. It depends on a density-based con-
cept of clusters which is designed to detect clusters and
noise in a set of data. For each point of a cluster, the eps-
neighborhood must have a minimum number (minPts) of
points. Therefore, the two parameters, eps and minPts, must
be known for each cluster or, at the very least, for one
point from the particular cluster. In every cluster resides two
points, the core and border points, which are on the cluster’s
border. DBSCAN has good efficiency on large datasets and
aims to discover clusters of arbitrary shapes. For example,
Chae et al. [74] and Zhao et al. [77], in both visual analytics
systems, use DBSCAN to group visitors into corresponding
clusters. Zhao et al. [77] utilize the longest common sub-
sequence (LCS) to measure the similarity of two visitors’
sequences before applying DBSCAN.

However, DBSCAN cannot transact with clusters of var-
ious densities, which is one of the main problems for this
algorithm. In contrast, OPTICS (Ordering Points To Identify
the Clustering Structure) [180] can deal with the issue of an
unknown number of clusters with different densities [182].
Local Outlier Factor (LOF) [181] also shares certain notions
with DBSCAN and OPTICS with regards to local density
estimation, and depends on distances in its local neighbor-
hood. Most clustering algorithms are developed to find and
optimize clustering, and they usually ignore noise when the
clustering result is produced, but the LOF tries to assign for
each object a degree of being an outlier.

B. CLASSIFICATION

Classification is described as mapping data into predefined
classes. The classification task is referred to as a supervised
learning method because the classifier is constructed using
training data, and classes are known in advance. In this
task, the algorithm is trained on dataset examples, and tries
to assign each set of data into its appropriate class; in
other words, assigning time series patterns to a specific
category [13].

In classification, the aim is often to learn what the unique
features that distinguish classes from each other are. Thus,
when an unlabeled dataset is entered into the system, the clas-
sification task can automatically determine to which class
each series belongs [183]. The k-nearest neighbors, decision
tree, support vector machines and neural network are the most
widely used algorithms for the time series classification task.
Even though these algorithms have received much attention in
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the data mining and machine learning communities, embed-
ding their use in visual analytics systems for time series
data is still a relatively young and emerging field. The next
sections intend to provide a review of the few existing time
series classification in the surveyed visual analytics papers
along with the works that have been adopted in the data
mining community.

1) k-NEAREST NEIGHBORS (k-NN)

The k-nearest neighbors algorithm performs a straightfor-
ward function on data. There is no learning process; in order
to produce an output for a new test input x, the k-nearest
neighbors to the new sample at test time can be found in the
training data, which then returns the major class label, pro-
ducing an output at test stage [4]. Despite there being numer-
ous classification algorithms that have been used to classify
time series, evidence shows that the simple nearest neigh-
bor classification is extremely difficult to beat [184], [185].
Xi et al. [186] and Rakthanmanonet er al. [187] have
shown that the simple combination of one-nearest-neighbor
with dynamic time warping (DTW) distance produces good
results, but it suffers from computational complexity with the
DTW algorithm [186].

2) DECISION TREE (DT) AND RANDOM FORESTS

The decision tree (DT) is one of the most popular classifiers.
It is generated by algorithms that identify various ways of
dividing a dataset into branches [188]. The tree has three
kinds of nodes. In the root node, the outgoing branches
can be divided into one or more branches. In the internal
node, one incoming branch can be divided into two or more
outgoing branches. In the end node, leaf nodes represent
classes and branches represent decisions. Starting at the root,
the classifier makes decisions to reach the class label [189].
The decision tree can also be utilized under uncertainty as
a sample for sequential decision problems. It assists with
describing the decisions that will be made, the cases that
might happen, and the results that are related to each of the
events and decisions.

C4.5[190],ID3 [191], Classification And Regression Tree
(CART) [192], [193], and CHi-squared Automatic Interac-
tion Detector (CHAID) [194] are examples of decision tree
algorithms. The complexity of a tree impacts its performance
and accuracy. The criteria and pruning method that are used
can control this complexity, and certain metrics can be used
to measure it. These metrics include the depth of the tree,
the overall number of nodes, the number of used attributes
and the overall number of leaves. The rule induction always
links to the decision tree induction, and every path from
its root to its end can be converted to a set of rules [195].
The decision tree’s performance is better when it deals with
discrete features.

Random Forests are an ensemble of bagged decision tree
learners with randomized feature selection. Breiman [196]
defines it as a collection of randomized decision trees, thus,
it takes the decision tree concept a step further by producing
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many decision trees. In a random forest, each decision tree
is learned from a random subset of features and a random
subset of training examples [197], [198]. It can be used for
classification as well as regression.

For random forests, the training algorithm applies general
techniques of bootstrap aggregating or bagging. In bagging,
it trains an often large number of classifiers on random sub-
sets of the training set, classifying by using the majority vote
of all classifiers. In boosting, it operates as per bagging, but
introduces weights for each classifier based on performance
over the training set.

Decision trees (DT), have been adopted in visual analytics
with high levels of accuracy. Xie et al. [40] use a decision
tree in the VAET system which highlights interesting events
in e-transaction data. The system uses a probabilistic decision
tree learner to estimate the salience of each transaction in a
large time series. Then, the saliency values are visualized in
a time-of-saliency map. This visualization allows analysts to
explore, select and conduct a detailed examination of inter-
esting transactions, displaying them in a new visual metaphor
called KnotLines.

3) SUPPORT VECTOR MACHINES (SVM)

Support Vector Machines (SVM) is an effective classifica-
tion method. It is widely used and has shown substantial
achievement in solving sequential time series classification
tasks [199]-[203].

The SVM discriminates between positive and negative
examples, and through the use of said examples, it learns to
classify and produce positive and negative classes [4]. For
linear cases, SVM [204]-[206] aims to find a class identity
by mapping series into a high-dimensional feature space.
Once the similarities between series have been measured,
SVM separates two classes and enforces a larger margin
hyperplane, which is the gap between classes. Thus, SVM
acts as a large margin classifier for accurate classification and
efficient generalization.

For non-linear cases, SVM often uses kernel functions,
which represent a non-linear decision boundary that sepa-
rates the positive and negative samples. The kernel func-
tion is appropriate with high-dimensional feature spaces and
has been applied to measure the similarities between two
given time series [201]. Many kernel-based methods cor-
responding to different measures of similarities and which
efficiently overcome time series classification problems have
been proposed [201], [207]-[209]. Multiple kernel learn-
ing is an optimization problem [201] whose solution has
been proposed by [210]. They present an efficient algorithm
that solves the multiple kernel learning problem and works
with many samples or multiple kernels which need to be
combined.

Support Vector Machine (SVM), as a time series classifica-
tion model, has been integrated with visual analytics systems
[82], [94], [113]. This procedure allows scientists and domain
experts in such fields (e.g., biology) with a little background
in machine learning to build classification models with high
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levels of accuracy [82]. Lu et al. [113] supported the creation
of the SVM model along with two other different types of
models, Linear Regression and Multilayer Perceptron, com-
bining feature selection and model cross-validation through
numerous interactive visualizations, which help analysts in
their building of such a model. Kim et al. [94] developed a
visual analytics tool that incorporates machine learning algo-
rithms (supported vector machine) to predict coded undesired
behaviors.

4) NEURAL NETWORKS (NN)

Neural networks are learning algorithms that mainly rely on
statistics. This kind of algorithm learns from data using its
own learned features [4]. Neural network algorithms have
been efficiently used to solve several tasks. The task of clas-
sification, especially time series classification, has received
particular attention with regards to using different kinds of
neural networks, such as multi-layer perceptron (MLP) [211],
convolutional neural networks (CNN) [31], [212], [213], and
recurrent neural networks (RNN) [214].

Multi-layer perceptrons (MLPs) represent a type of neural
networks that have been used as classifier. Its architecture
comprises fully connected layers, and each layer contains
neurons with weighted interconnections between them [211]
called parameters. Neurons act as switching units associated
with weights that are interconnected among them. The aim of
this model is to ideally approximate a function (e.g. classifier
function) by mapping the input values into a category (a class)
learning the parameters (weights) [4]. For time series classifi-
cation, class labels should be given so that a learning function
maps the series into an appropriate class. Thus, the weights
are learned by finding the best relationship between time
series and their appropriate classes [211]. From the visual
analytics perspective, multi-layer perceptrons (MLPs) have
been used by Lu et al. [113] in their visual analytics system.
They use backpropagation and allow users to select which
algorithm to use, set the number of folds for the stability
test, train models to predict and compare between available
models.

Convolutional neural networks (CNNs) are a recently
introduced kind of neural networks that have been developed
for processing data that has grid-structured topology, such
as time series (1-D grid) data and image data (2-D grid of
pixels). CNN architecture comprises convolutional layers for
spatially related feature extraction and fully connected lay-
ers used for classification. Convolutional layers are utilized,
as feature extractors, to learn features through mapping the
raw data into a feature space, and the trainable fully connected
layers perform classification based on the learned features
from the convolutional part. The convolutional part generally
consists of multiple layers; each layer has three stages: the
convolution stage (filter), the detector stage (activation) and
the pooling stage [4]. The input and output of each stage are
called feature maps [31]. In the training stage, the forward
and backward propagation algorithms are used to train the
CNN and estimate parameters. A gradient-based optimization
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method is utilized to minimize the loss function and update
each parameter [213].

Unlike 2-D grid (e.g. image data) input, convolutional
neural networks for time series uses a 1-D grid, so instead of
holding raw 2-D pixel values, the input of time series classifi-
cation is multiple 1-D subsequences. In this case, multivariate
time series [31] are separated into univariate ones so that
feature learning can be performed for each univariate series.
At the end of feature learning, trainable fully connected layers
are adopted to perform classification.

The univariate time series are considered as input that is
fed into the convolutional layers, learning features through
convolution, activation and pooling layers. The 1-D con-
volutional layer extracts features by applying dot products
between transformed waves and a 1-D learnable kernel (fil-
ter) [215], computing the output of neurons that are con-
nected to local temporal regions in the input. This stage is
followed by the activation layer, which is used to perform
non-linearity within the networks, allowing learning of more
complex models [216]. In the pooling layer, a down-sampling
operation is performed to reduce the resolution of input time
series [31], which in turn reduces complexity and generalizes
features in the spatial domain. After extracting feature maps
from multiple channels, they are fed into other convolutional
layers and then pass them as inputs of the fully connected
layer. In the fully connected layer, the class score will be
computed, where each of the result numbers corresponds to a
specific class.

Time series classification faces some obstacles and dif-
ficulties, such as feature representations at different time
scales, and can be distorted by high-frequency perturba-
tions and random noise in time series data [215]. Several
multi-channel CNN architectures have been used for the task
of time series classification [31], [212], [213], [215], [216].
The results of all adapted CNN classifiers are competitive for
both classification accuracy and performance with regards to
overcoming the challenges.

The classification algorithms applied in our surveyed
papers are usually embedded in visual analytics systems [40],
[82], [83], [94], [113]. The k-nearest neighbors, decision tree,
support vector machines, and neural network are used in some
recent works, but are not as common as clustering techniques.

V. VISUAL ANALYSIS

A. VISUALIZATION TECHNIQUES

Visualization transforms symbolic data into geometric
data [217]. The result of this process can help people to
understand the data by presenting it in a graphical format,
helping users or analysts to observe, analyze, make decisions,
and identify patterns and correlations based on visualization.
The visualization can also help to detect and see information
and relations between data which might not be recognized
when looking at numerical data [218]. In this way, it can
aid scientific discovery and enhance the likelihood of gaining
deep and unexpected insights, which sometimes leads to new
hypotheses.
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At a basic level, time series data (e.g., from sensors) is
presented in 1-D charts, with multiple sensors displayed
on the same chart or linked charts. Different visualization
techniques (ripple, stacked, river, stream) and interaction
techniques (zoom, pan, select) allow the user to select the
time duration and obtain visual feedback. Interaction with the
linked view will highlight regions in the time series and any
pattern recognition techniques will highlight data in the time
series, helping to understand and analyze data over time [38],
[48], [59], [86], [90], [93]. With stacked, river, and stream
graphs, each item is displayed as a colored current whose
height changes continuously as it flows through time. The
overall shape comprises all the items considered, and it can
provide an overview of the topics that are important at points
in time. Various possibilities for interaction are used, which
allow users to browse and zoom into details of the time
duration, as well as to select from the shape.

For time series data, achieving a good visualization helps
users not only to create interesting images or diagrams, but
also to amplify cognitive performance. Thus, visualization
should communicate with the mind to simplify the data
complexity. Aigner et al. [15] present three main criteria,
these being expression, relevance, and effectiveness, that
need to be satisfied in order to achieve a good visualization,
exploiting both human visual perception and huge computer
processing.

In this survey, visualization techniques are divided into
nine categories. These classifications draw from the com-
prehensive vocabulary of the visualization taxonomy pre-
sented by Borkin et al. [219]. This taxonomy is used
and modified to include all visualization techniques that
are used in our surveyed papers, which are summarized
in Table 1. They include the following: Bar (Bar Graph,
Ripple Graph, Histogram), Area (Stacked Graph, River
Graph, Stream Graph), Circle (Pie Chart, Radial Chart), Line
(Line Plot, Parallel-Coordinate, Time-of-Saliency, Knot-
Lines), Geographic Maps, Grid and Matrix (Heat Map,
Ranking View, Calendar Map, Space-Time Cube, Tessella-
tion), Point (Pixel, Bubble Chart, Scatterplots), Trees and
Networks (Dendrogram, Node-Link), and Glyphs.

From the surveyed papers, it can be noticed that while some
techniques dominate others, they share the same goal, which
is to present as much information as possible in the display to
the user. Thus, there is a wide pool from which to select visu-
alization techniques that can smoothly deal with big data in
order to reduce data size and produce a visualization structure
which allows the user to explore, analyse, and understand the
data.

In the same context, Table 1, shows an increasing trend
of using a variety of visualization techniques with time
series data. Also, line plots, geographic maps, heat maps,
histograms, and bar graphs are the most commonly used tech-
niques in the surveyed papers. Most of them are used to give
an overview of the dataset by displaying the time-dependent
relations of actions. In contrast, some visualization tech-
niques are rarely used, such as tessellation and streamgraphs,
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while some are presented as new visualization techniques
such as time-of-saliency and knotlines.

B. INTERACTION TASKS

Visual analytics merges machine and human capabilities to
facilitate exploration, analysis, understanding and provide
insights of exploratory analysis for data and methods. Visual
analytics present the chance for analysts, through interaction
tasks, to analyze, explore, reason, discover, and understand
important structures in complex data and architecture of
methods [20]. Thus, users can be involved in the process
through interaction tasks providing directed feedback to the
system.

Early steps in visual analytics were investigated by
Tukey [220] on exploratory data analysis, encouraging to sup-
port direct interaction with data. Following this work, numer-
ous interaction methods have been developed to support
various types of analysis data and methods, assisting users
and analysts to better understand, explore, analyze, and gain
insights. Researchers in the field of visualization have made
efforts to benefit from user interactions in order to achieve
analytical reasoning and integrate users into a comprehensive
visual analytics system [7]. Several works for different visu-
alization tasks and interaction methods have been presented.
Those existing works can be classified into three categories,
namely low-level tasks, or interactions (e.g. [218], [221],
[222]), high-level tasks (e.g. [223]-[225]), and multi-level
tasks (e.g. [226], [227]).

In this work, we utilize a typology of abstract visualization
tasks by Brehmer and Munzner [226]. Their typology pro-
vides potential for rigorous analysis as it does not only focus
on low-level tasks and high-level tasks, but also addresses the
gap between them; these tasks are termed as multi-level tasks.
This typology allows us to better interpret our survey from an
interactive visual analytics perspective, given that it provides
multi-level visualization tasks and a straightforward way of
describing complex tasks as linked sequences of simpler
tasks.

They identified six main multi-level tasks which are related
to visualization tasks in the surveyed papers. We briefly
summarize each task with all its subtasks and comment on
how they are used in the surveyed papers. In the high-level
task (analysis), users or analysts can analyze data using visu-
alization tools so that they can consume information in many
domain contexts or produce new information using available
resources such as existing data elements. In the mid-level
task (search), users or analysts can search elements of inter-
est using visualization tools. The search task is classified
into four types: lookup, browse, locate, and explore. In the
low-level task (query), the users or analysts already found
targets, thus, they can identify, compare, or summarize the
pre-found targets. The visualization tasks in our surveyed
papers are summarized in Table 1 under the headings: Anal-
ysis, Search, Query, Encode, Manipulate, and Introduce.

From the surveyed papers, it can be noticed that low-level
tasks are more commonly used than high-level abstract tasks.
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As shown in Table 1, using visualization tools as high-level
tasks to analyze data is rarely done in the surveyed papers.
In contrast, low-level tasks are often used; for example, query
tasks are often used to find targets. Selection and navigation
interaction methods are also widely used to provide a range
of different options which can be applied to any element
in visualization systems. Moreover, the filtering method is
frequently used when individual view of sequence data needs
to be filtered.

C. VISUALIZATION AND ANALYSIS TECHNIQUES

We have conducted the review from the perspective of the
data mining and visualisation communities and how the two
integrate to produce visual analytics systems. The data min-
ing community utilises visualisation to a lesser extent and
with the specific goal of demonstrating the efficacy of meth-
ods under research. Images are intended to be static figures,
there are many examples of using t-SNE (clustering) overlaid
with colour to represent classification to convey how well
a new technique performs or how well a data set can be
processed. Another example is that of utilising heat maps to
indicate which features from training sets contribute to the
model classifier.

Visual analytics provides different perspectives and goals
to satisfy the user demands. Interaction becomes a key goal
where the system should impart more knowledge through the
capability to interact with data or model parameters. This can
lead to a different emphasis on the methods chosen to process
the data. An effective clustering algorithm such as t-SNE led
to ineffective user interaction because of spatial inconsistency
after reduction to 2D used in the creation of the interac-
tive user interface [131]. Alternative clustering techniques
PCA and UMAP projected similar data to similar spatial
locations in 2D (Fig. 3). Feedback in user studies and from
domain experts indicated that the latter dimension reduction
approaches are more suited for deriving user interfaces [131].

Parallel coordinates is a familiar interaction tool in the
visualisation community to enable the exploration of high
dimensional parameter spaces, but we saw no use of parallel
coordinate visualisations as static images in the data mining
literature. Primarily this is due to it being a useful tool to
interrogate data when interaction is employed. Each axis can
represent a parameter in the model or clustering approach,
etc. allowing the user to experiment a gain feedback through
alternate views [228](Fig. 4). Indeed, the utility of these
approaches is through multiply coordinated views where
direct interaction in any of the views highlights the same
selection in each view space (Fig. 3).

For temporal data with a spatial component, a common
processing approach is for locations to be quantized, and
paths through the quantized locations creating a motif which
can be matched using similarity measures. 1-D curve sim-
ilarity measures are employed directly on the data. Multi-
ple sensors, weighted similarity, or higher-dimensional data
is reduced in dimensionality (PCA, MDS, non-linear DR)
before clustering. Similarity measures include Euclidean
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FIGURE 3. UMAP clustering of time-series animal behavioural data leads
to consistent neighbourhoods in the 2D interface (compared to t-SNE
which does not). Also shown, a k-nn cluster and how pattern matching in
multivariate data is achieved through the interface [131].

FIGURE 4. Parallel coordinates plot with annular and linear axes, colour
coded splines representing the data, and density plots on the annular
axes. The view is coordinated with the (PCA dimension reduced) point
data (top right). A density rendering based on the data is given (top left).
User interaction is principally through the parallel coordinate plot to
isolate the overlapping manifolds in the data [228].

[34], [43], [44], [50], [52], [53], [57], [59], [60], [66], [67],
[69], [75], [85], [88]-[91], [93], [95], [113], DTW [48],
[53], MDS [36], [48], [54], Pearson, Fisher Discriminant

[88], cross-correlation [83], etc. Through the SOM algorithm,
as model-based clustering, the SOM grid provides trajectory
bundle visualization of locations underlying prototype pat-
terns, allowing experts to visually analyze sets of trajectory
data [45] or a search interface, meaning that analysts can
control clustering [91].

If each curve/path has similarity computed against all
other paths, the result is a symmetric square matrix where
each entry represents the degree of similarity/dissimilarity.
We can employ clustering techniques such as agglomerative
clustering and DBSCAN to create a hierarchy which can
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be displayed as a tree structure (dendrogram [91]). Cuts
can be taken through the tree to simplify the data. The tree
provides a useful interaction interface to update and query
results in the other linked windows. Dendrograms as a static
image infrequently appear in machine learning literature, but
again they create a useful interactive tool since a cut through
the dendrogram can produce a specific instance of a visu-
alisation representing different levels of clustering (or data
aggregation).

Time-based (e.g., one hour, one day), or pattern-based
(e.g., recognising a pattern using a variety of similarity mea-
sures or change detection) can result in data segmentation.
The segmentation results are visualised or used as input for
further processing steps [53]. Users can influence segmenta-
tions indirectly through choices concerning the segmentation
algorithm, changes in its parameters, or by direct selection
and labelling of the data.

Visualising segmented data offers significant visual cues
for determining outliers or clusters of data. For 1-D data,
multiple segmented data can be plotted on charts (and
multi-dimensional on linked charts). Trends, clusters and
outliers can be detected visually [59]. Interaction can allow
brushing in the chart to remove, select, label or highlight
groups of associated data. Queries can be generated using
slope tools or ranges, and curves will either match or not
match such queries. These queries can be stored for future
use to act as triggers or stored procedures on the data.

Apart from 1-D charts, another main approach is to use
radial depiction of data. The data can be visualised as line
or bar charts in a circle with the x-axis around the circle,
and y-axis away from the circle. Typically, the x-axis rep-
resents time, with multiple axes radiating from the centre
indicating durations (e.g., hours in a day, days in a month,
or months in a year). Transformed data may place spatial
coordinates on the x-axis (with a map central to the visual-
isation), and the y-dimension could be time, with distance
from the y-dimension then indicating further attributes such
as intensity (of the sensor — e.g., pollution levels [86], [89],
and shells of data appear around the circle (stacked/river
charts). Multiple small versions would create glyphs, or a
single view linked to other views, which offers more
detail.

Calendar views [53], [78] also offer successful interac-
tion, allowing visualizations to aggregate according to the
days selected. Selections can involve months, a certain day
of the week and workdays versus weekends. A secondary
view based on the above chart or network views can offer
focus-and-context associating the detailed view within the
overall context of the annual view. The calendar view uti-
lizes colored patterns to indicate different clusters; therefore,
the selected elements become active and bigger, which cause
unselected elements to become smaller. Differing from radial
plots, the calendar view allocates the same amount of screen
space to individual patterns, giving them equal visual impor-
tance [53], allowing to visualize during which time stamps
the temporal clusters occur.
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The similarity matrix also serves a useful visualization and
interaction tool, and is displayed using color mapping e.g.,
resulting in a heatmap [52], [94]. Rows and columns can be
sorted to reveal patterns. Individual selections in the heatmap
highlight data pairs in the source data. Larger selections
highlight groups of data with the degree of similarity chosen.
Selections are linked to other views of the data. Sorting
can also be applied to any of the other linked views, e.g.,
multiple bar charts can be sorted by decreasing similarity
from a user-selected pattern [83], [85]. It can also be used
for network graph. Different colors and pixels are used to
represent the data, emphasizing the relationships between
elements. The similarity matrices explain to which degree the
clustering would change for the next parameter setting. In this
kind of visualization, the user can select a similarity threshold
and algorithm which helps to perceive the dynamic network
from different perspectives.

With regards to graph/network data, networks are directly
visualized as node-link diagrams resulting in clutter [52],
[54], [78]. Standard techniques are used to simplify the
graphs, such as using edge bundling, weighting edges accord-
ing to the linkage, or higher order curves to emphasize path
connectedness. Node-links can be converted to matrix view
with each matrix element storing the edge weight between
the two nodes. The matrix can be visualized directly (with
edge weight mapped to color). The network view provides
an overview of the clustered nodes which have a similar
behavior over time and edges reflect connections between
these clusters.

Visual analytics systems offer direct views of the data (e.g.,
visualisation of the raw accelerometry data (Fig. 3 top) or
abstract views (Fig. 3 bottom) where data has undergone pro-
cessing such as dimension reduction to create the interactive
interface. Throughout our study the essence of visual analyt-
ics is to provide multiply coordinated concrete and abstract
views of data. This allows interaction with parameter spaces
to enable human cognition to play a vital role in information
and knowledge discovery.

Analysts usually change their exploring strategies and
switch between analytical techniques and visualizations to
collect different findings. However, these analytical tech-
niques (black-box methods) might confuse the end-users or
provide results that do not lead to a solution to the problem,
and some of them require user action such as k-means requir-
ing the assignment of the number of clusters. To be beneficial
in visual analytics, the analysis techniques should be fast
enough in terms of response for efficient interaction, param-
eters of the analytical technique have to be representable and
understandable utilizing the visualizations and parameters
have to be adjustable by visual controls [20].

There are numerous challenges associated with visual ana-
lytics system usability and process understanding. To obtain
more confidence, the user should be aware of the source
of data and the transformations that have been applied on
its way through the processing stages (e.g., preprocessing,
analysis tasks and visualization techniques). Rapid feedback
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is significant in visual analytics interfaces, and that repre-
sents challenges to various of the domains related to visual
analytics. Due to the complexity of human interaction, evalu-
ating visual analytics systems is especially complicated, and
integrating machine learning algorithms in to these systems
adds additional complexities and opens questions such as
how the model succeeds or determines what a good solution
is, why a model predicts a value, or why a model provides
a classification label which are sometimes beyond of the
scope of interactive visualization issues. Some works such
as [229]-[231] shed light on the black boxes of classifica-
tion and clustering algorithms and explain the determined
decisions which assist to understand these algorithms and
enable the comparison of different prediction methods. These
questions are very important in order to understand the model
outputs and provide appropriate visual representations and
interaction techniques.

VI. EVALUATION APPROACHES

A systematic evaluation, controlled by a set of standards,
identifies and validates the degree of achievement or value
of proposed systems, techniques, methods and algorithms.
Since the space of visualization systems design is massive,
Munzner [227], [232] subdivided this complex problem into
four sequential layers that separately solve various concerns,
presenting a nested model for visualization design and val-
idation. At the top level, details of a specific application
domain are considered. Next is the design of data and tasks
abstraction. The following level concerns the design of visual
encoding and interaction, while the last level involves the
design of algorithms.

This research utilizes Munzner’s work [227], [232], which
presents different appropriate evaluation approaches at each
design level, including field / case studies, controlled lab /
user studies, usability studies, heuristic, and algorithms
performance. These approaches were applied to our sur-
veyed papers (summarized in Table 1). At the top level, field
studies or case studies form the most common evaluation
approach, where investigators gather qualitative data through
semi-structured interviews and observing people’s actions in
real-world settings. At the abstraction level, studies or case
studies are also used as qualitative validation to evaluate a
member of the target users by observing and documenting
their use of the deployed system. At the visual encoding
and interaction idiom level, a controlled lab study or user
study is used as an evaluation approach. Through this, quan-
titative measurements (e.g. time, errors, quality, and prefer-
ences) are collected as well as qualitative measurements (e.g.
questionnaires and qualitative discussion). Also at this level
are usability studies, another qualitative evaluation approach
which aims to prove that the deployed system is usable.
Heuristic evaluation is another, quantitative and qualitative
measurements, validation approach that involves experts in
the field to ensure that the visualization design does not vio-
late any guidelines used to justify the usability of a visualiza-
tion system. At the algorithms design level, the quantitative
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evaluation approach is used to validate the performance of
algorithms such as their speed and computational complexity.

The evaluation approaches which have been applied to our
surveyed papers are classified into five categories adopted
from Munzner’s work [227], [232]: case studies, usability
studies, controlled user studies, algorithm performance and
others. Table 1 summarizes each evaluation approach used
on a surveyed paper, classifying based on years. It should
be noted that the case study approach is most commonly
used in the surveyed papers compared to other evaluation
approaches. We have also noticed from our survey that
other evaluation approaches are also used, such as ground
truth [52].

VII. INTEGRATION OF VISUALIZATION AND ANALYSIS
TECHNIQUES

A. MODEL BUILDING VISUALIZATION

The above processes, visualizations and interactions can
result in a large corpus of labelled data suitable for visual
and statistical interrogation. Additionally, labelled data is
useful for model building, using data mining approaches
as discussed earlier. Such models can be used to aid the
user with further segmentation and labelling of the data
[40], [571, [83], building predictive models for the future
[113], and identifying patterns and behaviour of systems or
individuals in the data [94]. By exposing algorithm choice
through the interface, along with parameters, the user can
play an interactive role in deciding the best approach for
their data [44], as effective algorithms for time series analysis
always require precise choices of approaches and parameters
in order to be able to solve clustering and classification tasks.
We notice from our survey that several interaction methods
are not specific to data only, interestingly, a variety of inter-
active tools are combined to support analysts in algorithm
selection (e.g., [89], [113]), training (e.g., [44], [113]) and
testing (e.g. [113]). Moreover, several systems interactively
provide analysts with a variety of controlling options for time
series analysis tasks such as control algorithms parameters
(e.g., [38], [44], [52], [78], [94]) or control threshold (e.g.,
[351, [37], [40], [44], [52], [83], [88], [95]). For example,
overplotting matched time-series data leads to new interfaces
where direct data selection can accept or reject data from the
view without the need for further model training. Exposing
model parameters to the user allows the understanding of their
inter-relationships and how they impact the algorithm (e.g.,
feature detection) performance (Fig. 5).

Visual feedback of the model using the visualizations and
interaction results in the effective capture of domain knowl-
edge, fulfilling the definition of visual analytics and including
humans in the loop. The models range from pure clustering,
such as clustering patients on medical records, which can lead
to predictions about how an individual patient’s condition
will evolve [46], to utilizing classification techniques such as
SVM [82], [94]. Such models can be used to aid the user with
further interactive clustering while representing data samples
as discussed earlier.
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FIGURE 5. Cross-correlation in frequency space is used to find matching
time-series patterns with low computational complexity. (a) The user can
interact with the cross correlation threshold, (b) and in a linked view see
where the matches occur in the overall time-series. (c) Overplotting
allows the user to inspect matching patterns. The cluster centre is plotted.
The user can interact with the view in (c) to select and “delete”
undesirable matches [83].

Choosing the analysis algorithms such as k-means, hierar-
chical clustering, or the self-organizing map or giving feed-
back during the analysis process such as k-means which
requires the user to specify the number of clusters as input
are some examples of the interaction between the end-user
and visual analytics system. Therefore, the implication of
visual analytics and the goals of the end-users on the choice
of analysis algorithms are fundamental and require further
investigation in terms of what kind of visual controls are
required to manage the algorithm and assess the quality of
the proposed solutions side by side with the interactive visual
representations.

B. EMERGING TRENDS

The merger of visual analytics and machine learning offers
many potential opportunities for time series data analysis.
However, a large effort is still needed at the algorithmic
and software levels to help embed fast machine learning
techniques in visual analytics systems. From a performance
perspective, dealing with massive datasets in terms of quan-
tity and speed of data to be visualized and interacted with
in real-time is crucial in visual analytics systems. Therefore,
response times are very important and such factors can play
a major role in an interactive visualization. Thus, developing
fast machine learning for interactive visualization is one of
the open research topics associated with integrating the two
domains.

Also, one of the major technical barriers is that the existent
software tools are highly divided between these two domains;
for example, visualization tools are often written using pro-
gramming languages like C++ or using libraries such as
d3js (a JavaScript library), which are powerful with regards
to maintaining close control over the visualization technique
and user interaction. On the other hand, most of the advanced
machine learning algorithms are usually written using differ-
ent libraries in statistical or programming languages such as
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Matlab, R, or Python (Machine learning libraries like scikit-
learn, TensorFlow, etc.), where they aim to learn complex
models from (often large amounts of) data but provide limited
interactive information visualization. Therefore, there is an
urgency to find a standard software environment which can
be used to assist visual analytics developers with integrating
machine learning techniques effectively and efficiently in
interactive visualization systems [10].

Recent visualization research has seen and increased use
of sophisticated algorithms, especially in projection-based
methods which have a stochastic nature [54],Ali2019. Thus,
the outputs of these algorithms may rely on different set-
tings, e.g. random initialization, which sometimes have major
effects on results and evaluations. These algorithms should
be measured in terms of their robustness, generalizability,
stability analysis, sensitivity analysis, etc. The robustness of
an algorithm concerns its ability to handle any kind of input.
An algorithm’s generalizability sigifies that it can be gener-
alized into a greater dataset (unknown data) than the dataset
(small known data) used in the training process. Stability
analysis refers to the analysis of errors in numerical com-
putation (if the errors are increased, the algorithm is numer-
ically unstable, and if the errors are abated, the algorithm
is stable). The sensitivity analysis of algorithms involves
analyzing the alteration of outputs with respect to the inputs.
Therefore, visual analytics developers must take into account
these factors alongside others which may have major effects
on visualization results [7].

Moreover, some machine learning algorithms embedded
within visual analytics systems for time series data are
still part of a relatively young and emerging field, even
though they have received wide attention in the data mining
and machine learning community. To mention but a few,
Discrete Fourier Transform (DFT) and Discrete Wavelet
Transform (DWT) have rarely been used as dimensionality
reduction techniques by visual analytics researchers, while
these techniques achieved good results for time series data in
the data mining field. Moreover, some clustering algorithms,
such as the fuzzy clustering methods, and classification algo-
rithms are currently under-represented in visual analytics
works but are successful in the data mining community,
and are therefore something that visual analytics researchers
should include in their future works.

There are several challenges which we perceive as interest-
ing research directions for combining machine learning and
visualization techniques. Firstly, there is no existing unified
or systematic solution to support the user, which explains
the scarcity of classification algorithms used in the surveyed
papers. Secondly, there is a visualization challenge in terms
of clarifying the reasons behind why such algorithms demon-
strate impressive classification performance.

One interesting potential research direction of combining
the two fields of machine learning and visualization tech-
niques is building user-driven algorithms specifically geared
for a visual analytics approach to overcome difficult chal-
lenges for time series data. Involving users in the process,
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through interactive methods, allows them to provide directed
feedback to the system. Formulating a user-centric approach
through combining automated analysis methods and interac-
tive visualization is an efficient approach to visual analytics.
This puts emphasis on the visualization community to apply
visual interfaces to existing algorithms provided by the data
mining community.

Deep learning algorithms (e.g. CNN, RNN and LSTM) are
often perceived as black-box models due to their ambiguity
and unclear working mechanisms [233]. Although these algo-
rithms have been used for time series data by the data mining
community, there is little work on CNN, RNN or LSTM with
visual analytics. This leads to the other interesting potential
research direction of combining the two fields, as there is
no clear understanding of why deep classification algorithms
achieve highly performant results when solving such a task.
Thus, visualization techniques are needed to explore such
complex models as well as illustrate and explain their internal
operation and work mechanisms. This would allow to gain
general insights and obtain an overview of how to control and
improve such models. Efforts have been made in the field
of computer vision to clarify the learned features of deep
learning algorithms on image data. The existing methods of
previous works can be categorized into two different groups:
code inversion (e.g. [234]-[236]) and activation maximiza-
tion (e.g. [237]-[239]). In the field of visualization, a set of
visualizations have been developed to help machine learn-
ing experts clearly understand such deep complex models
(e.g. [240], [241]). Liu et al. [240] have recently presented
an interactive visual analytics approach which allows for the
better understanding, diagnosis, and improvement of deep
CNNEs.

VIIl. CONCLUSION

This research is considered a comprehensive survey for time
series data, focusing equally on both machine learning and
visualization from the visual analytics perspective. Time
series data can be obtained from different sources which
have been categorized into four types based on the surveyed
papers. During research, we focused on two mining tasks;
clustering and classification. At the beginning, we review
both tasks from the data mining perspective. They achieve
great performance and accuracy when dealing with time
series data. This success led us to review a promising field
where both automated analysis techniques and interactive
visualizations can be combined to easily understand, explore
and analyze large and complex datasets. We cover over
60 papers in detail, which were selected with the criteria that
every paper must involve time series data and visual analytics,
using either clustering or classification tasks. It can be noticed
from the surveyed papers that many visual analytics works
use clustering more than classification. Because of a lack of
label data, keeping humans in the analysis loop is paramount
in order to help users adjust and explore the influence of
different clustering choices during the analysis process. Visu-
alization and interaction techniques are also surveyed in
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the reviewed papers and classified based on previous liter-
ature. Such classifications have been modified and changed
to be compatible with the surveyed papers. The evaluation
approaches of every paper were also studied and categorized.
As aresult, researchers can use this review as a guide for new
investigations. In the end, we believe that this paper is a start-
ing point towards clarifying the major concepts that have been
presented, and provides a valuable guide to the emerging field
of integrating data mining techniques with visual analytics.
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