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ABSTRACT This paper presents consensus basedmulti-person decision making (MPDM) using consistency
graphs (additive consistent and order consistent) in a fuzzy environment. At the first level, consistency
analysis is put forward after defining consistent fuzzy preference graph (CFPG) with the help of additive
transitivity. This analysis further leads us to determine priorityweights vector of the decision-makers (DMRs)
after evaluation consistency weights. At the second level, the consensus analysis helps us to determine
whether the selection process should be initiated or not. If the consensus degree amongst DMRs does not
reach a minimum acceptable level, then the enhancement mechanism plays a central role to improve the
consensus level by giving suitable suggestions to DMRs. In the end, the weighted sum operator (WSO) is
used to get aggregated consistency fuzzy preference graph (AgCFPG) and the order consistency property
provides us sufficient information to rank the alternatives.

INDEX TERMS Fuzzy graph (FG), fuzzy preference graph (FPG), additive consistent fuzzy preference
graph (ACFPG), order consistent fuzzy preference graph (OCFPG), fuzzy compatibility graph (FCG).

I. INTRODUCTION AND PRELIMINARY RESULTS
Decision making (DM) is a rational process being used to
choose the best option(s) from a set of different options,
it pledges when someone has to do something but does not
know what. Everyone experiences DM situations in his/her
daily life: commonly, to shopping, to select what to eat, and
to decide whom or what to vote for in a referendum or elec-
tion. DM can be classified in numerous diverse groups
under certain individualities as the source(s) for the statis-
tics and the preference representation layouts that are used
to handle the decision problem. In our structure, the selec-
tion of the best alternative(s) from a prearranged set X =
{x1, x2, . . . , xn}, n ≥ 2 of possible alternatives is the goal.
DM is not only the situation for an individual, where

he/she provides a pairwise assessment of alternatives, but
some problems have to be described by a group of DMRswho
work together to conclude the best option(s). The procedure
to solve DM problem(s) with multiple experts is called group

The associate editor coordinating the review of this manuscript and
approving it for publication was Khalid Aamir.

decision making (GDM) or also known as MPDM. Prefer-
ence relation is the most common representation format used
in GDM because it is a valuable tool in modeling decision
processes, when we have to combine DMRs’ preferences into
group preferences [1].

In fuzzy framework, a DMR allocates numerical value
from [0, 1] to each pair of alternatives which shows the
preference degree of one alternative over the other. A very
natural question arises while assigning the values: which
conditions have to be satisfied in order to obtain consistent
results in final ranking? Because inconsistency leads decision
making procedure to unreliable conclusions that is why it
is important to study conditions under which consistency is
associated. On the other hand, perfect consistency is hard to
achieve in reality, particularly when ranking a set with large
number of alternatives. Consistency is directly associated to
transitivity property, and various such properties in literature
and consistency may be shown accordingly.

Several procedures on consistency measure and enhance-
ment of preference values have been offered in a successive
way [2]–[7], [9], [13]. While to handle MPDM problems
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in authentic manner, the consensus measure plays crucial
role. Numerous consensus models have been proposed in
literature: Herrera-Viedma et al. [8], in 2002, presented a
consensus based scheme to handle GDM situations in dif-
ferent preference formats, utility values, and multiplicative
preference relations. In 2007, Herrera-Viedma et al. [10]
proposed a procedure to investigate the consistency level and
consensus measure for incomplete fuzzy preference relations
and a feedback mechanism was introduces to improve the
consistency and consensus degrees, simultaneously. While
in 2013, Xia et al. [11] proposed the multiplicative con-
sistency based consensus of reciprocal preference matrices
and examined an algorithm to enhance consensus level for
given preferences. Wu and Chiclana [12], in 2014, proposed
a visual information feedbackmechanism for GDMproblems
with triangular fuzzy complementary preference relations to
identify experts, alternatives and corresponding preference
values that contribute less to consensus. To provide a general
framework for existing methods, in 2015, Xia and Chen [13]
defined a consensus index of individual pairwise comparison
matrices and developed two consensus improvingmethods by
introducing a general aggregation operator based on Abelian
linearly ordered group. In 2016, Zhang et al. [14] devel-
oped a consensus building method based on multiplicative
consistency for GDM with IRPRs. Zhang and Pedrycz [15],
in 2018, presented goal programming models in order to
enhance consistency and consensus measures for intuitionis-
tic fuzzy andmultiplicative preference relations, respectively.
In 2019, Atiq-ur-Rehman et al. [16] proposed a consensus-
based hybrid technique for multi-person decision making.

A graph is a way to represent a specific affiliation between
the objects and provides an idea to observe the level of the
association between any two objects of a universe of dis-
course. If proper weights of relationship between the objects
are given, then the problem can be solved by using a weighted
graph. But in a natural sense, most of the situations carry
relationships in fuzzy environment. For instance, if L shows
certain locations in a city and the construction of a network
of roads between elements of L is the aim, then the costs of
construction of the links are fuzzy. But by using the topog-
raphy and local factors, the costs can be compared to some
extent and fuzzy relations can be formed. Thus, fuzzy graph
models are more helpful and realistic in natural situations.

In 1973, the first definition of fuzzy graph was proposed by
Kaufmann [17], based on Zadeh’s fuzzy relations [18]. But
in 1975, the foundations of fuzzy graph theory were laid by
Rosenfeld [19] after introducing fuzzy analogs of a number
of basic graph-theoretic notions carrying with, subgraphs,
paths, connectedness, groups, bridges, cut-vertices, forests,
and trees. In 1994, Mordeson and Peng [20] investigated
and proposed some operations on fuzzy graphs. In 2009,
Gani and Radha [21] measured the degrees of the vertices
graphs and the resultant fuzzy graphs obtained under the
operations defined in [20]. In 2012, Akram and Davvaz [22]
investigated the Intuitionistic fuzzy graphs and defined the
strong Intuitionistic graphs. In 2017, Ashraf et al. [23]

Naz et al. [24] proposed the notions of single valued neutro-
sophic graphs and their use in multi criteria decision-making.
More recently, Akram et al. introduced many new concepts
related to m-polar fuzzy graph, fuzzy soft graph, rough fuzzy
graph, neutrosophic graph and their extensions [25], [26].
Definition 1 Directed Graph [27]: A directed graph Gd is a
pair Gd = (V ,E), where V is the set of vertices and E is
the set of arcs. Each element (a, b) of E is the ordered pair,
which denotes the arc from the vertex a to b, while the pair
(b, a) means the opposite direction arc.
In numerous applications, each edge in a graph carries a

connected numerical value, called a weight which is usually
nonnegative in nature. Both, directed and undirected graphs,
may be weighted.
Definition 2 Fuzzy Graph: A fuzzy graph Gf =

(Vf ,Ef ,wVf ,wEf ) is a weighted graph together with a pair
of functions wVf : Vf −→ [0, 1] and wEf : Ef −→ [0, 1],
known as vertex-wieght function and edge-weight function
respectively, where Vf is called the fuzzy set of vertices and
Ef is the fuzzy set of edges.

If a fuzzy graph Gf carries a function wEf such that wEf :
Ef −→ 0 i.e., for all edges e ∈ Ef , wEf (e) = 0, then Gf is
a vertex-weighted fuzzy graph. On the other hand, if wVf :
Vf −→ 0 i.e., for all vertices v ∈ Vf , wVf (v) = 0, then Gf is
an edge-weighted fuzzy graph.
Definition 3 Fuzzy Preference Graph: A directed graphGfp =
(A,Ef ,wEf ) together with a function wEf : Ef −→ [0, 1],
is called fuzzy preference graph (FPG), where A is a set of
alternatives (nodes) and Ef is a collection of edges eij(i, j ∈
N ) of alternative ai to alternative aj, and edge-weight function
wEf assigns the weight wij ∈ [0, 1] to the edge eij and denotes
the degree of preference of alternative ai to the alternative aj,
such that:

wij + wji = 1.

Note:- wij = 0.5 indicates that alternatives ai and aj are
equally preferred. If wij > 0.5, then alternative ai is superior
to alternative aj whilewij < 0.5 shows that ai is not preferable
over aj. If wij = 1, then the alternative ai has a definite
preference over the alternative aj.
Definition 4 Consistent Fuzzy Preference Graph: A fuzzy
preference graph G̃fp = (A, Ẽf ,wẼf ) is said to be consistent
fuzzy preference graph (CFPG), if there exist a transitive
function Tr such that:

wik = Tr(wij,wjk ),

for all intermediate alternatives Aj and wik ,wij,wjk ∈ [0, 1]
with i 6= j 6= k .
Definition 5 Additive Consistent Fuzzy Preference Graph: A
FPG is said to be additive consistent if for all intermediate
alternatives

wik = wij + wjk − 0.5 (1)

holds (i.e., T (wij,wjk ) = wij + wjk − 0.5), for instance,
as shown in the following Figure 1.

VOLUME 7, 2019 178871



J. Jia et al.: Consensus-Based MPDM Using Consistency FPGs

FIGURE 1. Additive consistent fuzzy preference graph (ACFPG).

Definition 6 Order Consistent FPG: An FPG Gfp =

(A,E f ,wE f ) together with a function wE f : E f −→ [0, 1]
which assigns weights to edges in such a way that wik ≤ wil
for all 1 ≤ i ≤ n and k, l ∈ {1, 2, . . . , n} ((n > 1) ∈ N ),
is called order consistent FPG (OCFPG).
For example, FPG in Figure 2(a) is not order consistent
because if we observe, w12 = 0.6 and w14 = 0.3 indicate that
alternative A4 is preferable to alternative A2 while w32 = 0.6
and w34 = 0.8 result in that alternative A2 has preference to
alternative A4, and hence, order consistency is voilated. But,
the Figure 2(b) is an OCFPG which provides that wi3 ≤ wi1,
wi1 ≤ wi4 and wi4 ≤ wi2 for all 1 ≤ i ≤ 4.
• wi3 ≤ wi1 indicates that alternative A3 is prefered to
alternative A1;

• wi1 ≤ wi4 indicates that alternative A1 is prefered to
alternative A4;

• wi4 ≤ wi2 indicates that alternative A4 is prefered to
alternative A2.

Therefore, A3 � A1 � A4 � A2 is the preference order
Definition 7 Consistency FPG: A FPG that conform the both,
additive consistency and order consistency at the same time,
is known consistency FPG.
Proposition 8: If a FPG carries a set A of n vertices (alterna-
tives) i.e., A = {A1,A2, . . . ,An} with wik , used to denote the
preference weight of alternative Ai to alternative Ak such that
wik + wki = 1, wii = 0.5 and wik = wij + wjk − 0.5, then
a consistency FPG G̃fp can be formed using all intermediate
alternatives Aj based on given FPG by repeated application of

w̃ik =
1

2(n− 2)

n∑
j=1
j6=i6=k

(wij − wji + wjk − wkj)+ 0.5 (2)

with w̃ik + w̃ki = 1.

FIGURE 2. Order inconsistent and order consistent FPGs, respectively.

Proof: Based on Eq. (1), following (n − 2) equa-
tions can be established against preference weigt wik for
all j 6= i 6= k:

wik = wi1 + w1k − 0.5,

wik = wi2 + w2k − 0.5,

.

.

wik = win + wnk − 0.5.
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The average of all the above equations results in:

wik =
(wik + wik + ...+ wik (n− 2) times)

n− 2

=
1

n− 2
{(wi1 + w1k − 0.5)+ (wi2 + w2k − 0.5)}

+ ...+
1

n− 2
{(win + wnk − 0.5)}

=
1

n− 2

{(
wi1 + wi1

2
+
w1k + w1k

2

)}
+

1
n− 2

{(
wi2 + wi2

2
+
w2k + w2k

2

)}
+ ...+

1
n− 2

{(
win + win

2
+
wnk + wnk

2

)}
− 0.5

=
1

2(n− 2)
{(wi1 − w1i + w1k − wk1 + 2)}

+
1

2(n− 2)
{(wi2 − w2i + w2k − wk2 + 2)}

+ ...+
1

2(n− 2)
{(win − wni + wnk − wkn + 2)}

− 0.5

=
1

2(n− 2)
{(wi1 − w1i + w1k − wk1)}

+
1

2(n− 2)
{(wi2 − w2i + w2k − wk2)}

+...+
1

2(n− 2)
{(win − wni + wnk − wkn)}

+
1

2(n− 2)
{2 (n− 2)− (n− 2)}

wik =
1

2(n− 2)
{(wi1 − w1i + w1k − wk1)}

+
1

2(n− 2)
{(wi2 − w2i + w2k − wk2)}

+ ...+
1

2(n− 2)
{(win − wni + wnk − wkn)}

+ 0.5

=
1

2(n− 2)
{(wi1 − w1i + w1k − wk1)}

+
1

2(n− 2)
{(wi2 − w2i + w2k − wk2)}

× v...+ {win − wni + wnk − wkn)}+0.5

=
1

2(n− 2)

n∑
j=1
j6=i6=k

(wij−wji+wjk−wkj)+ 0.5.

Hence, we can establish

w̃ik =
1

2(n− 2)

n∑
j=1
j6=i6=k

(wij − wji + wjk − wkj)+ 0.5.

Definition 8 Fuzzy Compatibility Graph: A fuzzy compatibil-
ity graph (FCG) is an ordered pair Gfc = (A, ξ ) together with

a function ξ : A × A −→ [0, 1], where A is a set of nodes
(elements or alternatives), such that

(i). a ∈ A implies that ξ (a, a) = 1; (reflexivity)
(ii). for all (a, b) ∈ A× A, ξ (a, b) = ξ (b, a). (symmetry)

II. GROUP DECISION MAKING USING FUZZY
PREFERENCE GRAPHS
This section presents an hybrid consistency and consensus
based GDM using FPGs under the transitive consistency,
and final decision is established based on order consistency
property. Assume that there are set A = {A1,A2, . . . ,An} of
n alternatives (vertices) and set D = {D1,D2, . . . ,Dm} of m
DMRs. Suppose that Gqfp = (A,Eqf ,wEqf ) be a FPG provided

by the decision maker Dq, where wEqf : E
q
f −→ [0, 1] which

assigns the weight wqik ∈ [0, 1] to the edge eqik to represent
the preference degree of alternative Ai to alternative Ak . The
proposed GDM procedure is elaborated with several stages as
follows:

A. CONSISTENCY ANALYSIS
Undeniably, consistency is the substantial issue to admit
when information is given by the expert, the deficiency of
consistency in DMwith the data leads to an inconsistent con-
clusion. The consistency fuzzy preference graph G̃

q
fp parallel

to FPG Gqfp, q = 1, 2, . . . ,m, can be constructed with the
repeated application of Eq.(2), and then we can measure the
consistency degree of Gqfp based on its edge-weights’ similar-

ity with the corresponding weights of G̃
q
fp by computing the

distances between them. Following three stages play role to
evaluate the consistency degree of a FPG:

1) Construction of fuzzy compatibility graph: At this level,
we construct FCG Gqfc, which represents the consis-
tency degree of pairs of vertices (alternatives) in Gqfp,
by using

ξ
q
ik = 1− d(wqik , w̃

q
ik ), (3)

where d(wqik , w̃
q
ik ) shows the distance (error) measured

by
∣∣wqik − w̃qik ∣∣. Apparently, the higher the value of ξqik ,

the more consistent wqik is with respect to the rest of the
preference weights take in alternatives Ai and Ak .

2) Consistency degree of a particular alternative: The
consistency degree related to a particular alternative
Ai, 1 ≤ i ≤ n, ofG

q
fp is measured by taking the average

of compatibility weights of alternative Ai to rest of the
alternatives as:

cd(Ai) =
1

n− 1

n∑
k=1
k 6=i

ξ
q
ik , (4)

where cd(Ai) ∈ [0, 1]. When cd(Ai) = 1, then all the
preference weights related to alternative Ai are fully
consistent, if not, the lower cd(Ai) the more inconsis-
tent these preference weights are.

3) Consistency degree of Gqfp: Finally, the average of all
consistency degrees against alternatives Ai, 1 ≤ i ≤ n,
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results in the consistency degree of Gqfp as:

cd(Gqfp) =
1
n

n∑
i=1

cd(Ai), (5)

where cd(Gqfp) ∈ [0, 1]. If cd(Gqfp) = 1, the FPG Gqfp
is fully consistent, else, the lower cd(Gqfp) the more
inconsistent FPG is.

B. ASSIGNING PRIORITY WEIGHTS TO DMRs
Once, the consistency degrees of Gqfp, 1 ≤ q ≤ m, are
measured, it is rational to allocate the higher weights to
the DMRs carrying FPGs with larger consistency degrees
correspondingly. Following relation can be used to assign
the weights to the DMRs based on their provided FPGs, and
known as consistency weights

Cw(Dq) =
cd(Gqfp)
m∑
q=1

cd(Gqfp)
, (6)

while
m∑
q=1

Cw(Dq) = 1. Moreover, if DMRs carry predefined

priority weights β = {β1, β2, . . . , βm}, then the final priority
weights to DMRs will be assigned by emerging βq, 1 ≤ q ≤
m, and respective consistency weights Cw(Dq), 1 ≤ q ≤ m,
under the relation

w(Dq) =
βq × Cw(Dq)

m∑
q=1

(
βq × Cw(Dq)

) , (7)

where
m∑
q=1

w(Dq) = 1. If DMRs came without having experts

predefined priority weights βq, then the consistency weights
will be taken as the priority weights of DMRs.

C. CONSENSUS ANALYSIS
As it is revealed in Section 1 that the consensus plays an
important role while a number of DMRs intract to reach a
decision, hence, measure the consensus among the DMRs
is necessary. In this context, the fuzzy compatibility graphs
Gqrfc for every pair (Dq,Dr ), (q = 1, 2, . . . ,m − 1; r =
q+ 1, . . . ,m), are to be constructed using

ξ
qr
ik = 1−

∣∣wqik − wrik ∣∣ . (8)

Then the collective FCG Gfc is obtained after aggregating all
Gqrfc by applying following formula

ξik =
2

m(m− 1)

m−1∑
q=1

m∑
ξ
qr
ik

r=q+1

, (9)

where every compatibility weight ξik , 1 ≤ i, k ≤ n,
represents the consensus measure among DMRs for pair of
alternatives Ai and Ak . The consensus degree amongst DMRs

for a particular alternative Ai is estimated by taking the aver-
age of its compatibility weights to rest of alternatives as:

CD(Ai) =
1

n− 1

n∑
k=1
k 6=i

ξik . (10)

Finally, the consensus level amongst DMRs on the given
infromation can be measured by the average of consensus
degrees of all alternatives Ai, 1 ≤ i ≤ n, as

CD(Gfc) =
1
n

n∑
i=1

CD(Ai). (11)

Once the consensus degree amongst DMRs is estimated,
it entails to compare with pre-settled consensus level µ (say).
If CD(Gfc) ≥ µ, then an acceptable level of consensus
is reached and the selection process initiates, otherwise,
a enhancement mechanism originates to reach at an accept-
able level.

D. ENHANCEMENT MECHANISM
The main objective of enhancement mechanism is to pro-
vide comprehensive information to DMRs to improve their
preference weights and reach an acceptable consensus level.
We have to identify the pairs of alternatives which have to
enhance their preference weights, in this context, following
formula helps us:

Rqimp = {(Ai,Ak ) | ξik < CD(Gfc)}, (12)

for i 6= k ∈ {1, 2, . . . , n}. The system indorses that the
respective DMR has to enhance the preference weights if they
are smaller than the mean values of evaluations of the rest
of DMRs, or decrease them if they are larger than the mean
values.

E. SELECTION PHASE
After having an acceptable consensus level amongst all
DMRs, the selection procedure is to be initiated to rank all
the alternatives to choose the best one. But, it may often that
the information provided by each DM is weighted differently.
Therefore, when the priority weights for DMRs are estimated,
their informations require to be aggregated into global one.
In this regard, we obtain a final consistency FPG G̃

c
fp carrying

preference weights obtained from the weighted sum of the
corresponding preference weights from G̃

q
fp, 1 ≤ q ≤ m as:

w̃cik =
m∑
q=1

w(Dq)× w̃
q
ik , (13)

where 1 ≤ i, k ≤ n. Hence, definition of order consistency
will result in ranking of alternatives.

To validate the proposed method, consider a situation in
which four DMRs, D = {D1,D2,D3,D4}, interact to rank
the six franchises, S = {S1, S2, S3, S4, S5, S6}, of a famous
private school system in a city based on “quality educa-
tion” and “service structure”. Quality plays a central role
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FIGURE 3. FPGs provided by the decision makers D1, D2, D3 and D4, respectively.

for customers before availing any type of service and in
measuring the performance of the institute. Education sector
is the service sector which is considered to be the back bone
of national and economic development. The DMRs provide
their average information in form fuzzy preference graphsGqfp
shown in the Figure 3, where vertices denote the franchises
of the school system and weighted directed edges pairwise
preference values, as:
To reach the acceptable result, following steps have to be
performed:
(i) Consistency analysis: Consistency analysis derive us to
measure and allocate the weights to the experts in order to
have quality information. For this purpose, Eq. (2) help us to
form consistency FPGs (ACFPGs and OCFPGs) G̃

q
fp, 1 ≤

q ≤ 4, against given Gqfp respectively, and are shown in the
following Figure 4:
Now, we measure the consistency degree of FPGs by forming
their FCGs using Eq. (3), such as, the FCGG1

fc forG
1
fp against

DMR D1 is shown in Figure 5:

and the application of Eq. (4) and Eq. (5) results in

cd(G1
fc) = 0.9313.

Similarly, consistency degrees for Gqfc, q = 2, 3, 4, provided
by the DMRs D2,D3 and D4 can be evaluated using Eq. (3)
to Eq. (5), and are given as:

cd(G2
fc) = 0.9393; cd(G3

fc) = 0.9453; cd(G4
fc) = 0.9353.

(ii) Priority weights to DMRs: Here, the consistency
weights will be used as final weights of DMRs because
there is no any predefined weights vector. Therefore, Eq. (6)
implies that

Cw(D1) = 0.2483, Cw(D2) = 0.2504,

Cw(D3) = 0.2520 and Cw(D4) = 0.2493.

(iii) Consensus analysis: The aggregated FCG Gfc is con-
structed using Eqs. (8-9) and is given in Figure 6:
and, furthermore, Eqs. (10-11) result in global consensus
CD(Gfc) = 0.85 amongst DMRs. If it is greater or equal to the
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FIGURE 4. Consistency FPGs against decision makers D1, D2, D3 and D4, respectively.

FIGURE 5. FCG Gf c1 for FPG Gf p1.

threshold consensus degree η, then decision problem enters
into the selection phase otherwise some DMRs are suggested
to enhance their information under expression (12).

FIGURE 6. Aggregated Gf c .

(iv) Selection phase: For CD(Gfc) = 0.85, an acceptable
consensus level, the collective consistency FPG G̃

c
fp is con-

structed using Eq. (2) and Eq. (13) given as in Figure 7:
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FIGURE 7. Consistency FPG G̃f pc .

As Figure 7 is an OCFPGwhich provides the information that
w̃i1 ≤ w̃i2, w̃i2 ≤ w̃i6, w̃i6 ≤ w̃i5, w̃i5 ≤ w̃i4 and w̃i4 ≤ w̃i3
for all 1 ≤ i ≤ 6 and are interpreted as:
• w̃i1 ≤ w̃i2 indicates that franchise S1 is prefered over
franchise S2;

• w̃i2 ≤ w̃i6 indicates that franchise S2 is prefered over
franchise S6;

• w̃i6 ≤ w̃i5 indicates that franchise S6 is prefered over
franchise S5;

• w̃i5 ≤ w̃i4 indicates that franchise S5 is prefered over
franchise S4;

• w̃i4 ≤ w̃i3 indicates that franchise S4 is prefered over
franchise S3.

Hence, the final preference ranking of all the franchises is
S1 � S2 � S6 � S5 � S4 � S3 which leads us to S1 as the
best franchise.

III. CONCLUSION
In this paper, some graphical notions of multi-person decision
making using consensus based information in fuzzy envi-
ronment have been proposed. Additive transitivity is used to
construct the consistent FPGs, and then consistency analysis
is made to measure the consistency level of the iformation
provided by DMRs respectively by. This analysis also leaded
us to evaluate the consistency weights, and then the final pri-
ority weights of the DMRs which are taking part in decision
problem. Additionally, an enhancement mechanism is used to
provide us much knowledge to accelerate the execution of a
higher consensus level. After getting a satisfactory consensus
degree amongst DMRs, the entire process entered into the
selection phase to rank all the alternatives to choose the
best one. Order consistency property played a central role in
ranking the alternatives. At the end, a graphical example is
used to gain a greater insight into the multi-person decision
problems while data is being taken from fuzzy environment.
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