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ABSTRACT Recent generative adversarial network based methods have shown promising results for the
charming but challenging task of synthesizing images from text descriptions. These approaches can generate
images with general shape and color but often produce distorted global structures with unnatural local
semantic details. It is due to ineffectiveness of convolutional neural networks in capturing the high-level
semantic information for pixel-level image synthesis. In this paper, we propose a Dual Attentional Generative
Adversarial Network (DualAttn-GAN) in which the dual attention modules are introduced to enhance local
details and global structures by attending to related features from relevant words and different visual regions.
As one of the dual modules, the textual attention module is designed to explore the fine-grained interaction
between vision and language. On the other hand, visual attention module models internal representations of
vision from channel and spatial axes, which can better capture the global structures. Meanwhile, we apply
an attention embedding module to merge multi-path features. Furthermore, we present an inverted residual
structure to boost representation power of CNNs and apply spectral normalization to stabilize GAN training.
With extensive experimental validation on two benchmark datasets, our method significantly improves state-
of-the-art models over the evaluation metrics of inception score and Fréchet inception distance.

INDEX TERMS Generative adversarial network, textual attention, visual attention, inverted residual
structure, spectral normalization.

I. INTRODUCTION
Synthesizing image from text description has been a hot topic
crossing natural language processing and computer vision.
It has significant impact on the applications of content pro-
duction and advertisement design.

The core challenge of text-to-image synthesis lies in gener-
ating visually realistic and semantically sensible pixels asso-
ciated with text descriptions. The task has two main issues.
One is the semantic gap between the word-level textual
semantic conception and the pixel-level visual information.
Due to the sparse mapping between text space and image
space, one word may change some sub-region details of gen-
erated images. On the other hand, the incomplete text descrip-
tion lacks a lot of conditional information, which limits the
ability to express the visual characteristics of the network.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

The under-fitting expression of the generative network results
in poor quality of the generated image that appears to have a
distorted global structure with blurred edges. In this paper,
we aim to boost representation power of generative network
and generate text-related images with high authenticity and
quality.

Methods [1]–[7] built upon Generative Adversarial Net-
works (GANs) [8] for text-to-image synthesis have shown
good performance. And the attention mechanisms, one of
the recent advances in neural networks, have been used in
generative adversarial network for text-to-image synthesis.
AttnGAN [4] is the first to introduce attention mechanisms
into GAN frameworks, which guides to generate refined
details. However, it still can not perfectly capture the global
coherence structure, which may distort the shape of object.

To address the issues above, we propose the Dual Atten-
tional Generative Adversarial Networks for synthesizing
image from text description. In order to synthesize promising
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local details with significant global structures, we introduce
dual attention modules, which includes three main compo-
nents: textual attention module, visual attention module and
attenion embedding module. The textual attention module
is designed to explore the fine-grained interaction between
vision and language. While visual attention module mod-
els internal representations of vision from channel and spa-
tial axes, which can better capture the global structures.
Moreover, we apply an attention embedding module to merge
multi-path features. When reconstructing feature maps from
low-resolution to high-resolution, most iterative methods
[4]–[7] for text-to-image synthesis merely consider that adja-
cent two-layers’ feature maps are almost linear or polyno-
mial. In this paper, we present an inverted residual structure to
modeling the nonlinear relationship between hidden layers.

Our contributions are summarized as the following: First,
we propose Dual Attention Modules, in which enhance local
and global details by attending to related features from rele-
vant words and different visual regions. Second, we introduce
an inverted residual structure (residuals [9] enhancements)
to boost representation power of CNNs. Third, we apply
several techniques including using ReLU [10] instead of the
gate linear unit (GLU) [11] as activation function to improve
training speed, spectral normalization [12] to stabilize GAN
training based on the stacked generative network [4], [6].
Comprehensive experiments and results analysis show that
our proposed DualAttn-GAN has a significant improvement
over the previous state-of-the-art models.

II. RELATED WORK
A. TEXT-TO-IMAGE SYNTHESIS
The aim of text-to-image synthesis is generating realistic
images relevant to the language descriptions, which has
attractedmany researches to tackle the new taskwith different
deep generative models. Mansimov et al. [13] used the Align-
DRAW model for iteratively generating images with a soft
attention mechanism based on variational autoencoders [14].
Reed et al. [15] introduced conditional PixelCNN [16] to
synthesize images from captions with a multi-scale model
structure.

Recently, more and more researchers focus on genera-
tive adversarial networks (GANs) [8]. Most methods have
been proposed to stabilize training GANs and improve the
quality of generated images [12], [17]–[25]. Specifically,
Miyato et al. [12] proposed spectral normalization to sta-
bilize the training of the discriminator. Mirza and Osindero
[22] presented CGAN to control generating images with
labeled condition. LAPGAN [20] is the first to use iter-
ative approach to generate sharper image from coarse to
fine based on GAN, which outperforms the original GAN.
Meanwhile, many works on other tasks have shown remark-
able performance by using GAN, such as domain transfer
[26], [27], super-resolution [28], [29] and human face gen-
eration [30], [31]. As for text-to-image synthesis based on
GAN, there have been many effective methods emerged.

Reed et al. [3] proposed GAN-INT-CLS and firstly applied
GAN to generate images from text descriptions. Their follow-
up work GAWWN [32] generated impressive images with
auxiliary location constraints. Nguyen et al. [2] presented
PPGN by using activation maximization [33] to generate
images. Dash et al. [1] proposed TAC-GAN, which combines
GAN-INT-CLS [3] and ACGAN [23]. To generate high-
resolution images from neural languages, [4]–[7] produced
sharper images from coarse to fine with stacked GAN. Stack-
GAN [5] was put forward with staged generative adversarial
network that generate low-resolution in the stage-I GAN and
synthesize high-resolution details in the stage-II GAN. Then,
Zhang et al. followed work StackGAN++ [6] advanced the
stacked generative network within a tree-like structure and
color-consistency regularization. Based on StackGAN++,
Xu et al. [4] apply attention mechanism on vision and
language features to form refined details. Zhang et al. [7]
adopted global and grid adversarial losses to render image
details with a hierarchically-nested network.

B. ATTENTION MECHANISMS
As the attention mechanisms aim to focus on the necessary
parts of the inputs, the attention-based approach shows good
performance in a range of tasks.

Textual attention mechanisms are usually designed to find
semantic alignment between the inputs and the outputs. In this
task, it is obvious that we can build up the attention model
to bridge language (as the inputs) and vision (as the out-
puts). AttnGAN [4] firstly synthesizes fine-grained details
by applying attention mechanism, which learns the rela-
tionship between text and image. Different from AttnGAN,
we consider the attention module as a residual learning net-
work, which makes the synthesized image more natural and
authentic.

While visual attention mechanisms allow the model to
enhance the representation of visual interests. A number of
methods have recently adopted visual attention to benefit
image classification [34], [35], image detection [36], image
generation [18], [25], [37], image captioning [38], visual
question answering [39]–[41]. As for the visual attention,
there are two main directions for modeling the attention map,
channel-wise and spatial axes. In this study, we design the
visual attention model to construct potential semantic rela-
tionships of internal visual features by the means of blending
channel-wise and spatial information.

III. IMPROVED STACKED GENERATIVE ADVERSARIAL
NETWORK
We first build our baseline model based on the most recent
models for text-to-image synthesis [4]–[7], which can gener-
ate fine images from coarse images by using iterativemethods
with multi-generators.

A. COARSE-TO-FINE NETWORK ARCHITECTURE
As shown in Figure 1, the network architecture of
our improved model consists of multi-generators and
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FIGURE 1. Overview of our improved stacked generative adversarial network, the coarse network of the first stage generates 64 ∗ 64 images, while the
refined networks of the second stage and the third stage generate 128 ∗ 64128 and 256 ∗ 64256 images with dual attention modules.

multi-discriminators, and it follows a tree-like architecture [6]
and uses a text encoder by BiLSTM [4] for training and
testing. The first branch generates a low-resolution image
which contains correct colors and rough structure for the
object. The later branches generate high-resolution images
that focuses on rich details. We introduce an inverted resid-
ual structure [42], in which the bottlenecks actually con-
tain all the necessary information. In order to improve the
quality of inter representations, we perform an expansion
layer for increasing the width and use a squeeze layer for
decreasing the width. Meanwhile, we use shortcuts directly
between the two layers. Also, we apply ReLU as activa-
tion function instead of GLU in StackGAN++. To stabilize
GAN training, we adopt spectral normalization to the gener-
ator networks and the discriminator networks, which shows
great performance in recent models including SNGAN [12],
SAGAN [25] and BigGAN [18].

B. CONDITIONAL-UNCONDITIONAL LOSSES AND DEEP
MULTIMODAL SIMILARITY REGULARIZER
The objective of DualAttn-GAN is the joint conditional-
unconditional losses [6] over each discriminator and
generator, which is introduced to jointly approximates
conditional-unconditional image distributions. The loss func-
tion for the ith discriminator Di is converted to:

LDi = −
1
2
Exi∼Pdatai [logDi(xi)]

−
1
2
Ex̂i∼PGi [log(1− Di(x̂i))]

−
1
2
Exi∼Pdatai [logDi(xi, ē)]

−
1
2
Ex̂i∼PGi [log(1− Di(x̂i, ē))] (1)

While the loss of the ith generator Gi is computed as:

LGi = −
1
2
Ex̂i∼PGi [log(Di(x̂i))]

−
1
2
Ex̂i∼PGi [log(Di(x̂i, ē))] (2)

where xi is from the true data distributionPdatai at the i
th scale,

and x̂i is from the model distribution PGi at the same scale.
In addition, we adopt the deep attentional multimodal

similarity model (DAMSM) [4] to estimate how well the
image matches the text. For given image-text pairs {Ii,Ti}Ni=1,
the DAMSM loss function can be defined as the negative log
posterior probability that images and text descriptions match
others:

LDAMSM = −
N∑
i=1

exp(γR(Ii,Ti))∑N
j=1 exp(γR(Ii,Tj))

−

N∑
i=1

exp(γR(Ii,Ti))∑N
j=1 exp(γR(Ij,Ti))

(3)

where R() donates the image-text matching score [4], and γ
is a smoothing factor determined by experiments.
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Finally, the DAMSM loss and the discriminant loss for the
generative network are contributed to:

LG = λLDAMSM +
M∑
i=1

LGi (4)

where M donates the total number of branches, and λ is a
hyper-parameter to balance the two terms of loss.

IV. DUAL ATTENTION MODULES
Dual Attention Modules (DAM) are proposed to enhance
details by the means of attending to related features from rel-
evant words and different visual regions. As shown in Fig. 2,
DAM consists of Textual Attention Module, Visual Atten-
tion Module and Attention Embedding Module. The Textual
Attention Module (TAM) is designed to explore the fine-
grained links between vision and language. While Visual
Attention Module (VAM) models internal representations
of vision from channel and spatial axes, which can better
capture the global structures. Finally, Attention Embedding
Module (AEM) is applied to merge multi-path features.

FIGURE 2. Dual Attention Modules (DAM). As illustrated, DAM contains
Textual Attention Module (TAM), Visual Attention Module (VAM) and
Attention Embedding Module (AEM). TAM model the links between vision
and language, while VAM explore internal representations of vision. AEM
is used to fuse multi-features.

A. TEXTUAL ATTENTION MODULE
Textual Attention Module [4] Fattnt (e, h) is presented to mod-
eling the mapping relationship between the word features e
and the visual features h from previous hidden layer, which
can generate fine-grained visual details that are semantic
connected to the text. First, we align the word and image
features into the common semantic dimensions through a
transform network. Then, the attention weights are obtained
by calculating its relevancy of word and vision features within
dot product and softmax normalization. Next, to acquired
the word-context vector ci for each sub-region of image, ci
is computed by weighted averaging on the word features ei

with the attention weights. Finally, the word-context matrix
{c0, c1, . . . , ci, . . . } acquired by Fattnt (e, h), is passed to the
Attention Embedding Module to fuse the features.

B. VISUAL ATTENTION MODULE
Visual Attention Module(VAM) Fattnv () is designed to
improve the quality of representations. It can learn to use
global information to selectively focus on important features
and suppress unnecessary ones [36]. The proposed module
utilizes information from dual perspectives, namely channel
and spatial axes, to learn ‘‘what’’ and ‘‘where’’ are the infor-
mative parts.

As shown in Fig. 3, we define a Channel-Spatial (C-S)
model that applies channel attention before spatial attention.
At first, given the image features from the previous hidden
layer h, we adopt Channel Attention Module Fattnvc () to get
channel-wise weighted attention map h′. Then we feed h′

to the spatial attention module Fattnvs () and obtain the spatial
weighted attention map h′′. Fattnv () can be defined as:

Fattnv (h) = Fattnvs (Fattnvc (h)) (5)

1) CHANNEL ATTENTION MODULE.
In order to gain ‘‘what’’ is important of image features,
Channel Attention Module (CAM) is presented to mine the
relationships between channel features of images. Taking
into account the overall background and texture information,
we summarize both average features and maximum features
simultaneously. The work of CBAM [36] has verified the
effectiveness of exploiting both features.

In Fig. 3 (A), we firstly assemble spatial feature vectors
from two branches, one is applying global average pooling
on the input features h, another is using global max pooling.
Next, they are fed into a multi-layer perception to attain
which feature maps should be attended. Finally, we obtain
the channel-wise weighted attention map h′ by leveraging an
element-wise sum operation to combine the two output fea-
ture vectors and then performing an element-wise multiplica-
tion to the feature map h. All processes can be summarized
as follows:

Fattnvc (h) = σ (MLP(AvgPool(h))

+MLP(MaxPool(h)))⊗ h (6)

where σ denotes the sigmoid function, MLP donates the
FC-ReLU-FC networks, and ⊗ denotes the element-wise
multiplication.

2) SPATIAL ATTENTION MODULE.
Context relationship is critical to generating high-resolution
details, with the goal of capturing global, long-range depen-
dencies, not just local ones [25]. Therefore, we propose a
spatial attention module that enhances local feature represen-
tations by encoding rich contextual information.

As illustrated in Fig. 3 (B), to compute the spatial attention
efficiently, we firstly utilize average and max pooling on the
feature map h′ ∈ RC×H×W to obtain effective features of
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FIGURE 3. Visul Attention Module model the visual features from channel-wise and spatial dimensions.
Channel Attention Module is proposed to focus on which layers’ features are more important. Spatial
Attention Module is applied to capturing global, long-range dependencies for each sub-region.

local regions f , where f ∈ RC×Ĥ×Ŵ . Next, we put it into a
1×1 convolution layer and a transform layer to acquire three
feature maps θ , φ and g, where {θ, φ} ∈ RĈ×N , g ∈ RC×N

and N = Ĥ×Ŵ is the number of features. Then the attention
map β ∈ RN×N can be calculated as:

βj,i =
exp(θi · φj)∑N
i=1 exp(θi · φj)

(7)

βj,i indicates the extent to which the model attends to the ith

location when synthesizing the jth region. Note that all sub-
regions are contributed to generate details of each location.

To obtain the spatial weighted attention map o ∈

RC×Ĥ×Ŵ , we conduct a matrix multiplication between g
and the transpose of β and reshape its result to RC×Ĥ×Ŵ .
In addition, we multiply the output by a scale parameter η.
All processes can be summarized as follows:

oj = η
N∑
i=1

(βj,igi) (8)

Finally, we exploit up-sampling to get the image features
h′′, where h′′ ∈ RC×H×W .

C. ATTENTION EMBEDDING MODULE
To enhance the representation of the image features, we sum-
marize the functionality of these two attention modules.
Specifically, as shown in Fig. 2, we respectively add the input
features h to the outputs of the two attention modules through
the skip-connection and perform concatenation to complete
the feature fusion.

V. EXPERIMENTS
In order to thoroughly evaluate the proposed model,
we conduct comprehensive experiments on two widely-
used datasets: CUB [43] and Oxford-102 [44] datasets.
Compared to several previous state-of-the-art GAN mod-
els for synthesizing image from text description, includ-
ing GAN-INT-CLS [3], GAWWN [32], StackGAN [5],
StackGAN++ [6], HDGAN [7] and AttnGAN [4], experi-
mental results demonstrate that ourmodel achieves better per-
formance on the datasets. In addition, we conduct an ablation
study to verify the effectiveness of important components in
our proposed method.

A. DATASET
CUB [43] contains 11,788 images from 200 bird categories.
Oxford-102 [44] consists of 8,189 images of flowers from
102 categories. There are 10 captions for each image in the
two datasets. We split CUB dataset into 150 training cate-
gories and 50 testing categories and split Oxford-102 dataset
into 82 training categories and 20 testing categories by means
of class-disjoint experimental settings. While training, each
image is randomly cropped and flipped, and one caption is
randomly selected from the 10 descriptions related to the
image. During testing, all sentences in test set are chosen to
generate images.

B. EVALUATION METRICS
We use three kinds of metrics to evaluate our method: Incep-
tion Score (IS), Fréchet Inception Distance (FID) and Human
Rank (HR).
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FIGURE 4. Generate Images on CUB test set by our proposed DualAttn-GAN, and compared models: AttnGAN, HDGAN
and StackGAN++, which contain descriptions across different attributes.

1) INCEPTION SCORE [45]
It is a quantitative evaluation method that has been widely
used for image generation. It can be donate as:

IS = exp(ExDKL(p(y|x)‖p(y))) (9)

where x denotes a generated sample, while y is the class label
predicted by the Inception model [46]. High score indicates
better model that can generates more diverse and meaningful
images. We use the pre-trained Inception Model provided
by [5].

2) FRÉCHET INCEPTION DISTANCE [47]
Obviously, the disadvantage of Inception Score is that the
output samples are not compared to the ground truth images.
It does not reflect whether the generated image is closer to
the real image. Therefore, we introduce another evaluation
metric, Fréchet Inception Distance, which is a more rule-
based and comprehensive metric and has been shown to be

more consistent with human assessments in assessing the
authenticity and variability of generated samples. As is well-
known, the top level of the pre-trained neural network can
extract the advanced information of the image, which can
reflect the essence of the image to a certain extent. In practice,
images are encoded with visual features by the Inception
model. FID can be calculated as:

FID = ‖µr − µg‖2 + Tr(6r +6g − 2(6r6g)1/2) (10)

where µr and µg are the means of real and synthetic
image features respectively, and 6r and 6g are the covari-
ance matrices of real and synthetic image features respec-
tively. A lower FID value means that the distance is closer
between the synthetic data distribution and the real data
distribution.

To compute the IS and FID score for evaluating each
model, we utilize all captions in the test set to generate
samples.
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FIGURE 5. Example results on the Oxford-102 test set by proposed DualAttn-GAN, and previous methods: HDGAN, StackGAN++, StackGAN
and GAN-INT-CLS.

3) HUMAN RANK
In addition, we conduct two human rank evaluations: global
quality rank (GQR) and local quality rank (LQR) to eval-
uate generated images. The global quality rank indicates that
users rank the generated images from the overall structures of
object and the richness of background. The local quality rank
means that visual reality and semantic consistency of local
details. 3,000 sentences are randomly selected and used for
synthesizing images by compared models. And 20 users (not
including the authors) are asked to rank.

C. RESULTS AND ANALYSIS
In this section, we compare our results with the previous state-
of-the-art models including GAN-INT-CLS [3], GAWWN
[32], StackGAN [5], StackGAN++ [6], HDGAN [7] and
AttnGAN [4] for text-to-image synthesis on the CUB and
Oxford-102 datasets. In particular, we make detailed com-
parison among them by means of obtaining results from their
provied models. The contrast results of IS, FID and HR are
shown in Table 1 and Table 2. We sample 30,000 ∼ 2562

images from all text descriptions in test sets for computing
the scores. IS is computed on the generated images, and
FID measures the distribution distance between the synthetic
images and the test set images. We also present the results
of HR designed to test global and local quality. Compared
with other methods, our DualAttn-GAN achieves significant
improvements in the major evaluation metrics.

TABLE 1. Performances compared with the state-of-art on CUB and
Oxford-102 datasets by inception score (IS) and fréchet inception
distance (FID).

TABLE 2. Human rank of our DualAttn-GAN and compared methods on
CUB and Oxford-102 datasets: global quality rank (GQR) and local quality
rank (LQR).

As shown in Table 1, our proposed model DualAttn-GAN
significantly boosts in terms of IS StackGAN++ by 0.64,
HDGAN by 0.44 and AttnGAN by 0.23 on CUB dataset, and
StackGAN by 0.86, StachGAN++ by 0.80 and HDGAN by
0.61 on Oxford-102 dataset. It demonstrates that our model
can synthesize more unambiguous and various images than
previous models. Furthermore, DualAttn-GAN outperforms
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FIGURE 6. The images of each column are synthesized by DualAttn-GAN with the same noise vector. Each sentence is used to generate multiple
images with different noise vectors.

FIGURE 7. Comparisons of different components for text-to-image synthesis. (a): +IR, (b): +IR+TAM, (c): +IR+TAM+VAM.

other models as for the metric of FID, which achieves FID of
14.06 on CUB dataset and 40.31 on Oxford-102 dataset. The
result indicates that synthetic samples based on our model
are much closer to the real images. Reported in Table 2,
DualAttn-GAN also achieves the best result on average
Human Rank, which indicates that it is effective to enhance
global structures and local detals.

Fig. 4 and Fig. 5 compare the qualitative results with other
models on CUB and Oxford-102 datasets, by demonstrating
more semantic details, natural color and complex structures.
GAN-INT-CLS just synthesizes low-resolution (64 ∗ 64)
images, which lacks of many details. The samples generated
by StackGAN and HDGAN can reflect general shape and
color of the birds, but lack vivid objects and is not much
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TABLE 3. Ablation study over IS and FID on CUB and Oxford-102 datasets.

TABLE 4. Component analysis of our DualAttn-GAN over Human Rank on
CUB and Oxford-102 datasets.

consistent with the semantic information of the text decrip-
tions. StackGAN++ improves in color based on StackGAN.
AttnGAN obtains better scores, which is still slightly lower
than ours. Although it can generate images with more details
relevant to the captions, it lacks of the ability to capture global
coherent structures, which makes images not realistic. The
images generated by our model not only do outperform on
structure, color and semantic details of the object (such as
‘‘bright orange bellied and breast bird’’ and ‘‘white edge’’),
but also have fascinating background.

Comprehensive comparison, the image generated by our
model is better than others. Further experiments prove that
our model can accurately grasp the semantic information
of the text and synthesize the related images, as well as
the richness of the images synthesized by our model. Some
generated images are shown in Fig. 6. For each column,
our model can synthesize images corresponding to it with
the same noise vector by changing several words in the
sentence that contain important semantics. For each cap-
tion, rich images are generated according to different noise
vectors.

D. ABLATION STUDY
To investigate the impact of each component in the proposed
DualAttn-GAN, we gradually modify the baseline model and
compare their difference. The results are reported in Table 3
and Table 4, and the generated images are shown in Fig. 7.
IR donates the inverted residual structure. TAM represents
the textual attention module, while VAM means the visual
attention module.

First, we construct our baseline model by using spec-
tral normalization, replacing GLU with ReLU based on
StackGAN++ architecture, and the same configurations of
the input text as AttnGAN. Compared with StackGAN++,
our baseline model achieves great improvement in terms of
IS but worse scores of FID and HR. As StackGAN++ has
improved in color with extra color-consistency regulariza-
tion, it makes sense for improving the realism of synthetic
image. Then, by replacing the residuals with inverted residual

structures, the scores of IS, FID and HR are improved. This
indicates that inverted residual structures can improve the
quality of the generated images by adding a few parameters.
Next, we add the textual attentionmodule, which boosts slight
improvement of IS and GQR from the baseline model and
has promising improvement in FID and LQR. As a residual
learning network is applied to the textual attention module,
the result is better than AttnGAN. It can enhances local
details of images based on textual information and makes
the synthesized image more natural and authentic. Finally,
by further adding the visual attention module, it achieves
4.59 of IS, 14.06 of FID on CUB dataset and 4.06 of IS,
40.31 of FID on Oxford-102 dataset, and specially get great
improvement in GQR. It demonstrates that the VAM plays an
significant role in improving the structural quality of image
generation.

VI. CONCLUSION
In this paper, we propose a Dual Attentional Genera-
tive Adversarial Network (DualAttn-GAN) for synthesizing
image from text description, which adaptively integrates fea-
tures with attention mechanisms. Specifically, we introduce
a textual attention module and a visual attention module
to enhance local and global attributive details by attending
on related features from relevant words and different visual
regions respectively. In addition, we present an inverted resid-
ual structure to boost representation power of CNNs. More-
over, useful techniques including spectral normalization and
sample activation function are used to facilitate the training
of the proposed model.
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