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ABSTRACT The noncontact measurement of vital sign signals is useful for medical care, rescuing disaster
survivors from ruins and public safety. In this paper, a novel vital sign signal extraction method based on
permutation entropy (PE) and ensemble empirical mode decomposition (EEMD) algorithm is proposed.
The proposed algorithm analyzes the permutation entropy of radar-received pulses; the range between a
human target and ultra-wideband (UWB) radar can be obtained by permutation entropy. Permutation entropy
represents the complexity of signals, so we can use PE to select and recombine human life signals that are
distributed in the adjacent distance gate. Moreover, EEMD algorithm is adopted to decompose the combined
signal into intrinsicmode functions (IMF), and both the respiration and the heartbeat signals are reconstructed
by IMF via reaching the energy threshold in the time domain. Experiments are carried out using UWB radar.
Compared with traditional algorithms, the proposed algorithm can be used to extract the range and frequency
information of human targets efficiently and accurately.

INDEX TERMS Vital sign signal, ultra-wideband (UWB) radar, ensemble empirical mode decomposition
(EEMD), permutation entropy (PE).

I. INTRODUCTION
In recent years, the needs of human noncontact measurement
of vital signs by using radar is increasing; relevant research
results are applied to the medical care of patients [1], [2],
the rescue of disaster survivors from ruins [3], [4], public
safety [5]–[7], and so on. Ultra-wideband (UWB) radar effec-
tively measures human vital signs because of its high resolu-
tion, low power consumption, strong antijamming capability,
etc. Much work has been done by many scholars on human
vital sign detection [8]–[18].

In [8], the time-domain signal of UWB radar was ana-
lyzed using a morphological filtering method to extract the
human heart rate. An improved arctangent demodulation
technique was proposed to determine the frequency of human
micromotion based on a multiple frequency accumulation
method [9]. In [10], human respiratory motion detection
based on a short-time Fourier transform (STFT) and singular
value decomposition (SVD) was studied with respect to three
different media. In [11], quasiperiodic echoes in the slow-
time dimension were analyzed based on the characteristics of
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impulse radio UWB radar vital sign signals, and a vital sign
signal extraction algorithm based on multiple higher-order
cumulants was introduced. In [12], the finite difference time
domain numerical simulation approach and synthetic compu-
tational experiments were used to design simulation models
of human vital sign detection under collapsed building debris
caused by earthquakes; advanced signal processing, such as
source separation and empirical mode decomposition, was
used to determine the location of human targets. In [13],
human heart-lung respirate was analyzed using a numerical
simulation method. The Hilbert-Huang Transforms (HHT)
was used to discriminate between different human respira-
tory states. In [14], nonstationary signals caused by moving
targets and respiratory motion signals were separated by
SVD to improve the detection performance of UWB radar
in low signal-to-noise-and-clutter ratio (SNCR) conditions.
In [15], empirical mode decomposition (EMD) was adopted
to adaptively decompose radar signals into intrinsic mode
functions (IMF). By calculating the energy spectrum charac-
teristics of each IMF, the respiratory and heartbeat signals are
reconstructed in the time domain. Based on the idea in [15],
ensemble empirical mode decomposition (EEMD) was per-
formed to reduce modal aliasing. Meanwhile, the high-order
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cumulants of reconstructed signals were calculated to
improve measurement accuracy [16]. In [17], EEMD was
used to improve the signal-to-noise ratio of echo signals.
Continuous wavelet transforms (CWT) was used to sepa-
rate the heartbeat and respiratory signals from radar-received
signals, but the performance of the algorithm depended on
the selection of the wavelet basis. In [18], variational mode
decomposition (VMD) was used to suppress mode aliasing,
but decomposition levels needed to be determined according
to the number of targets in the detection scenario. The pro-
posed algorithms mentioned above can accurately measure
human vital signs, but the algorithms depend on radar data
accumulated over a long period.

In traditional algorithms for human vital sign extrac-
tion, the respiratory and heartbeat frequency are obtained
by Fourier spectrum analysis of the single-frame signal.
However, when the sampling frequency is fixed, the longer
the sequence participated, the better the spectrum.
Therefore, we need long-term observation data; this need,
however, reduces the efficiency of radar. To solve this
problem, we propose a vital sign signal extraction method
based on permutation entropy (PE) and an EEMD algorithm
for UWB radar. PE is used to calculate the complexity of
time-domain signals. By calculating the PE values of radar
received-pulses along the fast-time direction, the distance
between a human target and radar can be estimated according
to PE values. Human vital sign signals are distributed on
adjacent distance gates because 1. the radar transmitter has
a certain trail; 2. the transverse width of the human thorax
is nearly 30-40 centimeters, and multiple scattering points
may exist on the thorax; and 3. the human body has a slight
swing motion. By choosing and combining the signals on
these distance gates based on PE values, more vital signs
information can be obtained than single-frame signals, and
the observation time can be reduced. EEMD is adopted to
adaptively decompose the combined radar echo signal into
IMF. According to the energy ratio of each IMF, the respi-
ratory and heartbeat signals are extracted. The experimental
results show that the proposed algorithm can effectively
extract human vital sign signals quickly.

This paper is organized as follows: In section I, the appli-
cation scenario of noncontact measurement of UWB radar
and the status of current research vital sign signal processing
algorithms are introduced. In section II, the UWB vital sign
signal model is analyzed. In section III, the proposed algo-
rithm is presented in detail. In section IV, the experimental
setup and UWB radar system are introduced, and the results
are analyzed. Section V is the conclusion of the paper.

II. UWB RADAR VITAL SIGN SIGNAL MODEL
When UWB radar detects vital sign signals, radar echo
signals mainly include human-generated modulation sig-
nals with micromotion such as breathing, heartbeats, and
surrounding environmental noise signals. In this paper,
we assume that in detection scenarios, in addition to
human micromotion (i.e., breathing and heartbeat motion),

other objects are stationary. Therefore, the impulse response
of signal propagation can be expressed as [19]

h(t, τ ) = Avδ(τ − τv(t))+
∑
s

Asδ(τ − τs) (1)

where τ denotes fast time, t denotes slow time, Avδ(τ−τv(t))
is human micromotion, Av denotes the amplitude of human
micromotion echo signals, τv(t) is the time delay generated by
human micromotion,

∑
s Asδ(τ − τs) is the stationary objects

in the surrounding environment, As denotes the amplitude of
echo signals from stationary objects, and τs is the time delay
generated by stationary objects.

Human respiratory and heartbeat activity lead to periodic
changes in the chest cavity. Assuming that a human is target
perpendicular to the radar line of sight, the human target is
located at a fixed distance d0, and the chest cavity change is
1d(t), then τv(t) can be expressed by

τv(t) =
2(d0 +1d(t))

v

=
2(d0 + drcos(2π fr t)+ dhcos(2π fht))

v
= τ0 + τrcos(2π fr t)+ τhcos(2π fht) (2)

where v is the propagation velocity of an electromagnetic
wave (i.e.,v = 3× 108m/s), τ0 =

2d0
v is the time delay of the

human, τr =
2dr
v , τh =

2dh
v is the time delay of respiration

motion and heartbeat motion respectively, fr is the frequency
of the respiration, and fh is the frequency of the heartbeat.

We assume that the transmission impulse signal of the
UWB radar is p(τ ); therefore, the echo signals received by
the receiving antenna can be written as

R(t, τ ) = p(τ )⊗ h(t, τ )

= Avp(τ − τv(t))+
∑

s
Avp(τ − τs) (3)

where ⊗ represents a convolution operation.
Discretize equation (3) along both the slow-time direction

and fast-time direction; then, we can obtainM × N matrix

RM×N = R(τ = mTf , t = nTs)

=

∑
s
p(mTf − τs)+ Avp(mTf − τv(nTs)) (4)

where t = nTs; n = 0, 1, 2, . . . ,N − 1,N ∈ Z+; Ts rep-
resents the sampling interval along the slow-time direction;
τ = mTf ;m = 0, 1, 2, . . . ,M − 1,M ∈ Z+; and Tf repre-
sents the sampling interval along the fast-time direction.
RM×N denotes the radar echo data matrix of the human

vital sign signal. If the matrix is processed properly, the vital
sign signal can be extracted. Figure 1 illustrates the vital sign
signal model of the received data without clutter. The slow-
time dimension represents the observation time, i.e., the num-
ber of received pulses. The fast-time dimension represents the
detection range of the radar. The dotted line in Figure 1 is
the location scope of the human targets. The waveform of
the target position will change periodically in the slow-time
direction due to periodic behaviors, such as respiratory and
heartbeat motion.
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FIGURE 1. An illustration of the vital sign signal model.

III. PROPOSED ALGORITHM
In this section, the proposed algorithm is introduced in
detail. The algorithm includes three parts: signal preprocess-
ing, distance detection and echoes selection, and vital sign
signal extraction. The flowchart of this algorithm is given
in Figure 2.

FIGURE 2. Flowchart of the proposed algorithm.

A. SIGNAL PREPROCESSING
In actual detection, human vital sign signals are covered
by strong background clutter signals. Denote �as the radar
received pulses matrix after signal pre-processing.

1) CLUTTER SUPPRESSION
The echo from stationary objects in the detection scene can
be approximated to a direct current (DC) component. The
expression can be written as

µ =
1

M × N

M∑
m=1

N∑
n=1

R[m, n] (5)

Then the results of removing static clutters can be obtained

R̄M×N = RM×N − µ (6)

To remove as much background clutter as possible, we use
an exponential weighting cancellation method to estimate the
amount of background clutter; take the n1th frame echo as an
example [20]

=[m, n] = α=[m, n− 1]+ (1− α)R̄[m, n] (7)

where α is a weighting factor, α ∈ (0, 1),=[m, 1] = R̄[m, 1],
and =[m, n − 1] denotes the background clutter which esti-
mated from the previous echoes. Then the echo matrix after
clutter suppression can be written as

�̂M×N = R̄M×N − = (8)

2) LINEAR TREND SUPPRESSION
The unstable amplitude of the transmitting unit is caused by
thermal noise and time drift; this unstable amplitude leads to
the linear trend of the radar received data along the slow time.
Therefore, the least-squares fit method is used to estimate and
subtract

� = �̂T
− w(wTw)−1wT · �̂T (9)

where w = [w1,w2], w1 = [0, 1, . . . ,M − 1]T ; and w2 =

[1, 1, . . . , 1]T .

3) SIGNAL-TO-NOISE RATIO (SNR) IMPROVEMENT
High-frequency noise is caused by a heavy oversampling
backscatter signal [11]. Therefore, a Butterworth bandpass
filter is designed in range direction to improve the SNR.
The mean filter is used to eliminate low-frequency and high-
frequency noise in the slow-time dimension [21]. The human
amplitude in the radar-received pulse is related mainly to
the cross section of the human body and the relative dis-
tance between human target and the radar. The multipath
effect in the actual test scenario also interferes with the
target echo. Therefore, auto gain control (AGC) is used to
enhance the weak human vital sign signal to further improve
SNR [22]. The AGC algorithm enhances the human life sig-
nal in the range dimension and calculates the corresponding
gain coefficient according to the energy in selected time
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window 2λ+ 1, thereby achieving adaptive control. Take the
n1th frame echo signal r(τ, n1) as an example

gmask (τi, t) =
2λ+ 1√

i+λ∑
k=i−λ

r(τk , t)2

(10)

rE (τ, t) = gmask (τ, t)× r(τ, t) (11)

where gmask (τi, t) represents signal gain coefficients and
rE (τ, t) is the enhanced signal after AGC.

B. RANGE DETECTION AND ECHOES SELECTION
To detect the range of the human target in the radar echo
matrix �, the statistical characteristics (such as kurtosis,
standard deviation and variance) in the range dimension are
analyzed [18], [23], [24]. In this paper, the signal complexity
of the target region and the nontarget region are different in
the slow-time dimension of radar-received pulses, so permu-
tation entropy is adopted to detect the position of the human
target. Permutation entropywas proposed by Christoph Bandt
in [25], to detect randomness and dynamics mutations of time
series. PE can effectively detect and amplify the dynamic
changes of time series such as signals, and has the properties
of simple calculation [26] (the computational complexity is
O(n)) and strong anti-interference. The principle of PE is as
follows.

We suppose that at the fast time m1, time series X [m1, i] =
{x(1), x(2), . . . , x(i)}, i = 1, 2, 3, . . . ,N ,X ∈ �M×N can be
obtained and reconstruct its phase space matrix

x(1) x(1+ τd ) . . . x(1+ (q− 1)τd )
x(2) x(2+ τd ) . . . x(2+ (q− 1)τd )
x(j) x(j+ τd ) . . . x(j+ (q− 1)τd )
. . . . . . . . . . . .
x(K ) x(K + τd ) . . . x(K + (q− 1)τd )

 ,
j = 1, 2, 3, . . . ,K (12)

where q represents the embedding dimensions, τd is the time
delay, and K = N − (q − 1)τd . Each row in the phase
space matrix can be regarded as a reconstructed component.
Reorganizing jth reconstructed component in ascending
order, j1, j2, . . . , jq represents the index of elements in the
phase space matrix.

x(i+(j1 − 1)τd )≤x(i+(j2 − 1)τd )≤ . . .≤x(i+ (jq−1)τd )

(13)

If equal values exist in the reconstructed component

x(i+ (j1 − 1)τd ) = x(i+ (j2 − 1)τd ) (14)

Then, sorted according to the value of j1, j2

x(i+ (j1 − 1)τd ) ≤ x(i+ (j2 − 1)τd ) (15)

Then, for each row data in the phase matrix that are recon-
structed any by any time series, we can obtain a set of symbol
sequences

S(l) = (j1, j2, . . . , jq) (16)

where l = 1, 2, . . . , k , k ≤ q!.

A total of q! symbol sequences map from the phase
space. If the probability of each symbol sequence P1,P2,
P3, . . . ,Pk is calculated for a time series, the permutation
entropy of k different symbol sequences can be defined in
the form of Shannon entropy

Hp(q) = −
k∑
j=1

Pj lnPj (17)

In (17), when Pj = 1
q! , the maximum of Hp(q) is reached;

i.e., max{Hp(q)} = ln(q!). Therefore, we can use the maxi-
mum for normalization.

The permutation entropy algorithm does not rely on the
specific value of the time series but analyzes the data by
comparing the adjacent data. Some parameters (such as the
length of data L,embedding dimension q and time delay τd )
for calculating the permutation entropy need to be predeter-
mined [27]–[29]. Bandt recommended that the embedding
dimension q ∈ [3, 7] for calculating PE in [25] because if
q = 1 or 2, there are few states in the reconstructed vector,
the permutation entropy loses its validity, and the mutation
of the time series cannot be detected. Conversely, if q > 7,
it takes more computation time. Meanwhile, the reconstruc-
tion of the phase space leads to a homogeneous time series,
and it is difficult to characterize the subtle changes of the
signals. Take a random signal with a length of 240 as an
example. Figure 3 shows the relationship between the PE
values and the embedding dimension under different time
delays. As shown in Figure 3, the time delay has less influence
on PE values. Next, in this paper, we set time delay τd to 1.
According to [28], to achieve a reliable PE measurement,
the signal length L must fulfill L >> q!. PE values according
to differences in sequence length are given in Figure 4. For
random signals with lengths of 80, 160, 240, 320 and 400,
the corresponding PE values are calculated and denoted as
PE1, PE2, PE3, PE4, PE5, respectively.
Table 1 shows the differences in the PE of random sig-

nals based on different lengths and embedding dimensions.
According to the results of Table 1, when the embedding
dimension q = 3 and time delay τd = 1, the permutation
entropy of a random signal with data length of 80 differs from
the entropy of a random signal with a data length of 160 by
0.0024, and the permutation entropy of a data length 320 dif-
fers from the permutation entropy of a random signal with a
data length of 240 by 0.0023. Therefore, it is appropriate to
set the data length to 80.

TABLE 1. Differences in the pe of random signals based on different
lengths and embedding dimensions.
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FIGURE 3. The PE of random signal with different time delays.

FIGURE 4. The PE of random signals with different data lengths.

According to the analysis above, we can conclude that PE
is insensitive to the length of random signals when q = 3 and
τd = 1. Therefore, in this study, the parameters of permuta-
tion entropy are set as follows: the embedding dimension is 3,
the signal length is 80 and the time delay is 1.

The value of PE indicates the randomness of the time
series: the lower the PE value is, the more regular the time
series becomes. Changing the value of PE can reflect and
amplify the subtle change of the time series. In the radar-
received echoes matrix �M×N , the PE value of the human
target region has relatively regular vital sign signals, so the
corresponding PE value of the human target region is low,

and the target position Ppos can be determined by searching
the minimum value index of the PE value. Then, the range
information of targets can be given by

Range =
v× Ppos × Tf

2
(18)

where v = 3×108m/s and Tf represents the sampling interval
in the fast-time dimension.

In traditional algorithms (for example, variable points
Fourier transforms) for detecting the vital sign signals,
the respiratory and heartbeat frequency ware estimated by
spectrum analysis of the single-frame signal accumulated in
the slow-time dimension. However, when the sampling fre-
quency is fixed, the longer the single-frame signal is, the bet-
ter the spectrum is. Therefore, we need long-term observation
data (approximately 20 seconds); this requirement reduces
the efficiency of UWB radar. In actual radar detection, radar-
received pulses carrying vital sign information will distrust
at adjacent distance gates. Based on PE values, we can make
full use of the echoes distributed in adjacent distance gates to
increase the signal length and improve radar efficiency.

Assume the longitudinal width of human chest Dtho; then,
according to the sampling interval Tf in the fast-time dimen-
sion, the number of points occupied by the human chest in
the received pulse can be calculated; i.e.,Ptho =

2Dtho
vTf

, where

v = 3 × 108m/s. Denote the vital sign signal matrix as 9,
which can then be expressed by

9 = �[(Ppos − Ptho/2) : (Ppos + Ptho/2), 1 : n]

0 ≤ Ppos,Ptho ≤ M

n = 1, 2, . . . ,N (19)

By arranging the vital sign signal matrix in rows, we can
obtain the vital sign signal vector ξ . Figure 5 shows a
schematic diagram of this section algorithm.

C. VITAL SIGN SIGNAL EXTRACTION BASED ON EEMD
An EMD algorithm can adaptively decompose the signal
into a series of intrinsic mode functions and residual signals
according to the characteristics of the signal:

x(t) =
n∑
i=1

IMFi(t)+ rn(t) (20)

The physical meaning of each IMF corresponds to the
oscillation characteristics of different scales in the original
signal. An IMF must satisfy the following conditions: (i)
the number of zero-crossings and extreme values must be
equal or differ at most by one; and (ii) at any point, the mean
value of the upper and lower envelopes is zero. Each IMF is
extracted by using an iterative shifting process [30].

To suppress mode mixing in EMD algorithm, an EEMD
algorithm was proposed by Huang [31]. By adding Gaussian
white noise to the original signal, the signal is continuous
at different scales. EEMD algorithm suppress mode mixing
better than EMD algorithm because after EMD algorithm,
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FIGURE 5. A schematic diagram of the section algorithm.

FIGURE 6. UWB radar system.

the added random white noise is uniform in the whole time-
frequency space, and the different fluctuations of the origi-
nal signal are automatically projected to the corresponding
frequency fluctuations in the uniform time-frequency space
established by the white noise. Since the white noise added by
EMD decomposition is random and independent, the added
random white noise is cancelled after averaging the corre-
sponding IMF components. The details of the EEMD algo-
rithm are as follows:

1. Add Gaussian white noise ni(t) to the original x(t):

xi(t) = x(t)+ ni(t)

i = 1, . . . , I (21)

where ni(t) represents the white Gaussian noise and xi(t)
indicates the signal with Gaussian white noise.

2. Use the EMD algorithm on the signal xi(t) to obtain the
corresponding IMF component.

3. Repeat steps 1-2 for I times.

FIGURE 7. Experimental setup: (a) first experiment, (b) second
experiment and (c) third experiment.

4. The average operation is performed on the IMF compo-
nent by I times EMD results, and the new IMF component
can be obtained:

IMFj(t) =
1
I

I∑
i=1

IMFji, i = 1, 2, . . . , I (22)

Finally, the results of the EEMD can be written as

x(t) =
n∑
j=1

IMFj(t)+ rn(t) (23)

where rn(t) is the residual signal.
The complete ensemble number I is the key parameter of

the EEMD algorithm; a large value of Ican cause an expen-
sive computation cost. For vital sign signal decomposition,
we acknowledge that I = 50 bymultiple experiments. Hence,
in this study, the following parameters are set as follows: the
complete ensemble number is set as I = 50, white Gaussian
noise is added at 0.2 times the standard deviation of x(t),
and the G. Riling criterion is the stopping criterion of the
EEMD algorithm .
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FIGURE 8. Signal preprocessing performance: (a) radar raw data, (b) radar data after clutter suppression, (c) radar
data after AGC and (d) radar data after filter.

The EEMD algorithm is used to extract the respiratory
and heartbeat signals based on the following principles: The
important structure of the vital sign signal is concentrated in
the low frequency range (the heartbeat frequency distribution
range is 1-2.5 Hz, and the respiratory frequency distribution
range is 0.2-0.8 Hz) [13]. Only the part of the IMFs that
reflect the spectral structure of the vital sign signal is used
to reconstruct the respiratory and heartbeat signals.

The signal ξ is decomposed to Z IMFs; then, we can obtain
a mode index set {z1, z2, z3, z4} ∈ Z . The selection rules of
index set {z1, z2, z3, z4} are as follows: Fourier transforms is
performed on each of the IMFs, thereby computing the entire
energy of each IMF in frequency domain E(f ), the energy of
the respiration signal frequency range (0.2-0.8 Hz) Er (f ) and
the energy of the heartbeat signal frequency range (1-2.5 Hz)
Eh(f ). δh, δr is the corresponding energy threshold. If the
energy ratio of each IMF is larger than the energy threshold,
we determine that the IMF can reconstruct the vital sign
signals. The energy threshold is related to human posture.
In [15], a conclusion was drawn from repeated experiments

that the energy threshold value is 0.5 when the human target
toward the radar. In this paper, we set the energy threshold to
δh, δr = 0.5. 

z1 = argmin
1≤z≤Z

[Eh(f )E(f ) ≥ δh]

z2 = argmax
1≤z≤Z

[Eh(f )E(f ) ≥ δh]

z3 = argmin
1≤z≤Z

[Er (f )E(f ) ≥ δr ]

z4 = argmax
1≤z≤Z

[Er (f )E(f ) ≥ δr ]

δh, δr ∈ (0, 1)

(24)

Therefore, the heartbeat signal is reconstructed by z2− z1+1
IMFs, and the respiratory signal is reconstructed by z4− z3+
1IMFs: 

sh(t) =
z2∑
z=z1

IMFz(t)

sr (t) =
z4∑
z=z3

IMFz(t)
(25)
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FIGURE 9. Vital sign signal extraction performance for a human target 5 meters from the radar in the second
experiment: (a) radar data after preprocessing, (b) PE-distance curve, (c) reconstructed respiratory signal,
(d) respiratory signal spectrum, (e) reconstructed heartbeat signal, and (f) heartbeat signal spectrum.

IV. EXPERIMENT AND RESULTS ANALYSIS
A. UWB RADAR SYSTEM AND EXPERIMENTAL SETUP
The composition of the UWB radar is shown in Figure 6.
The UWB radar system was independently developed by the

School of Aeronautics and Astronautics of Central South
University. The pulse signal generating module generates a
trigger pulse with a pulse repetition frequency of 400 KHz.
After the transmitted signal is scattered by the target,
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FIGURE 10. Vital sign signal extraction performance for a human target 9 meters from the radar in third experiment,
(a) radar data after preprocessing, (b) PE-distance curve, (c) reconstructed respiratory signal, (d) respiratory signal
spectrum, (e) reconstructed heartbeat signal, and (f) heartbeat signal spectrum.

the signals are sampled by the echo acquisition module,
and then converted into digital signal by an analog-to-digital
converter (ADC) and stored by a field programmable gate
array (FPGA). The real-time sampling frequency of the ADC

is 400 KSa/s. By using the equivalent sampling method,
the equivalent sampling frequency can reach 5 GSa/s.
Bow-tie antennas are used in the UWB radar system.
Table 2 shows the parameters of this system.
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FIGURE 11. The presentation of the proposed algorithm for a human target 7 meters from the radar in the second experiment: (a) radar data after
preprocessing, (b) PE-distance curve, (c) combined signal, (d) energy ratio of IMFs, (e) reconstructed respiratory signal, (f) respiratory signal spectrum,
(g) reconstructed heartbeat signal, and (h) heartbeat signal spectrum.

To validate the effectiveness of the proposed algorithm,
experiments are designed based on a UWB radar system.
Figure 7 are the experimental scenarios. The first experiment
was carried out in the back of the Democratic Building of
Central South University. A beacon with a vibration fre-
quency of 0.2 Hz was used to simulate the respiratory motion.
The beacon is surrounded by plants such as weeds and is
7 meters away from the radar. The second experiment was
conducted on the roof of a commercial office building. Metal

railings and ventilation equipment on the rooftop may have
affected the accuracy of the extraction of vital sign signals.
The distance between the volunteer and the radar is 5 meters
and then 7 meters. The third experiment was carried out in an
indoors office building in Changsha; the volunteer is 9 meters
away from the radar, and the wall (which is composed of
brick and concrete) has a thickness of 20 centimeters. The
volunteer participating in the experiment is a healthy adult
male student (170 cm, 60 kg). The radar is 1.5 meters above
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TABLE 2. The parameters of the UWB radar system.

the ground. In these experiments, the volunteer maintained
normal breathing, normal heartbeat and stood upright towards
the radar.

B. RESULTS ANALYSIS
1) SIGNAL PREPROCESSING PERFORMANCE
in this section, signal preprocessing performance is discussed
based on the data from the first experiment. Figure 8(a)
is the radar raw data. Figure 8(b) shows the results after
removing the DC component, static clutter and linear trend.
The simulated signal is relatively weak. The results obtained
by employing agc are shown in Figure 8(c). The results
processed by the filers in slow time and fast time are given
in Figure 8(d). The life signal is gradually enhanced in the
echo matrix compared with the result shown in Figure 8(a).

2) VITAL SIGN SIGNAL EXTRACTION PERFORMANCE AT
DIFFERENT DISTANCES IN OUTDOOR AND
INDOOR SCENES
In this section, the data acquisition from the second and
third experiments is used to evaluate the vital sign sig-
nal extraction performance of the proposed algorithm.
Figures 9(a), 9(b), 10(a), 10(b), 11(a) and 11(b) show the
radar matrix after preprocessing with the human target
at 5 meters, 9 meters (under the through-wall condition),
7 meters and their corresponding permutation entropy.
As shown in the Figures 9(b), 10(b) and 11(b), the PE value
in the nontarget region is higher (approximately 0.8-1), and
the PE value in the target region is lower (approximately
0.5-0.75). The PE value in the nontarget region is higher
because, in the slow-time dimension of the radar-received
echoes, the signal complexity of the target region differs
from that of the nontarget region and the human breathing
and heartbeat signal is certain and more regular than the
background noise; therefore, the corresponding PE value is
low, and is thus consistent with the physical meaning of the
PE value. The estimated range is 4.89 meters, 9.03 meters,
6.90 meters, and the corresponding measurement error is
0.11 meters,0.03 meters and 0.10 meters.

To explore the extraction performance of the human life
signal by the proposed algorithm, take the data of the tar-
get at 7 meters as an example. Signals of the human tar-
get in adjacent distance gates were selected and combined
according to permutation entropy. The combined signal is

TABLE 3. The results compared with the referenced algorithm.

shown in Figure 11(c) and decomposed into several IMFs
by EEMD. The energy ratio of each of the IMFs is shown in
Figure 11(d); the energy ratios indicate that the respiration
signal is reconstructed by IMF2 and IMF3 and the heartbeat
signal is reconstructed by IMF1. Figure 11(e),11(f),11(g),
and 11(h) show the reconstructed respiratory and heartbeat
signals and corresponding frequency. Table 3 summarizes
the results of the proposed algorithm and referenced algo-
rithms, such as fast Fourier transforms algorithm (FFT) [32]
and variational mode decomposition algorithm (VMD) [33].
Experimental results show that the proposed algorithm can
obtain the vital sign signals and parameters faster than other
similar methods.

V. CONCLUSION
In this paper, we propose an UWB radar vital sign signal
extraction algorithm based on permutation entropy and an
EEMD algorithm. The distance between the UWB radar and
the human target is obtained by calculating the PE value of the
radar-received pulse accumulated in slow time. To improve
the efficiency of the UWB radar, the signals of the target
distributed in adjacent distance gates are selected and com-
bined based on PE. The recombined signal is adaptively
decomposed by the EEMD algorithm, and the respiratory and
heartbeat signal are reconstructed in the time domain. Exper-
imental results show that the proposed algorithm can effec-
tively separate the life signal from clutter; therefore, the algo-
rithm is suitable for rapid extraction of vital sign signals and
corresponding parameters. Further, compared with the other
algorithms mentioned in Table 3, the proposed algorithm
integrates the life signals of adjacent distance gates, so the
required observation time is approximately 1-2 times shorter.
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