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ABSTRACT Topology optimization has demonstrated its power in structural design under a variety of physi-
cal disciplines. Generally, a topology optimization problem is formulated with clearly-defined problem setup.
Both design domain shape and boundary condition are clearly-defined during pre-processing. Optimization
with multiple choices of design domains or boundary conditions have to be performed with multiple runs
of the algorithm to make the best choice among the selective problem setups. The computational cost is
proportional to the number of problem setup choices which can be inefficient if a large number of choices
are involved. Therefore, to save the computational cost, a novel topology optimization method is developed
to solve the design problem with selective problem setups. This method employs a novel meshing strategy
and material interpolation model to unify the multiple problem setups into a single optimization problem.
Therefore, the optimization algorithm only runs once to concurrently derive the optimal structural shape and
the best problem setup choice in a very efficient manner. In addition, the problem formulation is simple. Only
N more design variables are added to realize the interpolation among N + 1 problem setup choices, other than
the density variables for structural topology description. A few numerical examples will be demonstrated to
show the effectiveness of the proposed method.

INDEX TERMS Additive manufacturing, selective design domains, selective boundary conditions, topology

optimization.

I. INTRODUCTION

Topology optimization has been actively investigated
since 1988 [1]. The homogenization method [1], SIMP
(Solid Isotropic Material with Penalization) method [2],
level set method [3], [4], ESO (Evolutionary Structural
Optimization) method [5], MMC (Moving Morphable Com-
ponents) method [6], and many others, have been developed,
while the effectiveness of these methods in solving multi-
disciplinary structural optimization problems have been
witnessed through a large amount of publications, as sum-
marized in [7]-[10]. Among the many topics [11]-[14],
design with geometric uncertainty is a special topic to
address since manufacturing errors may severely deviate the
as-fabricated solution from the ideal design. Sigmund and
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his colleagues [15]-[17] developed the robust formulation to
address the topology optimization formulation with manufac-
turing errors, wherein multiple realizations of the structure
were derived through the erode and dilate filters. Methods
were also developed with level set method by integrating
stochastic perturbations to the level set-based geometry rep-
resentation [18], [19]. Other than design with geometric
uncertainty, topology optimization with uncertain/selective
problem setups is also important but has been rarely focused.
Here, the problem setup condition includes the design domain
size and the boundary condition, while the uncertain/selective
problem setups indicate the availability of multiple choices
of different design domain sizes and/or boundary conditions.
To better explain, Figure 1 demonstrates four similar but dif-
ferent problem setups, wherein both the design domain size
and the loading position can be different among the setups.
Note that, the symbols and the meshes in Figure 1 will be
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FIGURE 1. Different problem setups and the proposed meshing strategy.
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FIGURE 2. Setups of the MBB-beam problem: (a) sub-domain 21 and @2
both have the size of 40*40; (b) sub-domain 21 has the size of 60*40,
and 2 has the size of 20*40.

explained in Section II when explaining the algorithm details.
If the problem setups in Figure 1 are candidates to select,
the design problem has to determine which setup could derive
the best-performing structural topological design under the
same amount of material consumption. A general idea is
to perform the optimization multiple times and then, make
the choice based on the optimized structural performances.
However, multiple runs of the algorithm consume long com-
putational time which is inefficient. Even if configured into
a single topology optimization problem for multi-domain
problems, multiple runs of finite element analysis have to
be performed in each iteration, which does not obviously
change the overall computational cost [20], [21]. Therefore, a
novel topology optimization method is developed to solve the
design problem with selective problem setups. This method
employs a novel meshing strategy and material interpolation
model to unify the multiple problem setups into a single
optimization problem. Therefore, the optimization algorithm
only runs once to concurrently derive the optimal structural
shape and the best problem setup choice in a very efficient
manner. Details of the proposed method will be specified in
the next section.

Other than the theoretical novelty, the proposed method can
be innovatively applied to design-for-additive manufacturing.
In the past, quite some efforts have been spent on simplifying
the topological designs to guarantee the manufacturability
with traditional subtractive machining technology [22], [23].
However, emerging of the additive manufacturing technol-
ogy enhances the capability of fabricating complex engi-
neering structures, which greatly unleashes the power of
topology optimization. Therefore, topology optimization for
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additive manufacturing has been highly focused [24]. A typ-
ical example is that numerous multi-scale and multi-material
topological structures have been designed and fabricated
with additive manufacturing [25]-[37]. At the same time,
new problems arise for design-for-additive manufacturing.
As widely known, additive manufacturing is still not a fully
developed technology [38], since many different processes
and 3D printing machines exist and the derived mechanical
properties of the same material from different processes and
printing machines may vary significantly [39]. In addition,
the 3D printers provide different chamber volumes. There-
fore, design-for-additive manufacturing with multiple avail-
able 3D printers can be challenging, since the problem setup
of topology optimization would be machine specific given
the different material properties and design domain sizes.
Therefore, the proposed topology optimization method with
selective problem setups is just suitable to solve this challeng-
ing problem.

Il. PROBLEM FORMULATION

A. SIMP METHOD

The SIMP (Solid Isotropic Material with Penalization) con-
cept was proposed by Bendsge [40], while the SIMP notion
was raised by Rozvany et al. [41] in 1992. Numerous prac-
tical engineering problems have been solved with the SIMP
method, wherein the objective function can be flexibly for-
mulated to represent the structural compliance, stress, natural
frequency, displacement, and many others. To make it simple,
the compliance minimization problem is formulated below:

N
min C (p) = UTF = UTKU = Ze:] (pe)P ul ke,
Vi(p)
s.t. ——

Vo = Vfrac
KU=F
0 < pmin < pe =1 (D

where C is the structural compliance function, U denotes the
global displacement vector, K is the global stiffness matrix,
and F is the global load vector. The elementwise density pe
will be optimized: O represents void and 1 for solid. The
penalty p (usually > 3) is employed to penalize the interme-
diate densities, so that to derive the black and white solution
of the final design. pmin is a small positive number to avoid
the singularity problem in numerical calculation. V (p) repre-
sents the volume of solids, where V (p) = ZCNZI Pe Velement-
Vo means the design domain volume. Vi is the designated
material volume fraction.

Sensitivity of the total compliance with respect to the
pseudo-density is shown in (2). Details of the derivation is
omitted and interested readers can refer to [2].
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To avoid the “‘checkerboard” issue [42], [43], sensitiv-
ity filter is employed through a convolution operation of
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the original sensitivities. The modified sensitivity result is
illustrated below:

o N
oC 1 ~ 0C
= e 3)
0. N . & dpr
Pe Z Hf f=1
/=1

where,

Hy = ryindist (e,f), {f € N |dist (e,f) < Fmin},
e=1,....N 4)

and dist (e, f) denotes the distance between element e and f.

Optimality Criteria (OC) [44] method is employed as the
optimizer to update the design variables. The main equations
are illustrated in (5). n = 0.5 and m is the step limit. X is the
Lagrange multiplier.

max (Xmin, Xe —m) if XeBg <max (Xmin, Xe —M)

XeBg if max (Xmin, Xe — m) <
X. =
new XeBY < min (1,Xe + m)
min (1,Xe+m) if min (1,Xc+m) <x.B¢
_oC
0pe
B.=—g 5)
A 0
Pe

B. THE MODIFIED METHOD

Before getting into the details of the proposed method, let’s
revisit the material interpolation model of multi-material
problems. If design with two material options, equation (6)
will be employed: p; realizes the interpolation between the
different material types and p; interpolates between solid and
void.

k (o1, p2) = pY(pVK! + (1 — pb) k) (6)

where k! is the element stiffness tensor with material type 1,
and k? is the element stiffness tensor with material type 2.
Then, the idea of multi-material interpolation can be inher-
ited to address the topology optimization problem with selec-
tive problem setups. Specifically, different design domain
sizes and loading positions will be provided by the differ-
ent problem setups. The meshing strategy, as indicated by
Figure 1, is proposed to address the distinctions among the
problem setups. The key idea is to (i) discretize the different
design domains with the same mesh scale, i.e. the same
number of elements for each row or column; and (ii) the
loading points should have the same nodal index in the finite
element models. To fulfill these two requirements, the dif-
ferent candidate design domains are divided into two sub-
domains Q21 (left to the loading point) and 22 (right to the
loading point), and each sub-domain, regardless of the size,
is discretized with 10 by 10 uniform quadrilateral elements.
Elements with different sizes and aspect ratios will be adopted
to realize the meshing, for example the E1 of size L1/10 by
H/10 and E2 of size L2/10 by H/10 in Figure. 1, which
therefore, lead to two different element stiffness matrices:
the k! and k2, respectively. Then, regardless of the original
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design domain sizes, we can think in the way that k! and k2
are resulted by different materials instead of different element
sizes. Therefore, the topology optimization problem with
multiple selective problem setups has been transformed into
an equivalent ‘multi-material’ topology optimization prob-
lem that can be completed with a single run of the algorithm.
Finally, the new material interpolation model as illustrated in
(7) is derived.

k(0,y) = pPOIK + (1 — ) k) 7

Note that, p is element-wisely different for the element pseud
density representation; y is the design variable distinguishing
two problem setups. The i and j may or may not be the same,
depending on the meshes of the different problem setups.

Referring to the new interpolation model, the optimization
problem with two selective problem setups is formulated
in (8).

min C(p) = UTKU

N
=Y (e uf (K + (1 = )W) ue

e=1

Vip,y) = Z pe[yvé:lement +d -y Vje]ement]
e=1

KU =F

0 < pmin < pe <1

O<ymin§y§1 (8)

where pe and y are the design parameters, p. € [0, 1] is the
element-wise material density, and a switch of y realizes the
transition between two different problem setups. A different
penalty parameter q is employed for design variable y, and
its value will be discussed in the numerical implementation
section.

Sensitivities of the objective function on p. and y are
demonstrated in (9) and (10), respectively.

oC

Gp = PP U0 (1 ) ue ©)

ace‘ =

oo == 2 (PP ul@ K g (1 -y e (10)
y

e=1
The sensitivities of the volume fraction constraint can be
similarly derived as shown below:

oV

Y yvélemem +d -y V]element 1D
Pe
N
av . )
8_)’ - Z P e(Vélement - V]element) (12)
e=1

A special discussion will be made here about the design
update. The sensitivities on the element density p. and the
design variable y are calculated in an elementwise manner
and in the domain integral form, respectively. Therefore,
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FIGURE 3. Results of the MBB-beam optimization with q = 1.2.

the magnitudes of these two sensitivity terms can be in dif-
ferent orders. To ensure the stable and smooth convergence,
we update the element densities with the OC method. Given
the design variable y, the sensitivity of the volume fraction
constraint in (12) is eliminated, while only the sensitivity of
the objective function in (11) is considered. Then, the steepest
descent method is adopted to update y. In summary, update of
the design variable y only picks up the appropriate problem
setup, while update of the element densities determines the
optimal structural shape and addresses the volume fraction
constraint. The numerical examples in Section 3 demonstrate

the excellent effect of this novel update strategy.
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FIGURE 4. Results of the MBB-beam optimization with q = 3.

Ill. NUMERICAL EXAMPLES

In this section, four numerical examples will be studied
to demonstrate the effectiveness of the proposed method.
Among them, case 1 adopts the benchmark MBB-beam prob-
lem to show the compliance minimization design with differ-
ent loading conditions; case 2 employs the cantilever problem
to show the compliance minimization design with both design
domain sizes and loading conditions being different; case 3
focuses on compliant mechanism design with different load-
ing conditions which belongs to a different category of topol-
ogy optimization problems; a 3D compliance minimization
case is studied at the end to show the applicability to 3D
problems.
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FIGURE 5. Setups of the cantilever problem: (a) the first problem setup;
(b) the second problem setup.

A. CASE 1

In the first case, the MBB-beam problem is studied. There are
two selective problem setups, as shown in Figure 2, where the
design domain sizes are the same of 80*40 but the loading
positions are different. The force has the magnitude of 1.
The solid material has the Young’s modulus of 1.3 and the
Poisson’s ratios of 0.3. The volume fraction limit of this case
is 0.5.

As illustrated in Figure 2, the design domain is divided into
sub-domains 21 and 22. Both 21 and 22 of the first problem
setup is discretized with finite elements of size 1*1. Q1 of
the second problem setup is discretized with finite elements
of size 1.5%1, and Q2 of the second problem setup is filled
with elements of size 0.5*1. In this way, the mesh scales are
the same of the two problem setups, and the indexes of the
loading nodes are identical as well. Therefore, the element
stiffness matrix can be formulated with (13).

k(p,y) = pe [yKix1 +a(l —y)¥Kkosx1
+ (I —a) (1 —y)9Kisx1] (13)

where Kix1, Ko sx1, and K| 55 are the stiffness matrixes of
elements with sizes 1*1, 0.5*1, and 1.5*1, respectively. The
parameter a (either O or 1) is the factor to distinguish between
Q1 and Q2.

As usual, the penalty p is 3. It should be aware that the
optimization problem is initial guess dependent and the ini-
tial value of y is crucial for the result. On the other hand,
as a robust numerical method, the sensitivity on y should be
reduced to the minimum level. Then, the value of q here plays
a critical role. The optimization results with ¢ = 1.2 and
q = 3 are demonstrated in Figure 3 and Figure 4, respec-
tively. Different initial guesses of y are explored, varying from
0 to 1 with the interval of 0.1. youput = O corresponds to
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FIGURE 6. Results of the cantilever optimization with q = 1.2.

the second problem setup, and youpue = 1 represents the first
problem setup.
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FIGURE 7. Results of the cantilever optimization with q = 3.

We can conclude from the results that, optimization with
q = 1.2 largely eliminates the initial guess dependency issue
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FIGURE 8. Setups of the compliant mechanism problem: (a) sub-domain
@1 and 22 both have the size of 60*30; (b) sub-domain 21 has the size
of 60*15, and 22 has the size of 60*45.

since there always makes the selection of the second problem
setup (Youtput = 0) with initial guess of yippue = 0 ~ 0.8.
Comparatively, the results with q = 3 show strong depen-
dency on the initial guess of y; in other words, yippue > 0.5
leads to the youput = 1, and yippue < 0.5 leads to the
Youtput = 0. To explain this observation, g = 3 makes a strong
penalization of the interpolated element stiffness, so that the
strain energy densities will be dominated by the first problem
setup if yinpur > 0.5, or dominated by the second problem
setup if yinpue < 0.5. Instead, the penalization is much weaker
with ¢ = 1.2, while it still functions well in eliminating
intermediate y values in the optimization results.

B. CASE 2

Similar to the first case, there have two selective problem
setups of this cantilever problem. The design domain sizes
are shown in Figure 5 where the shaded circular areas are
non-designable. The force has the magnitude of 1. The solid
material has the Young’s modulus of 1.3 and the Poisson’s
ratios of 0.3. The volume fraction limit of this case is 0.5.

To realize an integrated problem formulation, the design
domains are divided into 12 sub-domains: 1 ~ 12. The
Q1 ~ Q12 of the first problem setup are discretized with
uniform finite elements of 1*1, while the Q1 ~ Q12 of
the second problem setup are discretized with heterogeneous
finite elements of sizes: 1*1, 1*1, 1.5*1, 1*1, 1*1.1, 1*1.1,
1.5%1.1, 1*1.1, 1*1, 1*1, 1.5%1, 1*1, respectively. Again,
the purpose of this heterogeneous meshing is to ensure the
same mesh scale between the two problem setups, and to
guarantee the indexes of the loading and fixing nodes are
identical.

To further explore the effect of q value. The optimization
results with q = 1.2 and q = 3 are demonstrated in
Figure 6 and Figure 7, respectively. Different initial guesses
of y are explored, varying from O to 1 with the interval of
0.2. youtput = O corresponds to the second problem setup,
and youput = 1 represents the first problem setup. From
the numerical results, the same conclusion can be drawn as
compared with case 1.

C. CASE 3
In this case, we extended the algorithm to solve the com-
pliant mechanism design problem: to maximize the inverse
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FIGURE 9. Results of the compliant mechanism optimization with q = 1.2.

displacement output with a displacement input. There are
still two selective problem setups, as shown in Figure 8§,
where the design domain sizes are the same of 80*40 but
the boundary conditions are different. The displacement input
has the magnitude of 1. The material properties are used as
the last two examples. The volume fraction limit of this case
is 0.4. With this case, the Method of Moving Asymptotes
(MMA) [45] is adopted as the optimizer.

As illustrated in Figure 8, the design domain is divided into
sub-domains 21 and 22. Both 21 and 22 of the first problem
setup is discretized with finite elements of size 1*1. Q1 of
the second problem setup is discretized with finite elements
of size 1*0.5, and Q22 of the second problem setup is filled
with elements of size 1*1.5. In this way, the mesh scales are
the same of the two problem setups, and the indexes of the
input and output nodes are identical as well.

With this case, only the optimization results with q = 1.2
are demonstrated in Figure 9. Different initial guesses of y
are explored, varying from O to 1 with the interval of 0.1.
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Youtput = O corresponds to the second problem setup, and
Youtput = 1 represents the first problem setup. We can see that,
even though a different type of optimization problem was
studied, there still can research the consistent conclusion: the
optimization largely eliminates the initial guess dependency
issue since there always makes the selection of the first prob-
lem setup (Youtput = 1) with initial guess of yjpput = 0.2 ~ 1.
The derived displacement output of the first problem setup is
evidently better than that of the second problem setup.

D. CASE 4

In the last case, a 3D design for additive manufacturing
case will be investigated. Two additive manufacturing devices
(Fused Filament Fabrication, FFF) with chambers of dif-
ferent sizes. As shown in Figure 10, chamber size of the
first machine is 36*25%20 and that of the second machine
is 30*30*20. Then, a bridge-like structure will be designed
that will be manufacture with one of the machines. The
boundary condition is show in Figure 10 (c), and the design
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FIGURE 10. Problem setups of the design for additive manufacturing
case. (a) The first FFF machine with chamber size of 36*25*20 that prints
Peek (Young’s modulus is 3.8 GPa, and the Poisson’s ratio is 0.172);

(b) the second FFF machine with chamber size of 30*30*20 that prints
ABS (Young's modulus is 2.0 GPa, and the Poisson'’s ratio is 0.394);

(c) boundary condition of the bridge-like structural optimization problem.

domains of the two problem setups will just be the cham-
bers. Moreover, the machines use two kinds of materials:
Peek for the first machine and ABS for the second. A com-
pliance minimization problem will be solved to concur-
rently design the structural shape and select the appropriate
machine. The material volume fraction limit is 0.3. The top
two layers of elements will be inactive (always solid) during
optimization.

The optimization results with q = 1.2 are demonstrated in
Figure 11. Different initial guesses of y are explored, varying
from O to 1 with the interval of 0.1. youtput = O corresponds to
the first problem setup, and youput = 1 represents the second
problem setup. A consistent conclusion can be drawn from
this case that the optimization at most times could pick up the
better problem setup with initial guesses of yinput = 0 ~ 0.9.
Therefore, this again proves the effectiveness of the proposed
topology optimization method with selective problem setups
to concurrently select the appropriate problem setup and
derive the optimized structural shape.

At the end, the computing time is briefly discussed. This
3D case was run on a desktop computer with Intel Xeon
W-2145 CPU and 64GB RAM. Matlab R2018b was used
to run the program. Then, the 11 cases of Figure 11 took
648s in average. The computing time of problem setup
(a) with the traditional SIMP method took 641s, and the
computing time of problem setup (b) took 612s to converge.
Therefore, we can conclude that nearly half of the time
was saved with the new method to concurrently pick up
the better problem setup and derive the optimal structural
topology.

VOLUME 7, 2019

yinput=0 YOutput=0 C=5.95

w

YinquO.Z ycutput:() C:584

ymput=0~1 youtput=0 C=5.91

yinpul:0~3 you.quO C=5.83

Yinput:0.4 youtpu(:() C=5.85

\ a4

yinpul:() .6 youtput:() C=5.98

\ 14

yinpul:0-8 YOmpu(:O C=5.66

Yinput:0~5 YQulpm:O C=5.92

Yinpul:0~7 youtpm:O C=5.62

Yinpu=0.9 Youpu=0 C=5.66

Yinput— 1 Youtput— 1 C=10.65

FIGURE 11. Results of bridge-like structure design.

IV. CONCLUSION

In this paper, the novel topology optimization method has
been developed to address the design efficiency issue when
multiple problem setups are involved. A novel meshing strat-
egy and material interpolation model are proposed to unify
the multiple problem setups into a single optimization prob-
lem. Therefore, the optimization algorithm only runs once
to concurrently derive the optimal structural shape and the
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best problem setup choice in a very efficient manner. Ideally,
only 1/N of the computational cost is needed compared to
the traditional topology optimization methods that solve the
different problem setups separately. Here, N means the num-
ber of candidate problem setups. Several numerical examples
are studied that have proved the effectiveness of the proposed
method.

On the other hand, this is still the first work that only
addresses compliance-minimization problems and compliant
mechanism problems. To make it general, the method should
be extended to robustly address more complex physics such
as the natural frequency design and the stress-related prob-
lems. Therefore, the extension will be the focus of our future
work.
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