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ABSTRACT Burn-in test is widely used to improve the product reliability from the customer’s perspective by
identifying and screening out defective individuals before they are marketed. For those high reliable products
whose failures are caused by gradual degradation, burn-in test not only could pick out weak units, but also
increases the degradation of normal units, and hence the test duration is regarded as one key factor in the test
policy optimization. In this paper, a new burn-in framework is proposed, which combines a sliding window
strategywith one-dimensional convolutional neural network, completes the off-line training for classification
model, and then obtains the optimal burn-in time with a group-accuracy strategy. And an online optimization
algorithm is constructed to reduce the burn-in time as much as possible without deteriorating the screening
effect, thereby to reduce the unnecessary lifetime loss of normal units involved in the test. The effectiveness
of the presented framework is validated by the experiment. Compared to conventional strategies based on
degradation models, the proposed method has better performance and robustness.

INDEX TERMS Burn-in, deep learning, degradation, sliding window, online optimization.

I. INTRODUCTION
Due to the improvement of manufacturing technology,
the reliability of various products tends to be higher and
their service life is thus longer, which means that even in
the burn-in environment with special settings, the failure time
of products is longer than that of general products. Burn-
in test aims to eliminate defective products before they are
put into service. Meanwhile, the unnecessary life loss of nor-
mal products should be reduced as much as possible, which
requires that burn-in time should be taken into account when
formulating burn-in strategies. Therefore effective burn-in
test for highly reliable products is becoming a big challenge.

Burn-in test can be classified into two types according to
the failure mechanism. Traditional burn-in, which is based
on catastrophic failure, is conducted by subjecting all units
to normal or accelerated working load for a suitable duration.
Then, the failed subjects are screened to prevent these weak
subjects from being shipped to customers. Detailed discus-
sions on the optimization of this type of burn-in policy can be
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found in Sheu and Chien [1], Cha and Finkelstein [2], Cha [3],
and Ye et al. [4]. However, for highly reliable products, this
approach is likely to be ineffective, because short burn-in
time is usually not enough to make defective products fail,
while longer time will lead to more performance loss of
normal products. In reality, there exists a broad category of
products or components whose reliability is directly related
to the degradation of some quality characteristics (QC) [5].
With the aid of modern measurement techniques and Inter-
net of Things, degradation data have become increasingly
accessible at a relative low cost, and there will be a growing
number of products whose failure can be defined by their
degradation level [6]. For these degradation-failure products,
although weak units have higher degradation rates than nor-
mal ones, they can still survive for a relatively long duration in
traditional burn-in testing [7]. Therefore, manufactures have
to resort to the degradationmeasurement, that is, degradation-
based burn-in, to perform screening.

A lot of studies have contributed to the development and
extension of degradation models, which can be referred to the
recent review in [8]. The stochastic process is generally used
in the research on degradation modeling [9], [10], of which,
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the three most common classes are the inverse gaussian (IG)
process [11]–[14], the wiener process [15]–[18], and the
gamma process [19]–[21]. Ye and Chen [12] systematically
investigated the IG process and showed that the IG process
is an important family of degradation analysis because of
its superb properties in dealing with covariates and random
effects. The wiener process has been widely employed to
construct degradation-based burn-in models [22]. For exam-
ple, Tseng and Peng [23] constructed a burn-in model using
the integrated Wiener process and discussed burn-in scheme
optimization. Ye et al. [24] studied the burn-in planning of
products with two competing risks. Ye et al. [25] applied
the Wiener process to model the measured degradation and
discussed the optimal burn-in plan by jointly considering the
burn-in test cost and maintenance expense. In the work of
Peng [26], a degradation model considering random effects
and measurement errors was proposed and the burn-in test
was extended into a classification problem with several sub-
populations. Zhai et al. [27] recently studied the optimiza-
tion of degradation-based burn-in plan with considering the
measurement errors. Moreover, The gamma process has also
been used in degradation-based burn-in optimization. For
application examples of the gamma process in degradation-
based burn-in optimization, see Singpurwalla [28], Lawless
and Crowder [29], and Park and Padgett [28], [30].

However, there are some problems with the methods of
degradation-based burn-in. Firstly, establishing the physical
model to describe the degradation trend depends on fully
understanding the failure mechanism of products. This kind
of information is hard to obtain, especially when the degra-
dation is complicated [8], [22], [26]. Secondly, burn-in strate-
gies are formulated offline, and fixed strategies are difficult to
cope with complex and changeable degradation. Influenced
by raw materials, manufacturing process, and different initial
degradation state, the degradation rate of products in different
batches may vary, and the corresponding optimal time will
also change. The strategy developed offline is likely to cause
low completion of screening tasks or unnecessary high per-
formance loss of normal products. In addition, Zhai et al. [27]
discuss the effects of measurement errors on decision param-
eters and propose that measurement errors always exist and
can not be negligible, otherwise the burn-in strategies at the
inferior level will be formulated. Finally, the effectiveness
of conventional burn-in strategies is challenged by the cor-
rectness of some prior information, such as the unit cost of
misclassification and the class distribution [31]–[34]. Inaccu-
rate information and unreasonable settings will always lead to
burn-in strategies with low application value.

Recently, deep learning (DL) has emerged and achieved
much success in computer vision, machine translation, and
social network filtering. DL attempts to learn high-level rep-
resentations from data through multiple layers, and obtain a
hierarchical feature representation automatically instead of
designing hand-crafted features. Among various DL models,
convolutional neural network (CNN) has been applied exten-
sively in various classification tasks [35], [36]. In particular,

FIGURE 1. Flowchart of the proposed burn-in method.

the application of CNN in field of fault diagnosis can be
found in [37]–[42]. Essentially, burn-in test which aims to
screen out defective products, could be regarded as a clas-
sification problem. Therefore, the relevant methods of CNN
can be applied to burn-in test in theory. However, burn-in test
needs to process time-series data, and differing from simple
classification in fault diagnosis, its decision-making involves
burn-in time. The difficulty lies in how to obtain reasonable
burn-in time based on given degradation information and
apply it to online screening tasks, and this is why DL has a
lot of research and application in the field of fault diagnosis,
but little development in the burn-in test.

In this paper, we attempt to solve problems stated above
with a new method which mainly contains two phases. Dur-
ing the offline training phase, one-dimensional convolutional
neural network(CNN1) is combined with the sliding window
strategy to build the relationship between degradation trend
and measured data, and here, a well-trained CNN1 will be
obtained to conduct the screening task. Then, combine the
well-trained CNN1 with our group-accuracy strategy, and
the optimal burn-in time will be obtained. During Online
testing phase, through the online optimization algorithm,
the actual burn-in time of products to be screened will be
adjusted and the task of product screening then will be com-
pleted. The remainder of this paper is organized as follows.
Section II elaborates the important theories and methods.
Section III introduces the proposed online optimization algo-
rithm. Section IV is the experimental design and method
verification. The conclusion is made in Section V.

II. THEORIES AND METHODS
To address the limitations of conventional methods, CNN1 is
used to learn data sets under a sliding window strategy, which
is the first and key step. On this basis, the optimal burn-in
time b0 can then be obtained under a group- accuracy strategy.
After completing the training of the model and obtaining b0,
new samples to be screened are tested within b0, and finally
automatically predicted by CNN1 to complete the screening
task. The flowchart of the proposedmethod is shown in Fig. 1.
The main theories and techniques are described as follows.
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A. SLIDING WINDOW STRATEGY
The original run-to-failure data set consists of degradation
series of QC, each of them has a unique class label repre-
senting the true class of the corresponding product, i.e. weak
class or normal class. However, due to the principle of burn-in
test, it is useless to directly training a model with the original
data set. For this reason, a sliding window strategy is applied
to process the original data set. The new data set obtained is
called a sliding window set, and the sample in which is called
a window sample. The sliding window strategy is to give a
fixed size window and slide the window along a specified
direction, which is effective only when the window is filled
with degradation data. When the window slides effectively,
the data in the window and the last measurement time will
form a window sample. Particularly, the measurement time
will be regarded as the actual burn-in time of the window
sample, referred to as window time (WT). Denote the window
size by ws, and ms denotes the number of steps for each
movement. Under the sliding window strategy,

⌊ s−ws
ms

⌋
+ 1

samples then can be obtained from the degradation series
with length s, each of them contains ws + 1 features. It is
worth noting that at any WT, the product has only one sliding
window sample, then the predicted label and the true label
will be consistent with the product.

B. CONVOLUTIONAL NEURAL NETWORK
In this paper, one-dimensional convolution neural network is
used to perform the product screening task. In our design,
CNN1 model consists of one data input layer, four convo-
lution calculation layers, three fully connection layers and
one classification layer. Besides, the pooling layer is not used
in the convolution network design, and the same mode of a
convolution operation is proposed. The designed structure is
shown in Fig.2. Since the same mode is used in convolution
layers, and the down-sampling operation is not conducted,
the size of the feature maps will remain unchanged after
convolution. The output of the convolution layer is calculated
as

mri = φ

∑
j

mr−1j ⊗ krji + b
r
i

 (1)

where mri ,m
r−1
j mean the ith feature map of the convolution

layer r and the jth feature map of the convolution layer
r−1, respectively. krji and b

r
i are the corresponding filters and

biases. φ (·) is the activation function used in the convolution
layer. Rectified Linear Unit (ReLU) is used in our convolution
layers and is defined as

φ (x) =

{
x, if x > 0
0, if x ≤ 0

(2)

Each fully connection hidden layer contains a certain num-
ber of neurons. The relationship between input and output of

neurons in the hidden layer is

ali = f

(∑
k

wlik · a
l−1
k + bli

)
(3)

where wlik denotes the weight connecting Neuron i in Layer l
and Neuron k in Layer l−1, ali denotes the activation value of
Neuron i in Layer l, bli is the bias set on Neuron i in Layer l,
and f (·) denotes the activation function. The exponential
linear unit function (ELU) is used in fully connection hidden
layers, and ELU with α > 0 is defined as

f (x) =

{
x, x > 0
α ·
[
exp (x)− 1

]
, x ≤ 0

(4)

In the output layer of a classification model, probability
scores of the input on each class are calculated based on the
soft-max function, and the predicted label is the one with the
highest score. Assuming that there are C classes and the true
class label of sample xi is ci, the formula for calculating the
probability score of xi on class ci is

p (y = ci|xi) =
exp

(
aLci
)

C∑
j=1

exp
(
aLj
) (5)

Note that the summation of denominator is performed on all
output neurons.

In terms of the working principle, CNN has two character-
istics: local perception and parameter sharing. CNNperceives
the local information, and then merges the local information
at a higher level to get all the characterization information.
The neural units at different layers of CNN adopt the local
connection mode, which ensures that the learned convolution
kernel has the strongest response to the input spatial local
mode. CNN’s weight sharing network structure makes it
more similar to the biological neural network, reduces the
complexity of the network model, and reduces the number of
weights. Due to the small number of parameters, the training
samples required are relatively small, so to some extent, it is
not easy to have a fitting phenomenon.

C. GROUP-ACCURACY STRATEGY
The simulated degradation paths of high-power semiconduc-
tor lasers (HPSL), light-emitting diodes (LED) and micro-
engine inside the microelectro mechanical systems (MEMS)
are shown in Fig. 3, from which, it is readily found that
the differentiation between two-class products is positively
correlated with the burn-in time and tends to stabilize after
reaching the peak value, and this phenomenon is common
in various types of products. Assume that the prediction
accuracy of products by CNN1 is positively correlated with
the differentiation degree of two-class products, then the
prediction accuracy of window samples by CNN1 is also
positively correlated with WT. Based on this assumption,
a group-accuracy strategy is adopted to obtain the optimal
burn-in time.
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FIGURE 2. Network structure.

FIGURE 3. Quality characteristic degradation of HPSL, LED and MEMS.

When using the group-accuracy strategy, we regroup the
sliding window set first, and make sure samples of the same
group has the same WT. Then, group tests are conducted
by well-trained CNN1 and the accuracy is obtained for each
group. Finally, theWT of the group with the highest accuracy
and the minimum WT is the optimal burn-in time b0. For a
group, denote the number of window samples by n, WT by t ,
the jth sample by νj(t), the predicted label and true label
respectively by jpred(t), jtrue(t). Then the group accuracy is
defined as

group_acc (t) =
1
n

n∑
j=1

νj (t) (6)

where

νj (t) =

{
0, if jpred(t) 6= jtrue(t)
1, if jpred(t) = jtrue(t)

And then the optimal burn-in time can be formulated as

b0 = min {timax , i = 1, 2, · · · ,m} (7)

where timax = argmax {group_acc(ti)}.
Actually, there is more reasonable approach to calculate

b0. First, preset an accuracy threshold gate_acc. When the
group accuracy is not less than this value, the corresponding
WT becomes a candidate of the optimal burn-in time b0.
Then select the minimumwindow time from all the candidate
values as b0. That is

b0 = min {ti|group_acc(ti) > gate_acc, i = 1, 2, · · · ,m}

(8)

Furthermore, more burn-in time leads to more burn-in cost
and more loss of normal unit life involved in the test. At the

same time, more burn-in time will also promote the recogni-
tion rate of defective products, so as to reduce the risk cost of
defective products sold. Therefore, in practical application,
the above two situations should be considered when deter-
mining the accuracy threshold gate_acc.

III. ONLINE OPTIMIZATION
Online optimization refers to the process of collecting degra-
dation data online and synthesizing the information of current
classification results to decide whether to continue a burn-in
test. As a valuable research subject, online optimization can
be used to reduce the cost of burn-in test, such as time cost,
measurement cost, and the life loss of products. Based on
the method introduced in Section II, an online optimization
algorithm is proposed. The improved online testing process
is shown in Fig.4. The main techniques are described briefly
as follows.

A. DEFINITION OF EFFECTIVE INFORMATION
Influenced by raw materials, manufacturing process, and dif-
ferent initial degradation state, the degradation distribution
characteristics of products in different batches may vary, and
the corresponding optimal burn-in time will also change. For
example, the degradation rate of weak products in different
batches may be quite different. The actual time needed for
burn-in test is shorter when QC degrade faster, but increased
when QC degrade slower. When a large number of weak
products are not identified, the increase of burn-in time will
inevitably bring more effective information (EI). With the
process of burn-in test, EI will become less and less, and
eventually tends to zero. Denote the class prediction results
of products within burn-in time t by RS(t), and the prediction
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of the ith product is denoted by RSi(t), and RSi(t) ∈ {0, 1}.
When RSi (t) 6= RSi(t − 1), an EI will be produced. Then,
EI (t) with n products to be tested is defined as

EI (t) =
1
n

n∑
i=1

τi(t),

s.t. τi(t) =

{
0, RSi(t) = RSi(t − 1)
1, RSi(t) 6= RSi(t − 1)

(9)

In the later stage of burn-in test, EI decreases. Although the
increased time t will help to further screen out weak products,
it will also lead to more cost and life loss of normal products,
resulting in zero or negative actual gains. Hence, a gate of
effective information (GEI) can be set artificially based on
prior knowledge. When the current EI is below the GEI, then
stop the test; otherwise, continue to conduct the test.

B. ONLINE OPTIMIZATION ALGORITHM

Algorithm 1 Online Optimization Algorithm
Input:

CNN1, b0, window_size, move_step, numl, numr , and
GEI .

Output:
t and RS(t).

1: Initialization:
Denote the burn-in time by t , t ∈ [lb, rb], and the actual
burn-in time is denoted by tactual which will be updated
automatically throughout the burn-in test process. Then
the parameters are initialized as follows
lb = max(window_size, b0− numl · move_step).
rb = b0+ numr · move_step.
t = lb, tactual = 0,
RS(t − move_step) = {0, 0, · · · , 0}.

2: Conducting the burn-in test of products:
When tactual = t , interrupt the test.

3: Obtaining RS(t):
Input the window samples with WT = t into CNN1 and
get predicted labels.

4: Calculating EI (t):
Substitute RS(t), RS(t − move_step) into formula 8.

5: Decision-making:
If t + move_step > rb or EI (t) < GEI , stop the
algorithm and output t , RS(t). Otherwise, update t ,
t = t + move_step, and go to step 2.

IV. EXPERIMENTS
A. DATA DESCRIPTION
High-power semiconductor lasers are core components for
various applications such as medical surgery, photodynamic
therapy, and space applications. The main quality charac-
teristic of a high power laser diode is its output optimal
power, which will degrade over working time. In some
type of laser device, optimal power feedback function is

FIGURE 4. The improved online screening process.

designed, then the operating current will increase over time to
remain the optimal power stable. When the operating current
reaches a pre-fixed threshold level, the device is considered
to have failed. As argued in [22], the gamma process (GP)
exhibits quite well performance in capturing the degradation
characteristic of laser devices. Denote GP by {L(t), t ≥ 0},
then the degradation increments follow a gamma distribution,

L(t +1t)− L(t) ∼ Ga(1g(t), ν) (10)

where 1g(t) = g(t + 1t) − g(t), Ga(1g(t), ν) means the
gamma distribution with shape parameter 1g(t) and scale
parameter ν, ν > 0. g(·) is a monotone increasing function.
There are also many other types of products whose QC

degradation process can be described by a wiener stochastic
process (WP), such as the micro-engine inside the micro-
electro mechanical systems (MEMS), the light-emitting
diode (LED), the contact image scanner of a copy/fax
machine, plasma display panels, vacuum fluorescent dis-
plays, liquid crystal displays and digital light processing
projectors and numerous other dependable systems. Among
them, the degradation process of micro-engine in MEMS is
a linear WP with linear drift [23], and its increment follows
normal distribution. Denote the linear WP by {Y (t), t ≥ 0},

Y (t) = βt + σB(t) (11)

Y (t +1t)− Y (t) ∼ N (β1t, σ 21t) (12)

where β and σ denote the drift parameter and the vari-
ance coefficient respectively, B(t) is the standard Brownian
motion. Referring to the work [27], the degradation process
of LED can be described as a non-linearWPwhich is denoted
by {X (t), t ≥ 0},

X (t) = g(t)+ σB (τ (t) ) (13)

where g(t) = exp
(
−ηtδ

)
, τ (t) = tγ .
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TABLE 1. Overview of data simulation information.

FIGURE 5. Simulated DIG data with different parament settings.

In addition, the degradation of some products can be
described by the inverse gaussian (IG) process, such as alu-
minum alloy specimens [43] and lithium-ion batteries [44].
The IG process has independent increments following the
inverse gaussian distribution. Denoting the IG process by
{Ys(t), t ≥ 0}, an IG process model with normal ran-
dom effects (IG_NRE) can be defined as Eq.14, where β
is the degradation rate, η is the shape parameter, 3(t) is
the monotonously increasing drift function and 3(t) = tb.
N (µ, σ 2) denotes the normal distribution with the mean µ
and the standard deviation σ .

Ys(t) ∼ IG(β3(t), η32(t)), β−1 ∼ N (µ, σ 2) (14)

In our experiments, Monte Carlo method is used to sim-
ulate three kinds of data sets, namely HPSL data, LED data
and MEMS data. Another kind of degradation data is gen-
erated based on IG_NRE, and here we denote this kind of
data by DIG. Each data set contains one training set and
10 test subsets. Each training set has 1000 samples and each
test subset has 100 samples, but the proportion of weak
products to normal products is random. Denote the weak
product by w and the normal by n, then an overview of data
simulation information is shown in Table 1. Illustrations of
degradation paths for the four data sets are shown in Fig. 3
and Fig. 5.

B. ROC EVALUATION STRATEGY
For each batch of products, the proportion of two populations
is variable and unknown; the general accuracy evaluation
strategy cannot reflect the performance of a classifier cor-
rectly. For example, when the proportion of the normal and
weak subpopulation is 95 : 5, even if all weak products
are mistaken as the normal ones, the accuracy of a classi-
fier could still reach 95%, presenting the illusion of high
performance. Hence, the performance on two subpopulations
must be simultaneously taken into account in the design of an
practicable classifier.

The receiver operating characteristic curve (ROC) is often
used in binary classification tasks. It is a powerful tool to
study the generalization performance of classifiers from the
perspective of threshold selection. Inspired by the idea of
ROC, a kind of ROC index is constructed to evaluate the
model performance. Actually, when classifying whether a
product is normal or weak, a burn-in procedure can have
four possibilities which consist of two types of errors when
comparing the prediction with the real situation of a product.
If both the real situation and the prediction from themodel are
normal, they are called true normal (TN). If the product is nor-
mal, whereas the prediction is weak, it is called a false weak
(FW). False normal (FN) and true weak (TW) are defined
similarly. Denote the ROC index by RocI ; Tr represents
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FIGURE 6. Training and testing result on DIG data1.

the proportion of the number of normal products correctly
predicted in the total number of the normal. Fr denotes the
proportion of the number of normal products falsely predicted
in the total number of the weak. Then, the ROC index is
defined as

RocI = 1−Tr + Fr

Tr =
TN

TN + FW

Fr =
FN

TW + FN

From the definition above, it can be seen that the ROC
index is non-negative, and the smaller the value is, the better
the performance of a model on the two population of products
will be. On the contrary, problems may exist in the model,
such as the model cannot correctly classify two products,
or the model has serious first or second prediction errors.

C. VALIDATION OF THE PROPOSED METHOD
In this section, we will use the DIG data to complete the
validation of the proposed method. In order to evaluate the
online optimization algorithm, parameters of the degradation
model of weak products will be modified slightly during the
Monte Carlo simulation, and three DIG data sets are finally
produced, and visually shown in Fig. 5. When using the
sliding window strategy to construct window samples, we set
window size = 8, move step = 3, and Z standardization is
applied in data preprocessing. The network design refers to
themodel structure in Section II and Fig. 2. The cross-entropy
loss function is used in model training. Because there are
many parameters to be learned, the gradient descent method
is applied. The cross-entropy loss function is given as

J (2) = −
1
B

B∑
i=1

log (p (y = ci|xi)) (15)

where 2,B, η, ci denote the set of all parameters to be
learned, the number of input samples in batch training,
the learning rate and the true label of Sample i, respectively.
In our experiment, the initialization of weight parameters
follows a truncated normal distribution with mean value 0,
variance 0.01; bias initial values are all set to 0.1; the dropout
rate in fully connected layers is 0.5; the initial value of

TABLE 2. Results of method validation.

learning rate is 0.001, and the exponential decay of the learn-
ing rate is performed every 100 steps.

Fig. 6(a) shows the training loss on DIG data1, from which
we can see that CNN1 converges rapidly. Fig. 6(b) is an
illustration of testing group-accuracy over some iterations,
showing that the group accuracy increases with the increase
of burn-in time and tends to stabilize after reaching the peak
value 1, and thus proving the corresponding hypothesis and
analysis in Section II. With the setting gate_acc = 0.97,
the accuracy for products in the training set of DIG data1 is
0.978, the ROC index is 0.044, and the optimal burn-in time
is 36.

The online optimization method proposed in the paper is
validated through DIG data 2, DIG data 3 and the testing
set of DIG Data 1. All three sets are composed of 10 test
subsets, each of which contains 100 test samples, and the
proportion of weak products to normal ones is random. In the
experiment, the model using the online optimization strategy
is denoted by cm1, otherwise denoted by cm0. The final
experimental results are shown in Table 2, where accuracy,
actual-t respectively means the accuracy of product screening
and the actual burn-in time. Note that the final results are
averaged on 10 test subsets. When the online optimization
is not performed, the actual burn-in time is b0.

From Table 2, it can be found that (i) When online opti-
mization is not performed, the accuracy of the three test-
ing sets is 0.971, 0.985 and 0.966 respectively. (ii) When
online optimization is conducted, the accuracy of DIG data 2
decreases to 0.974 while the actual burn-in time is cut down
to 30 from 36. At the same time, the accuracy of DIG data
3 increases to 0.971 with the actual burn-in time 41. There-
fore, it can be seen that through online optimization, burn-
in time can be dynamically adjusted according to the actual
degradation information of products, so as to better com-
plete the screening task and reduce the unnecessary burn-in
time.
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FIGURE 7. Training and testing result on HPSL data.

FIGURE 8. Training and testing result on LED data.

D. COMPARISONS WITH CONVENTIONAL METHODS
In this section, we will carry out comprehensive comparisons
between the method designed in this paper and the other three
representative conventional methods which are respectively
from the literature [22], [23], [27].

Conventional methods to obtain the burn-in strategies are
mainly based on modeling degradation data and minimizing
cost functions. The method in [22] uses a mixed gamma
process to model HPSL data; the method in [23] uses an
integrated wiener process to simulate the cumulative degra-
dation path of LED data, and takes full account of the infor-
mation contained in the whole degradation sequence when
producing the burn-in strategy; the method in [27] discusses
the influence of measurement errors on decision-making
parameters, and particularly takes Gaussian measurement
errors into account when designing the degradation model
of MEMS data. The above three methods are respectively
denoted by lgm, lwm, and mwm. In order to fully evaluate the
performance of methods, Gaussian measurement errors are
introduced to data. For example, the gamma process model
{L(t), t ≥ 0} with Gaussian measurement errors is defined
as follows.

Z (t) = L(t)+ ε(t), ε(t) ∼ N (µ, σ 2) (16)

In the experiment, each testing set is further divided into
two groups, there are no measurement errors and there are
Gaussian measurement errors. Specifically, the settings of
measurement error parameters are µ = 0 and σ 2

= 0.01
in HPSL data, µ = 0 and σ 2

= 0.001 in LED data, and
µ = 0 and σ 2

= 3 ∗ 1e − 7 in MEMS data respectively.
CNN1 was respectively trained with the training set of HPSL

TABLE 3. Results of comparisons on HPSL data.

TABLE 4. Results of comparisons on LED data.

TABLE 5. Results of comparisons on MEMS data.

data, LED data and MEMS data. Note that the three training
sets all contain no noise. Then, each well-trained CNN1 was
tested with the corresponding test sets, including the one with
noise and the other without noise. Fig.7-9 respectively show
the training loss and the testing group-accuracy over some
iterations on the corresponding data set.

The final experimental results are shown in Tables 3-5,
where data sets with measurement errors are marked with
*. It should be noted that strategies produced by lgm, lwm,
and mwm are developed offline, which means that the strat-
egy based on the training set will not change even though
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FIGURE 9. Training and testing result on MEMS data.

there are measurement errors. Similarly, the optimal time
b0 produced by CNN1 using the training set will remain
unchanged.

By analyzing the experimental results in Tables 3-5,
conclusions are drawn as follows. (i) The performance of
conventional methods is affected by measurement errors.
In the experiment, when measurement errors exist in data,
performance of lgm, lwm, mwm are all affected and the ROC
index increases from 0.071, 0.624, 0 to 0.078, 0.632, 0.130,
respectively. There are two main reasons behind this. On the
one hand, only one degradation measurement at the end time
point is used in the burn-in test. On the other hand, measure-
ment errors are not considered in the degradation modeling.
(ii) There is a big risk when offline burn-in strategies are used
for online testing. In the experiment, the ROC index of lwm
is relatively high (0.624 and 0.632), thus the corresponding
burn-in strategies can be considered to have low application
value. (iii) Measurement errors will also affect the perfor-
mance of cm0, but through online optimization algorithm,
the influence can be reduced or even eliminated completely.
As shown in Table 5, when Gaussian errors exist, the ROC
index of cm0 increases from 0.045 to 0.403 with the same
burn-in time 23. When the online optimization is performed,
the ROC index decreases from 0.403 to 0.018 and the actual
burn-in time increases to 80.

V. CONCLUSION
In this paper, we employ the deep learningmethod to optimize
the degradation-based burn-in test for highly reliable prod-
ucts. An burn-in optimization framework is proposed, which
consists of the sliding window data-processing method,
one-dimensional convolution neural network, the group-
accuracy strategy and an online optimization algorithm, and
its effectiveness has been validated by experiments. More-
over, compared to conventional methods, our method has the
following advantages.

First, it is completely driven by degradation data and can be
widely applied to the burn-in test of various products, without
human exploration of degradation failure mechanism and the
priori assumption of model parameter distributions. The main
reason behind this is that during the training phase, CNN1 can
learn a hierarchical feature representation automatically and
perform the classification task. When trained properly for a

particular dataset, CNN1 can optimize both feature extraction
and classification tasks according to the problem at hand.

Second, it has stronger robustness in the classification task
owing to the proposed online optimization algorithms. In the
validation experiment, different degradation rates are adopted
in three testing sets. In the comparative experiment, Gaussian
measurement errors are introduced into one group of testing
sets. According to the experimental results, the screening
task is well done by CNN1 when the online optimization is
performed.

Third, it can be easily extended to deal with multiple qual-
ity characteristics by replacingCNN1with a two-dimensional
convolutional neural network. However, traditional methods
often focus on the analysis of single degradation signal,
which is difficult to deal with the situation of multiple quality
characteristics, otherwise data fusion technology has to be
applied.

Nevertheless, there are some aspects worth further inves-
tigation. For example, when developing the burn-in strategy
for the product with multiple quality characteristics, a con-
tinuous visualization progression of degradation should be
provided, which, compared with the original multi-sensor
signals, is easy to understand and thus highly desired in
industrial practice. Besides, the complexity of screening tasks
determines the complexity of CNN, which requires the size
of training set. In the case of limited original data, it should be
further explored whether the amount of data can be enlarged
through some existing data processing technologies to ensure
that CNN can learn effectively.
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