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ABSTRACT Compact multisignature is vital for shrinking the signature size of decentralized blockchain. All
practical compact multisignature schemes have been constructed from the discrete logarithm problem which
is potentially vulnerable to quantum computing attacks. Lattice-based multisignature schemes are potential
candidates for resisting quantum attacks. However, the existing lattice-based multisignature schemes suffer
either loose signatures or large public key and signature sizes after compressing, which makes them
unsuitable for blockchains. In this paper, we first present a practical lattice-based multisignature scheme
with much smaller signature sizes than previous lattice-based multisignature schemes. Then, we extend our
scheme to support public key aggregation with almost the same performance. Both of our multisignature
schemes are provably secure in the random oracle model under the ring version of the short integer
solution (Ring-SIS) assumption. They outperform the recent lattice-based multisignature scheme proposed
by Bansarkhani and Sturm (BS) in terms of both signature size and communication overhead.

INDEX TERMS Lattice, multisignature scheme, public key aggregation, random oracle model.

I. INTRODUCTION
In a multisignature scheme [1], a group of signers (denoted
by U ) can jointly produce a compact signature (which can be
verified very similarly to the ordinary signature scheme) on
a common message m. Let the potential signers be denoted
by 1, · · · ,K . The signer i has its public key pki and the
corresponding private key ski. Obviously, there is a trivial
way to generate a multisignature σ on a common message
m by setting σ = (σ1, · · · , σi, · · · , σ`), where i ∈ U ⊆
{1, · · · ,K } and σi is signer i’s signature on m [2]. However,
the size of the multisignature and the verification cost in that
case are linear to the number of signers (i.e. |U |). To be
available and scalable, the length of a multisignature and
the computational cost of every signer and the computational
cost of multisignature verification should be close to those
of a single ordinary signature [2]. Multisignature has many
potential usages, for example, contract signing, trust routing,
distribution of a certificate authority, and blockchain [3].
Applications to Blockchain: Since it is introduced by

Itakura and Nakamura [1], multisignature has been studied
extensively, which includes security models [4]–[6] and ele-
gant signing protocols [7], [8]. Recent applications of the
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blockchain [3] have renewed the research interests of mul-
tisignature schemes from both cryptographic community and
industry. Blockchain could be regarded as a public ledger and
all committed transactions are stored in a list of blocks [9].
A typical modern blockchain for cryptocurrency applications
consists of two parts: a proof-of-work protocol for delegating
the creation of new blocks and a signature scheme for transac-
tion verification [10]. Multisignature schemes can be used to
reduce the amount of data written in blockchains efficiently.
Concretely, standard transactions in the bitcoin blockchain
are called ‘‘single-signature transactions’’, which only trans-
fer and store one signature between transactors. With the
development of the bitcoin network, the bitcoin blockchain
supports more complicatedM -of-N transactions that transfer
M valid signatures fromM of the N transactors and write all
these signatures in the blockchain. In this case, compressing
multiple signatures into one multisignature has great impor-
tance in the storage of blockchains.

On the other hand, public key aggregation [11] is also
crucial for blockchains since multiple public keys can be
replaced by one short aggregated public key, which may
reduce the storage further and is possible to lower the ver-
ification cost. Therefore, the data of an M -of-N transaction
written in each block contain a message, an aggregated public
key and a short multisignature. It saves more memories of
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each block in blockchains than before. Although very recent
multisignature schemes [11]–[13] support public key aggre-
gation, they are all constructed from the discrete logarithm
problem which will be potentially vulnerable to quantum
computing attacks. Lattice-based cryptographic schemes are
potential candidates for post-quantum cryptographic primi-
tives. However, the existing most efficient lattice-based mul-
tisignature scheme proposed by Bansarkhani and Sturm [14]
is unsuitable for blockchains due to its large public key and
signature sizes.

The BS multisignature scheme is based on the practi-
cal digital signature scheme proposed by Güneysu, Lyuba-
shevsky, and Pöppelmann (GLP) [15]. The GLP scheme has
to repeat about 7 times to generate a signature with accept-
able size and computational cost [15], due to its inherent
rejection-sampling method. Repetition is not a problem for
single-signature schemes, but a crucial problem for multisig-
nature schemes since it will cause a communication bottle-
neck. To address this problem, the BS scheme uses larger
parameters than the GLP scheme to reduce the probability
of rejection. As a result, the signature size of the BS scheme
is about 10 thousands of bits larger than the GLP scheme.
Moreover, the modulo in the parameters of the BS scheme
is out of the scope of the integer type, which makes it unac-
ceptable for fast implementations. Although the BS scheme
can use the same parameters as the GLP scheme, it is also
unacceptable due to the exponential repetitions of its signing
protocol. This state of affairs raises the question:
Is it possible to reduce the repetitions of the signing pro-

tocol of lattice-based multisignatures to an acceptable level
while preserving a reasonable level of performance?

In this paper, we focus on reducing the interactions of
repetition-inherent multisignature schemes with acceptable
parameters in the setting of a small signer group. Repe-
tition is an inherent property of lattice-based Fiat-Shamir
like (FS-like) [16] digital signature schemes [15], [17].
Lattice-based multisignature schemes can be constructed
directly from the FS-like lattice-based signatures through
the technique of [6]. However, it will result in either expo-
nential repetitions or large parameters, which prohibits the
availability of multisignature schemes even in the setting of
small signer group. A lot of applications, such as bitcoin,
usually usemultisignaturewith small signer group. In this set-
ting, reducing the probability of repetition to be significantly
small with acceptable performance and supporting public key
aggregation will lead to practical lattice-based multisignature
schemes.

A. OUR CONTRIBUTIONS
In this paper, we present a practical lattice-based multisig-
nature scheme (PLMS) and extend it to support public key
aggregation in the setting of a small signer group. Our
schemes are based on the GLP scheme and follow the FS-like
digital signature structure which includes the committing
phase, opening phase, and aggregating phase, but use a dif-
ferent approach rather than increasing parameters to avoid

the restart of the protocol. Consequently, the parameters of
our schemes are smaller than the BS scheme at the cost of
increasing communication overhead a little bit. Moreover,
our schemes have been proven secure in the random oracle
model under the Ring-SIS assumption. The improved effi-
ciency of our schemes as compared with the BS scheme
may be attributed to the adoption of a new method to reduce
both interactions and communications. Our method uses a
basis to generate an exponential number of commitments and
exchanges only the basis among signers during the commit-
ting phase of the signing protocol. As a result, our schemes
can proceed exponential number of signing tries and hence
can produce a multisignature with probability close to 1 for
each execution of the signing protocol. In the opening phase,
our schemes require an extra round of communication to
exchange the success positions among signers. Thus, each
execution of our signing protocol needs 4 rounds of interac-
tions, which is one more round than the BS scheme. Nev-
ertheless, our multisignature schemes beat the BS scheme in
terms of both signature sizes and communications. A detailed
comparison between our basic scheme PLMS and the BS
scheme is described in Table 1.
Efficiency: As depicted by Table 1, our PLMS scheme

requires only one repetition of the multisigning protocol,
which means that the PLMS scheme can produce a mul-
tisignature without restarting the signing protocol, while
maintaining the same public key size and security level
as the BS scheme. Using the same parameters, the BS
scheme restarts the MSign protocol nearly 12 times, which is
far from practicality. Besides, the communication overhead
consumed to generate a multisignatue in the BS scheme
is nearly twice as much as our PLMS scheme. Further-
more, the signature bit size of the BS scheme is also
longer than the PLMS scheme. In conclusion, our PLMS
scheme beats the BS scheme in terms of signature sizes and
communications.

TABLE 1. Comparisons betwwen BS scheme and PLMS scheme.

Remark 1:We make comparisons between the BS scheme
and our PLMS scheme with different sets of parameters
which are listed in Table 2 in terms of the expected number of
repetitions, total communications, public key sizes, signature
sizes, and root Hermite factor. The detailed explanations
of choosing parameters and calculating these attributes are
located in section VI-A.
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B. TECHNIQUE OVERVIEW
The GLP scheme [15] is an FS-like practical lattice-based
digital signature scheme, which is a ring version of [17].
It needs rejection-sampling to hide the private key, which
means that its signing procedure has to repeat several times to
generate a secure signature. In the GLP scheme, the expected
number of repetitions is 7 according to the suggested param-
eters. The BS multisignature scheme [14] follows directly
from the GLP scheme and requires 3 rounds of interactions
between each signer to generate a signature. In the signing
protocol of the BS scheme, each signer produces his signature
by using a similar method described in the GLP scheme, and
then all valid signatures can be aggregated to amultisignature.
As a result, it has to repeat an exponential number of the
signing protocol to output a secure signature, which results in
an inefficient and impractical scheme. Concretely, we assume
that ` signers are participating in the multisignature process.
In the BS scheme, each signer follows the signing protocol
honestly and generates a secure signature which passes the
rejection sampling step with the probability 1

7 . Then the
whole signing group produces a secure multisignature with
probability ( 17 )

`, which implies that its signing protocol has
to repeatO

(
7`
)
times. The exponential number of repetitions

makes the BS scheme far from efficiency and practicality
even there are only 2 signers.

There are two trivial ways to reduce the repetitions of
the BS scheme. One is the approach of increasing parame-
ters, which is adopted by the BS scheme and leads to large
public key and signature sizes. The other is the approach
of increasing communication overhead which is described
below. Specifically, in the committing phase, each signer
commits an exponential number of commitments (e.g.O

(
7`
)

commitments) instead of only one. In the opening phase,
each signer opens all the commitments and the corresponding
successful partial signature. In this way, every execution of
the signing protocol will output a secure signature with prob-
ability at least 1

2 . However, it leads to another problem. The
transmission of O

(
7`
)
ring elements may cause huge com-

munications. For example, the length of each commitment
is n

⌈
logq2

⌉
≈ 3KB (according to the suggested parameters

in [15], n = 1024, q = 16760833), so the total length of
communication costs in the first-round interaction is approx-
imately 49.24 MB and 808.17 GB for 5 and 10 signers,
respectively.

To address the above problems, our new approach uses a
small number of short ring elements as a basis for each signer
to generate an exponential number of commitments. Specif-
ically, each signer chooses α different short ring elements
b1, b2, . . . , bα at random and uses them as a basis to generate
an exponential number of commitments. Each commitments
cj = (b1 b2 . . . bα) · [j]α2 = j1b1 + j2b2 + . . .+ jαbα . There-
fore, these α ring elements can represent 2α commitments.
During the commitment phase, each signer just needs to
transmit the basis (b1 b2 · · · bα) rather than 7` ring elements
to other signers, which greatly reduces the communication

costs. Considering there are 10 signers, the rough value of
α is derived from the equation 2α = 7`, which means that
α =

⌈
log7

10

2

⌉
< 29. Overall, we only need to transmit

O(`) ring elements to solve the huge communication costs
presented in the above trivial method.

However, if we use the above representing method to the
commitment phase of the BS multisignature scheme and
keep its other phases unchanged, it will cause a leakage
of the private key. In the BS scheme, the signature zi of
signer i is derived from zi = Sici + Yi, where Si is
the private key of signer i, ci is obtained by querying the
random oracle H1 and Yi is a random number chosen by
signer i. Without loss of generality, assume three signatures
zi,1, zi,2, zi,3 are passing the rejection sampling step and the
signer i broadcasts them to other signers in the third round
of the signing protocol. These signatures can be denoted as
follows:

zi,1 = Sici,1 +
(
bi,1 bi,2 . . . bi,α

)
· [1]α2

= Sici,1 + bi,α
zi,2 = Sici,2 +

(
bi,1 bi,2 . . . bi,α

)
· [2]α2

= Sici,2 + bi,α−1,

zi,3 = Sici,3 +
(
bi,1 bi,2 . . . bi,α

)
· [3]α2

= Sici,3 + bi,α + bi,α−1

According to the above equations, we can extract the private
key Si easily by computing Si =

zi,3−zi,2−zi,1
ci,3−ci,2−ci,1

. To prevent
such a leakage, our new method requires each signer i to
broadcast those indices of successful signatures in advance to
the opening phase. If all signers succeed in the same index,
then each signer only opens the signature of this index to
others.

C. ORGANIZATION
This paper is organized as follows. In Section 2, we recall the
development history of multisignature schemes. In Section 3,
we introduce some mathematical notations and recall some
definitions. In Section 4, we introduce our multisignature
schemes. In Section 5, we review the general forking lemma
and give security theorems of our schemes. In Section 6,
we analyze how to select parameters in our multisignature
scheme PLMS and describe the experiments. In Section 7,
we draw a conclusion on our multisignature schemes.

II. RELATED WORK
Multisignature schemes with provable security generally fall
into one of two categories. In the first category are schemes
constructed using the hash-then-sign approach [18], and in
the second are FS-like schemes based on the Fiat-Shamir
technique [16]. Although various multisignature schemes
have been presented based on integer factoring [19], [20], dis-
crete logarithms (DL) [6]–[8], and lattice hard problems [14]
for decades, the research of multisignature is mainly focused
on FS-like schemes.
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Regarding the hash-then-sign setting, multisignatures
were usually constructed sequentially and based on the
RSA assumption. Itakura and Nakamura [1] proposed the
first ordered multisignature scheme whose efficiency was
improved by Okamoto [19] subsequently. In 1991, Ohta and
Okamoto [21] proposed another sequential multisignature
scheme and discussed its security. In 1997, Park et al. [20]
improved the schemes of [19] and [22] by getting rid of the
predefined signing order and providing better efficiency.

Related to the FS-like setting, resisting the rouge-key
attack [6] is the main concern of multisignatures. Almost all
the early proposed multisignature schemes (e.g. [23]–[25])
are vulnerable to the rouge-key attack. Until 1999, Ohta
and Okamoto [26] constructed the first provably secure
multisignature scheme in the random oracle model [27].
By 2001, Micali et al. [5] formalized and implemented
a variant of multisignature scheme called Accountable-
Subgroup Multisignatures (ASM), and provided the first
security model for multisignature schemes including key
generation without relying on trusted third parties. In 2006,
Bellare and Neven [6] formalized a generalized forking
lemma and proposed a three-round multisignature scheme
based on DL problem in the plain public-key model which
eliminated the key generation assumption presented in [5].
In 2008, Bagherzandi et al. [7] improved Bellare and
Neven’s scheme [6] by presenting a two-round multisig-
nature scheme which is provably secure under the DL
assumption in the key verification model. Through the
same technique, Bagherzandi and Jarecki [28] also proposed
two two-round multisignature schemes with security tightly
related to the computational Diffie-Hellman (CDH) and
decisional Diffie-Hellman (DDH) problems, respectively.
In 2010, Ma et al. [8] proposed a two-round multisignature
scheme based on the DL assumption in the plain public key
model which improved schemes of [6] and [7].

Recently, FS-like multisignature schemes have received
renewed interests since they can support public key aggre-
gation which is a crucial requirement for distributed trust
applications. In 2016, Syta et al. [29] proposed the CoSi mul-
tisignature scheme, a highly scalable multisignature scheme
based on DL. In 2018, Maxwell et al. [11] presented the first
multisignature scheme with key aggregation based on DL
assumption which is provably secure in the plain public key
model. Meanwhile, Boneh et al. [13] proposed pairing-based
multisignature schemes supporting both public key aggrega-
tion and batch verification. Unfortunately, Drijvers et al. [12]
pointed out subtle flaws in the security proofs of two-round
multisignature schemes [7], [8], [11] and proposed a new
variant of [7] that is provably secure and supports public key
aggregation.

All the above-mentioned multisignature scheme are based
on the RSA or DL related assumptions which are poten-
tially vulnerable to quantum attacks. Lattice-based cryp-
tographic schemes are amongst those resisting quantum
attacks. In 2013, following the hash-then-sign approach,
Kong et al. [30] presented two lattice-based multisignature

schemes: one was a trivial broadcasting multisignature
scheme whose length varied linearly with the number of the
signers, the other was a sequential multisignature scheme
whose length was constant and independent of the number
of the signers. In 2016, Choi and Kim [31] and Bansarkhani
and Sturm [14] presented FS-like lattice-based multisig-
nature schemes, respectively. However, all the proposed
lattice-based multisignature schemes suffer from either linear
signature size or high interactions.

III. PRELIMINARIES
In the following section, we will present some mathematical
notations and hard problems. We will also introduce the
syntax and the security definition of multisignature schemes.

A. NOTATIONS
Throughout the paper, we assume that n is a positive integer
which is a power of 2 and q is a prime convergent to 1 modulo
2n. Rq represents the ring Zq[x]/(xn + 1). The elements of
Rq can be represented as polynomials of degree n − 1 with
coefficients in the range [−(q−1)/2, (q−1)/2].Rq

d is a subset
of Rq with coefficients in the range [−d, d]. We denote ring
elements by boldface lower case letters e.g. p. We assume that
all vectors are column vectors, and vT denotes the transpose
of the vector v. The infinity norm of a vector v is denoted
by ‖v‖∞, and we usually avoid writing the subscript for the
2-norm. Let [j]α2 denote the binary representation of number
j with length α bits. If the length is shorter than α, then all of
its higher-order bits will be set 0. For example, assume that
j = 13, α = 7, then [13]72 = 0001101. For a set A, we write

a
$
←− A to show that a is chosen uniformly at random fromA.

Same to the paper [15], Dn32 denotes the set of polynomials
of degree at most n − 1 with 32 coefficients ±1 and zero
coefficients else. If b is a bit string, then b[i] denotes the i-th
bit of b. The logarithm is based on 2.
Our multisignature scheme is based on the Decisional

Compact Knapsack (DCK) problem and the ring short
integer solution (Ring-SIS) problem which are defined as
below.
Definition 1 (DCKq,n Problem [32]): To solve theDCKq,n

problem, one should distinguish between the uniform distri-
bution overRq

×Rq and the distribution (a, a ·s1+s2) where
a is uniformly random inRq and s1, s2 are uniformly random
in Rq

1.
Definition 2 (Ring− SISm,q,β Problem [33]): To solve

the Ring− SISm,q,β problem, one is given a = (a1, a2, . . . ,
am)T ∈ Rm

q a vector of m uniformly random polyno-
mials, find a non-zero vector of small polynomials x =
(x1, x2, . . . , xm)T ∈ Rm

q such that aT x =
∑m

i=1 ai · xi =
0 mod q and 0 < ‖x‖ < β.

B. MULTISIGNATURE AND ITS SECURITY MODEL
1) SYNTAX OF MULTISIGNATURE SCHEME
Let L = {1, 2, . . . , `} denote the signing group in which
there are ` signers. A multisignature scheme MS =
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(MKeyGen,MSign,MVerify) consists of three algorithms
described below.
•MKeyGen

(
1θ
)
: the signer’s public key and private key

generation algorithm. On input 1θ with the security param-
eter θ , the probabilistic algorithm outputs the public key
pki and private key ski for signer i. Each signer runs it
independently.
•MSign (pk,m): the multisignature generation algorithm.

On input the multiset of public keys pk = {pk1, pk2, . . . , pk`}
and a message m, the probabilistic algorithm outputs a joint
multisignature σ or a symbol ⊥ to indicate failure.
•MVerify (σ,m, pk): the multisignature verification algo-

rithm. On input a candidate signature σ , a message m and the
set of public keys pk , the deterministic algorithm outputs 1
if the multisignature σ is valid for m and pk , otherwise
outputs 0.

The correctness of a multisignature scheme requires that
if a group of signers interact with each other, share the same
message m and follow the protocol honestly then they gener-
ate a joint signature σ such that MVerify outputs 1 on input
σ , m, and pk .

2) SECURITY NOTION OF MULTISIGNATURE SCHEME
The security of a multisignature requires that it is infeasi-
ble to forge valid multisignatures with at least one honest
signer. Following the previous work [14], we assume that
there is only one honest signer in the whole signing process.
The adversary pretends all other signers by choosing their
public keys and private keys arbitrarily, and interacts with
the honest signer before outputting its forgery. Now we turn
to describe the security notion of multisignature schemes:
existential unforgeability under adaptively chosen mes-
sage attacks (EUF-CMA) [2]. A multisignature scheme is
said to be EUF-CMA secure if the probability that any
polynomial-time forger, after knowing some tuples of the
message and its signature, produces a valid signature on a new
message not signed before is negligible.
Definition 3 (EUF-CMA, [2]): A multisignature scheme

MS = (MKeyGen, MSign, MVerify) is existentially
unforgeable under adaptively chosen message attacks if for
each polynomial-time forgerF , the probability that after see-
ing the public key pk and

{
(m1, σ1) , (m2, σ2) , . . .

(
mq, σq

)}
for any q messages mi chosen by the forger F at wish, F can
produce a forged signature σ ∗ onmessagem∗ such that Verify
(σ ∗,m∗, pk) = 1 and m∗ /∈

{
m1,m2, . . .mq

}
, is negligible

over the security parameter.

IV. OUR SCHEMES
In this section, we give two lattice-based multisignature
schemes. At first, we present the basic scheme PLMS
which improves the BS scheme [14] by avoiding the
restart of the signing protocol with small parameters. Then,
we extend the PLMS scheme to obtain the ELMS scheme
to allow public key aggregation with almost the same
performance.

A. THE PLMS SCHEME
To prove the security of the PLMS scheme, we need two
cryptographic hash functions H1 : Rq

−→ Rq and
H2 : {0, 1}∗ −→ Dn32. A detailed description of our
practical lattice-based multisignature (PLMS) scheme is as
follows.
MKeyGen. All signers agree on choosing a random poly-

nomial a fromRq as a shared part for the signing group. Each
signer i selects two polynomials si, vi from Rq

1 and sets his
private key ski = (si, vi). Each signer i computes his public

key pki =
(
a 1
)
·

(
si
vi

)
= a · si + vi mod q and outputs(

pki, ski
)
.

MSign. Let L = {1, 2, · · · , `} be the set of ` signers
who participate in the multisignature generation. Let pk ={
pk1,pk2, . . . ,pk`

}
be the set of public keys correspond-

ing to signers in set L. Also let α > `

log
1(

1− 64
2θd+1

)2n .
The MSign protocol proceeds in 4 rounds, where in each
round each signer receives a message from every other
signer, performs some local computation and sends amessage
to every other signer. Specifically, each signer i on input(
pk,pki, ski,m

)
proceeds as follows.

Round 1:
• Local input: ski,pk =

{
pk1,pk2, . . . ,pk`

}
,m.

• Computation: Choose yi,j =
(
gi,j,hi,j

) $
←− Rq

d × Rq
d

and compute ri,j =
(
a 1
)
·

(
gi,j
hi,j

)
= a · gi,j + hi,j mod q

and query ti,j = H1
(
ri,j
)
for 1 6 j 6 α.

• Send to signer k (k 6= i): ti,1, ti,2, . . . , ti,α .
Round 2:
• Receive from signer k (k 6= i): tk,1, tk,2, . . . , tk,α .
• Send to signer k (k 6= i): ri,1, ri,2, . . . , ri,α .
Round 3:
• Receive from signer k (k 6= i): rk,1, rk,2, . . . , rk,α .
• Computation: Check that tk,j = H1

(
rk,j
)
for 1 6

k 6 `, k 6= i, 1 6 j 6 α. Abort the protocol
with local output ⊥ if this is not the case. For each
1 6 f 6 2α , θ denotes the occurrence number of 1
in [f ]α2 , compute rk,f =

(
rk,1 rk,2 . . . rk,α

)
· [f ]α2 for

1 6 k 6 ` and rf =
∑`

k=1 rk,f mod q and query
ci,f = H2

(
pki, rf ,pk,m

)
and then compute zi,f =(

wi,f , xi,f
)
= ski · ci,f +

(
yi,1 yi,2 . . . yi,α

)
· [f ]α2

1.
If zi,f ∈ Rq

θd−32 ×Rq
θd−32, put the index f into the set

Si =
{
f | zi,f ∈ Rq

θd−32 ×Rq
θd−32

}
.

• Send to signer k (k 6= i): Si.
Round 4:
• Receive from signer k (k 6= i): Sk .
• Computation: Compute the intersection of all sets
S1, S2, . . . , S`. If the intersection is empty, restart

1Please pay attention here.We do not reduct modulo q because all involved
polynomials in this step have small parameters.
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the signing protocol again. Let f̄ be the smallest
index in this intersection.

• Send to signer k (k 6= i): zi,f̄ , ci,f̄ .
At last, the designed combiner collects all zk,f̄ and

ck,f̄ for 1 6 k 6 `, computes zf̄ =
∑`

k=1 zk,f̄
and outputs the multisignature σ =

(
zf̄ , c1,f̄ , · · · , c`,f̄

)
.

This designed combiner can be one of the signers in the
set L.
MVerify.Given the public key set pk and a candidate mul-

tisignature σ =
(
z, c1,f̄ · · · c`,f̄

)
on the message m, the veri-

fier computes r =
(
a 1
)
·

(
w
x

)
−
∑`

i=1 pki · ci and accepts

the candidate multisignature if ci = H2
(
pki, r,pk,m

)
for

1 ≤ i ≤ ` and z ∈ Rq
`·(αd−32) × Rq

`·(αd−32), and rejects
otherwise.

Correctness. The intuition behind our PLMS scheme is as
follows. If each signer executes the protocol honestly, then
the multisignature σ =

(
z, c1,f̄ , · · · , c`,f̄

)
is derived from

z =
∑`

i=1 zi, ci = H2
(
pki, r,pk,m

)
for 1 ≤ i ≤ ` and

r =
∑`

i=1 ri mod q. Therefore,

r =
(
a 1

)
·

(
w
x

)
−

∑̀
i=1

pki · ci

=
(
a 1

)
·

∑`

i=1
si · ci +

(
gi,1 gi,2 . . . gi,α

)
·
[
f̄
]α
2∑`

i=1
vi · ci +

(
hi,1 hi,2 . . . hi,α

)
·
[
f̄
]α
2


−

∑̀
i=1

(
a 1
)
·

(
si
vi

)
· ci

=

∑̀
i=1

(
a 1
) (
yi,1 yi,2 . . . yi,α

)
·
[
f̄
]α
2

=

∑̀
i=1

(
ri,1 ri,2 . . . ri,α

)
·
[
f̄
]α
2

= rf̄

Hence,

ci = H2

(
pki,

(
a 1
)
·

(
w
x

)
−

∑̀
i=1

pki · ci,pk,m

)
which indicates that the verification equation holds.
It remains to prove the security of the scheme.

Communication Optimization: The communication
overhead of our PLMS scheme may be an efficiency bottle-
neck, although they are much less than those of the trivial
scheme mentioned in section I-B. However, the communica-
tion burden of our schememainly consists of the transmission
of all Si’s in the 3rd round. Here, we introduce an optimal
method to reduce necessary bits to present an element in Si.
During theMSign protocol, each signer i chooses a bit string
bfi of length 2α , whose bits are all initialized to be zero.
In the 3rd round, if zi,f ∈ Rq

θd−32 × Rq
θd−32, then the

signer i sets the f -th bit of bfi to be 1. At last she sends bfi

instead of Si to the other signers. After receiving all bit strings
bf1, bf2, . . . , bf`, the signer i computes br =

⊕`
i=1 bfi, where⊕

denotes the bitwise AND operation of two bit strings.
If each bit of br is 0, then the signer i restarts the signing
protocol. Otherwise, the signer i chooses the smallest index
f̄ such that br[f̄ ] = 1 and broadcasts zi,f̄ to other signers.
In this way, the communication complexity of the 3rd round
is reduced fromO(‖σ‖ 2α) toO(2α), which makes our PLMS
scheme more practical for small signer group (e.g. less than
20 signers).

B. EXTENSION TO SUPPORT PUBLIC KEY AGGREGATION
Our PLMS scheme can extend to support public key aggre-
gation through the technique of [11]. To prove the security
of the scheme supporting public key aggregation, we need
three cryptographic hash functions H0 : {0, 1}∗ −→ Dn32,
H1 : Rq

−→ Rq and H2 : {0, 1}∗ −→ Dn32. A detailed
description of our extended multisignature (ELMS) scheme
is as follows.

MKeyGen. All signers agree on choosing a random poly-
nomial a fromRq as a shared part for the signing group. Each
signer i selects two polynomials si, vi from Rq

1 and sets his
private key ski = (si, vi). Each signer i computes his public

key pki =
(
a 1
)
·

(
si
vi

)
= a · si + vi mod q and outputs(

pki, ski
)
.

MSign. Let L = {1, 2, · · · , `} be the set of `

signers who participate in the multisignature generation.
Let pk =

{
pk1,pk2, . . . ,pk`

}
be the set of public

keys corresponding to signers in set L. Also let α >

`

log
1(

1− 2048
2θd+1

)2n . The MSign protocol proceeds in 4

rounds, where in each round each signer receives a message
from every other signer, performs some local computation
and sends a message to every other signer. Specifically, each
signer i on input

(
pk,pki, ski,m

)
proceeds as follows.

Round 1:
• Local input: ski,pk =

{
pk1,pk2, . . . ,pk`

}
,m.

• Computation: Query ui = H0
(
pk,pki

)
for 1 6 i 6 `

and compute apk =
∑`

i=1 ui · pki mod q, choose yi,j =(
gi,j,hi,j

) $
←− Rq

d × Rq
d and compute ri,j =

(
a 1
)
·(

gi,j
hi,j

)
= a · gi,j + hi,j mod q and query ti,j = H1

(
ri,j
)

for 1 6 j 6 α.
• Send to signer k (k 6= i): ti,1, ti,2, . . . , ti,α .
Round 2:
• Receive from signer k (k 6= i): tk,1, tk,2, . . . , tk,α .
• Send to signer k (k 6= i): ri,1, ri,2, . . . , ri,α .
Round 3:
• Receive from signer k (k 6= i): rk,1, rk,2, . . . , rk,α .
• Computation: Check that tk,j = H1

(
rk,j
)
for 1 6

k 6 l, k 6= i, 1 6 j 6 α. Abort the protocol
with local output ⊥ if this is not the case. For each
1 6 f 6 2α , θ denotes the occurrence number of 1
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in [f ]α2 , compute rk,f =
(
rk,1 rk,2 . . . rk,α

)
· [f ]α2

for 1 6 k 6 ` and rf =
∑`

k=1 rk,f mod q and
query cf = H2

(
apk, rf ,m

)
and then compute zi,f =(

wi,f , xi,f
)
= cf · ui · ski +

(
yi,1 yi,2 . . . yi,α

)
· [f ]α2

2.
If zi,f ∈ Rq

θd−1024 ×Rq
θd−1024, put the index f into the

set Si =
{
f | zi,f ∈ Rq

θd−1024 ×Rq
θd−1024

}
.

• Send to signer k (k 6= i): Si.
Round 4:
• Receive from signer k (k 6= i): Sk .
• Computation: Compute the intersection of all sets
S1, S2, . . . , S`. If the intersection is empty, restart
the signing protocol again. Let f̄ be the smallest
index in this intersection.

• Send to signer k (k 6= i): zi,f̄ .
At last, the designed combiner collects all zk,f̄ for 1 6 k 6

`, computes zf̄ =
∑`

k=1 zk,f̄ and outputs the multisignature

σ =
(
zf̄ , cf̄

)
. This designed combiner can be one of the

signers in the set L.
MVerify.Given an aggregated public key apk and a candi-

date multisignature σ = (z, c) on the message m, the verifier

computes r =
(
a 1
)
·

(
w
x

)
−c ·apk and accepts the candidate

signature if c = H2 (apk, r,m) and z ∈ Rq
`·(αd−1024) ×

Rq
`·(αd−1024), and rejects otherwise.
Correctness. The intuition behind our ELMS scheme is as

follows. If each signer executes the protocol honestly, then
the multisignature σ = (z, c) is derived from z =

∑`
i=1 zi,

c = H2 (apk, r,m) and r =
∑`

i=1 ri mod q. Therefore,

r =
(
a 1

)
·

(
w
x

)
− c · apk

=
(
a 1

)
·

∑`

i=1
wi∑`

i=1
xi

− c
∑̀
i=1

ui · pki

=
(
a 1

)
·

∑`

i=1
cuisi +

(
gi,1 . . . gi,α

)
·
[
f̄
]α
2∑`

i=1
cuivi +

(
hi,1 . . . hi,α

)
·
[
f̄
]α
2


− c

∑̀
i=1

ui
(
a 1
)
·

(
si
vi

)

=

∑̀
i=1

(
a 1
) (
yi,1 . . . yi,α

)
·
[
f̄
]α
2

=

∑̀
i=1

(
ri,1 . . . ri,α

)
·
[
f̄
]α
2

= rf̄
Hence,

c = H2

(
apk,

(
a 1
)
·

(
w
x

)
− c · apk,m

)
which indicates that the verification equation holds.
It remains to prove the security of the scheme.

2Please pay attention here.We do not reduct modulo q because all involved
polynomials in this step have small parameters.

V. SECURITY
In order to prove the security of our constructions, we use
the general forking lemma which is introduced briefly by [6].
Herewe just give some simple explanations about the security
of our multisignature schemes. The detailed security proofs
of the PLMS scheme and the ELMS scheme are described in
the appendix A and B, respectively.

A. THE GENERAL FORKING LEMMA
Forking lemma plays an important role in proving the security
of FS-like digital signature schemes. Here, we first review the
general forking lemma introduced by Bellare and Neven [6]
to prove the security of our multisignature scheme.
Lemma 1 (General Forking Lemma [6]): Fix an integer

q > 1 and a set H of size h > 2. Let A be a randomized
algorithm that on input x, h1, . . . , hq returns a pair, the first
element of which is an integer in the range 0, . . . , q and
the second element of which we refer to as a side output. Let
IG be a randomized algorithm that we call the input generator.
The accepting probability of A, denoted acc, is defined as the
probability that J > 1 in the experiment

x
$
←− IG; h1, . . . , hq

$
←− H ;

(J , δ)
$
←− A(x, h1, . . . , hq)

The general forking algorithm GFA associated with A is the
randomized algorithm that takes input x proceeds as follows:

Algorithm GFA(x)
Pick coins ρ for A at random
h1, . . . , hq

$
←− H

(I , δ)←− A(x, h1, . . . , hq; ρ)
If I = 0 then return (0, ε, ε)
hI ′, . . . , hq′

$
←− H

(I ′, δ′)←− A(x, h1 . . . , hI−1, hI ′, . . . , hq′; ρ)
If (I = I ′ and hI 6= hI ′) then return (1, δ, δ′)
Else return (0, ε, ε).

Let

frk = Pr
[
b = 1 : x

$
←− IG; (b, δ, δ′)

$
←− GFA(x)

]
Then

frk > acc · (
acc
q
−

1
|H |

).

B. THE SECURITY OF OUR SCHEMES
To prove the security of our PLMS scheme, we first wrap the
forger F into an algorithm A which is used in the forking
lemma. The algorithm A runs F with simulating the random
oracles H1 and H2 and the signing oracle, and returns a
forgery with some other information about the forger exe-
cution. Then we construct an algorithm B that runs GFA to
obtain a solution to a Ring-SIS instance. The security of the
PLMS scheme is as follows.
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TABLE 2. PLMS scheme parameters.

Theorem 1: In the random oracle model, suppose there
exist a polynomial-time forger F , who makes at most qH
queries to random oracles (including H1,H2), initiates at
most qS signing protocols with the honest signer involving
at most `max public keys, and succeeds in providing a forgery
of our PLMS multisignature scheme with probability δ. Then
there exists the same time complexity algorithm B that for a

given A = (a, 1)
$
← Rq

× {1} finds non-zero vectors o1, o2
inRq such that a·o1+o2 = 0 and ‖oi‖∞ 6 2lmax ·(αd − 32)
with probability at least(

1
2
− 2−100

)(
δ −

qA
qn

)(
δ − qA/qn

qT
−

1∣∣DH2

∣∣
)

where qA = (qH + `max · qS · α)2 + (qH + lmax · qS)2 and
qT = qH + qS .

To prove the security of our ELMS scheme, we follow
the double forking proof technique of [13], and firstly use
the forking lemma to H2 (apk, r,m) to obtain an equation
about the aggregated public key apk. Next, we use the forking
lemma to H0

(
pk,pki

)
to solve a Ring-SIS instance. Con-

cretely, we first wrap the forger F into an algorithmA which
is used in the forking lemma. The algorithm A runs F with
simulating the random oraclesH0,H1, andH2 and the signing
oracle, and returns a forgery with some other information
about the forger execution unless a couple of bad events
happen. Then we construct an algorithm B that runs GFA
to obtain an equation about the aggregated public key apk.
Finally, we construct an algorithmD that runs GFB to obtain
a solution to a Ring-SIS instance. The security of the ELMS
scheme is as follows.
Theorem 2: In the random oracle model, suppose there

exist a polynomial-time forger F , who makes at most qH
queries to random oracles (including H0,H1,H2), initiates at
most qS signing protocols with the honest signer involving
at most `max public keys, and succeeds in providing a forgery
of our ELMSmultisignature scheme with probability δ. Then
there exists the same time complexity algorithm D that for

a given A = (a, 1)
$
← Rq

× {1} finds non-zero vectors
o1, o2 in Rq such that a · o1 + o2 = 0 and ‖oi‖∞ 6

256lmax · (αd − 1024) with probability at least

299 − 1
2100

(
q2B
qT
−

qB∣∣DH2

∣∣
)(

q2B/qT − qB/
∣∣DH2

∣∣
qT

−
1∣∣DH0

∣∣
)

where qT = qH + qS , qB = δ −
qA
qn and qA =

(qH + `max · qS · 2α)2 + (qH + `max · qS · α)2 + `max · qS ·
α + (qH + lmax · qS)2.

VI. PERFORMANCE ANALYSIS AND EXPERIMENTS
In the following section, we will explain how to select param-
eters appropriately for our multisignature schemes and give
some sets of suggested parameters. Thenwe describe the plat-
form information of our implementation between BS scheme
and PLMS scheme and provide some experimental data.

A. PARAMETERS CHOICES
In our PLMS scheme, security depends on three things: the
hardness of DCKq,n problems, the hardness of ring version
short integer solution (Ring-SIS) problem and the hardness
of finding pre-images in the random oracle H . The output
of random oracle H2 is in Dn32, which implies that find-
ing pre-images is 160 bits hard. As for the security of lat-
tice problems, we use the extensive experiments introduced
by [34], [35] to analyze the hardness of lattice reductions and
to obtain the root Hermite factor. In Table 2, we present four
sets of parameters.

Now we give a detailed explanation about parameter
choices. n is a positive integer that is a power of 2. The
modulus q is chosen to be a prime and convergent to 1
modulo 2n. The number of signers is denoted by ` which is a
small integer impacting the communication overheads of the
third-round interaction. It is reasonable to keep the parameter
` smaller than 20. The coefficient range parameter d for the
random polynomial yi,j is extremely important and controls
the trade-off among the security, the sizes of signatures and
the number of repetitions of signing protocol execution. If the
parameter d is too small, then the single signature zi,f lies
in Rq

θd−32 with an extremely small probability. On the other
hand, if d is too big, the sizes of public key and signature
will be too large. The parameter d in the BS scheme is the
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same as αd in the PLMS scheme, which means that the final
multisignatue z is in the same range. When it comes to the
range of rejection sampling, Rq

d−32 and Rq
θd−32 are suitable

for the BS scheme and PLMS scheme, respectively. Follow
the work [15], the exact probability that z1, z2 will be in

Rpn

d−32 is
(
1− 64

2d+1

)2n
. The basis number α requires to meet

the condition 2α ≥

[
1(

1− 64
2θd+1

)2n
]`

, so α can be represented

with α ≥ `

log
1(

1− 64
2θd+1

)2n . θ denotes the number of 1 in

[f ]α2 , so θ ∈ [1, α]. We choose θ = α
2 to show the average

case among the expected number of repetitions. Actually,
the probability that the signature zi will be Rq

α
2 d−32

in the
PLMS scheme is smaller than that of the BS scheme because
the probability formula

(
1− 64

2d+1

)2n
depicted in [15] is

an increasing function. The probability of not restarting the
MSign protocol can be denoted by

Prob [success] = 1−

[
1−

(
1−

64
2 · α2 · d + 1

)2n`
]2α

yielding E = 1/Prob [success] expected number of tri-
als. According to the recommended parameter setI listed
in Table 2, each execution of theMSign protocol will produce
a multisignature with probability 0.999.

Next, we explain how to calculate the private key, public
key, and signature sizes. We will take the concrete parameters
from setI listed in Table 2 as an example. The private key
ski consists of two polynomials si, vi chosen uniformly at
random from Rq

1, so it can be represented with 2n
⌈
log3

⌉
=

1623 bits. The public key pki is in Rq, so the size of pki
can be represented with n dlogqe = 13824 bits. The sig-
nature σ consists of polynomials z and c1 · · · cl . Since z is
in Rq

`·(αd−32) × Rq
`·(αd−32), so it can be represented with

2n
⌈
log2`·(αd−32)+1

⌉
= 19785 bits. And each ci for 1 ≤ i ≤ `

is 160 bits, the total signature size is 20585 bits.
Using the above quantities, we can calculate the root

Hermite factor which depends on the quality of the
lattice-reduction algorithm being used. According to the
experiments in [34], [35], a factor of currently best
lattice-reduction algorithms is around 1.01, andwe can obtain
the concrete root Hermite factor of our scheme with different
sets of parameters by using the equation δ =

(
β/
√
q
) 1
2n .

B. EXPERIMENT
We implement both BS scheme and PLMS scheme with five
clients using three different clouds in the setting of Ubuntu
16.04 64 Bit. Experiments are performed on the follow-
ing machines: Two clients in Huawei Cloud with Intel(R)
Xeon(R) Gold 6278C CPU at 2.60GHz and 4GB RAM,
two clients in Tianyi Cloud with Intel(R) Xeon(R) Gold
6161 CPU at 2.20GHz and 2GB RAM, and one client in
Alibaba Cloud with Intel(R) Xeon(R) CPU E5-2682 v4 at

2.50GHz and 2GB RAM. All software has complied with
gcc-5.4.0 and compiler flags -g++-g -O2 -std= c + +11
-march=native. We use NTL3 for the cryptographic primi-
tives and data structures, and socket for sending or receiving
data on a computer network. We report the average time
of 1000 signature generations for message sizes of 100 bytes
including broadcasting the data on the internet in Table 3.

TABLE 3. Time comparisons between BS scheme and PLMS scheme.

Remark 2:We make comparisons between the BS scheme
and our PLMS scheme with parameters which are listed
in Table 2 SetI, in terms of running time in MKeyGen algo-
rithm, MSign algorithm and MVerify algorithm.

As depicted in Table 3, the timings for MSign in BS
scheme are 40.547804s, which is over 3 times of those of our
PLMS scheme. On the other hand, the timings for MKeyGen
algorithm andMVerify algorithm between the BS scheme and
our PLMS scheme are close. Although the repetitions of BS
is over 12 times of PLMS, each execution of PLMS has to
compute more matrix multiplications. It is reasonable that the
overall running time of PLMS to produce a multisignature
is less than one third of that of BS. Therefore, our scheme
PLMS beats the scheme BS in terms of theoretical analysis
and experimental results.

VII. CONCLUSION
Multisignature is a special kind of digital signature scheme
which allows a group of signers to produce a compact sig-
nature cooperatively on a common message. In this paper,
we proposed a practical lattice-based multisignature scheme
and extend it to support public key aggregation with accept-
able performance. In the random oracle model, our schemes
have been proven to be secure under the hardness of the
ring version short integer solution problem. Our schemes
give a better tradeoff between parameters and communi-
cations, as we use slightly larger parameters than GLP
scheme and avoid the restart of signing protocol, and we
provide corresponding experimental data. It is convenient to
use our schemes for small signer group. How to construct
lattice-based multisignature schemes for large signer group
with almost the same performance as ours needs further
research.

APPENDIXES
APPENDIX A
THE PROOF OF THEOREM 1

Proof: Let x = (Rq,A, d), where A = (a, 1) and a
is a random polynomial chosen uniformly fromRq. Also, let
DH1 = Rq and DH2 = {l : l ∈ {−1, 0, 1}

κ , ‖l‖ 6 κ} denote

3https://www.shoup.net/ntl/
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the ranges of random oraclesH1 andH2. Given a forgerF that
can break the security of our multisignature scheme, consider
the following algorithm A.
On inputs x, random oracle responses λ1, . . . λα·qH which

corresponds to H2, and the random coin ρA, the algorithm
A selects two polynomials s∗ and v∗ from Rq

1 uniformly at
random. It sets sk∗ = (s∗, v∗) as the private key and computes
the public key pk∗ = A · sk∗. Then algorithm A runs the
forger F on input the parameter x and the target public key
pk∗ by simulating the random oracle queries and signing
queries as follows.
Hash Function Queries: To simulate random ora-

cle queries, the algorithm A initializes associated lists
L1 [·] ,L2 [·] to store answered values for random oracle
queries on H1, H2 respectively and the associated list L3 [·]
to store different public keys by using the unique indices
0 6 i 6 (qH + qS )`max . Let L3

[
pk∗

]
←−0, which means

the public key of the honest signer is identified by index 0.
The algorithmA also prepares one counter ctr (initially zero)
to record the number of queries of H2.
•When a query H1(ri,j) is asked, the algorithm A checks

the content of L1
[
ri,j
]
. If L1

[
ri,j
]
has not been defined before,

A selects a random polynomial from Rq uniformly and sets
it to L1

[
ri,j
]
. Finally, A returns L1

[
ri,j
]
to the forger F .

•When a queryH2
(
pki, rf ,pk,m

)
is asked, the algorithm

A checks the content of L2
[
pki, rf ,pk,m

]
. If it has not been

defined before,A increases ctr and sets L2
[
pki, rf ,pk,m

]
=

λctr . Then, A returns L2
[
pki, rf ,pk,m

]
to the forger F .

Signing Queries. During the simulation, when the forger
F requests a multisignature on the messagemwith public key
set pk, A answers as follows.

Let α > `

log
1(

1− 64
2θd+1

)2n . In the first round of

MSign, the algorithm A checks whether pk∗ ∈ pk at
first. If it is not the case, A outputs ⊥, else parses pk ={
pk∗ = pk1,pk2, . . . ,pk`

}
. Subsequently, the algorithm A

chooses z1,j
$
←− Rq

αd−32 × Rq
αd−32 and sets c1,j = λctr+j,

and computes r1,j = Az1,j − pk1 · c1,j, then queries t1,j =
H1
(
r1,j
)
and for 1 6 j 6 α. At last, the algorithm A sets

ctr = ctr + α and sends t1,1, t1,2, . . . , t1,α to other signers.
In the second round of MSign, after receiving tk,1,

tk,2, . . . , tk,α from the signer k for 2 6 k 6 `, the algorithm
A checks the content of L1

[
rk,j
]
for each tk,j. If any tk,j can

not be found in L1
[
rk,j
]
for 2 6 k 6 ` and 1 6 j 6 α,

A sets the flag alter to be true and sends another tuples of
r1,1, r1,2, . . . , r1,α which are chosen uniformly at random
from Rq to other signers. If the associated list L1 contains
more than one tk,j such that H1

(
rk,j
)
= H1

(
rk,j′

)
= tk,j

for rk,j 6= rk,j′, the event bad1 occured and A stops the
protocol by returning ⊥. Otherwise, A computes rk,f =(
rk,1 rk,2 . . . rk,α

)
· [f ]α2 for 1 6 k 6 ` and 1 6 f 6

2α , and rf =
∑`

k=1 rk,f mod q. Then, the algorithm A
computes c1,f =

(
c1,1 c1,2 . . . c1,α

)
· [f ]α2 mod q, puts

c1,f in L2
[
pk1, rf ,pk,m

]
, chooses random values from Rq

and puts them in L2
[
pkk , rf ,pk,m

]
for 1 6 f 6 2α

and 2 ≤ k ≤ `. Subsequently, the algorithm A computes
z1,f =

(
z1,1 z1,2 . . . z1,α

)
· [f ]α2 for 1 6 f 6 2α and puts

the appropriate tuple of subscript f into the set S1. Finally,A
broadcasts r1,1, r1,2, . . . , r1,α to other signers.

In the third round ofMSign, after receiving rk,1 rk,2 . . . rk,α
from the signer k for 2 6 k 6 `, A checks whether
tk,j = H1

(
rk,j
)
. If there is any rk,j such that H1

(
rk,j
)
6= tk,j,

A aborts the protocol by returning ⊥. If all rk,j are satisfied
H1
(
rk,j
)
= tk,j for 2 6 k 6 `, 1 6 j 6 2α and

alter = true, the event bad2 occurred and A aborts the
protocol by returning ⊥. Otherwise, the algorithm A sends
S1 to other signers.
In the fourth round of MSign, after receiving all sets

S2, S3, . . . , S` from all other signers, A computes the inter-
section of all sets S1, S2, . . . , S`. If the intersection is not
empty, A chooses the smallest index f̄ and broadcasts
z1,f̄ , c1,f̄ to other signers. Otherwise, it restarts the signing
protocol.

After receiving all z2,f̄ , c2,f̄ , . . . , z`,f̄ , c`,f̄ from other sign-
ers, A computes zf̄ =

∑`
k=1 zk,f̄mod q and returns the

multisignature σ =
(
zf̄ , c1,f̄ , · · · , c`,f̄

)
.

If F returns ⊥,A outputs ⊥ as well. Otherwise, the forger
F outputs a multisignature σ = (z, c1, · · · , c`) on message
m under the public key set pk. The algorithm A parses
pk as

{
pk1 = pk∗,pk2, . . . ,pk`

}
, computes r = Az −∑`

i=1 pki · ci and checks whether ‖z‖∞ 6 ` · (αd − 32)
and H2

(
pki, r,pk,m

)
= ci. Let j denote the index such that

H2
(
pk1, r,pk,m

)
= λj. If the forgery σ = (z, c1, · · · , c`)

is valid, the algorithm A returns (j, (z, c1, · · · , c`, r,pk)).
If not, A halts with outputs (0, ε).

Now we consider the accepting probability of A as
defined in the general forking lemma [6]. When these event
badi (1 6 i 6 2) do not occur, the simulation of A is indis-
tinguishable from the real environment, then

acc (A) > δ − (qH + `max · qS · α)2 /qn − `max · qS · α/qn

Nowwe construct an algorithm B on input x, runs the general
forking algorithm GFA to obtain the output(

j, (z, c1, · · · , c`, r,pk) ; j′,
(
z′, c′1, · · · , c

′

`, r
′pk′

))
In both executions of GFA, the forking point is located in the
H2
(
pk1, r,pk,m

)
. This means that up to this point, the envi-

ronments simulated by the algorithm A are identical in the
first and second execution. Therefore, all these arguments in
the query H2 are identical in both executions, which implies
that r = r′,pk = pk′ and m = m′. Let `∗ denote the times of
occurrences of pk1 in pk. According to the output of GFA,
we can obtainAz−

∑`
i=1 pki ·ci = Az′−

∑`
i=1 pki ·c

′
i, which

implies that

A
[
z− z′ +

∣∣`∗∣∣ · sk∗ (c1′ − c1
)]
= 0

Due to ‖z‖∞,
∥∥z′∥∥

∞
6 ` · (αd − 32) and

∥∥sk∗c1∥∥∞,∥∥sk∗c′1∥∥∞ 6 32, we have
∥∥z− z′ + |`∗| · sk∗

(
c′ − c

)∥∥
∞

6
2` · (αd − 32)+ 64 |`∗|.
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Now we proceed to show that

z− z′ +
∣∣`∗∣∣ · sk∗ (c1′ − c1

)
6= 0.

Following the idea introduced in [17], we use sk′ with slightly
larger coefficients (so that there exists another sk′′ such that
A · sk′ = A · sk′′). If

z− z′ +
∣∣`∗∣∣ · sk′ (c1′ − c1

)
= 0,

then there exists another sk′′ such that

z− z′ +
∣∣`∗∣∣ · sk′′ (c1′ − c1

)
6= 0.

Since we never use the private key to generate signatures
during the simulation, the forger does not know whether we
know a secret key like sk′ or like sk′′. So, we will get a
non-zero answer with probability at least 1

2 , since each key
has an equal probability of being chosen. Therefore, this
solves Ring-SIS2n,q,β for β 6 2` ·(αd − 32)+64 |`∗|, which
is assumed to be hard.

Finally, the accepting probability of the algorithm B is
blacksquare

acc (B) > acc (A) ·
(
acc (A)
qT

−
1∣∣DH2

∣∣
)

APPENDIX B
THE PROOF OF THEOREM 2

Proof: LetDH0 = {l : l ∈ {−1, 0, 1}
κ , ‖l‖ 6 κ},DH1 =

Rq, and DH2 = {l : l ∈ {−1, 0, 1}
κ , ‖l‖ 6 κ} denote the

ranges of random oracles H0, H1, and H2. Also let x =
(Rq,A, d), where A = (a, 1) and a is a random polynomial
chosen uniformly from Rq. Given a forger F that can break
the security of our multisignature scheme, consider the fol-
lowing algorithm A.

On inputs x, random oracle responses λ0,1, . . . λ0,qH and
λ2,1, . . . λ2,qH which correspond to H0 and H2 respectively,
and the random coin ρA, the algorithm A selects two poly-
nomials s∗ and v∗ from Rq

1 uniformly at random. It sets
sk∗ = (s∗, v∗) as the private key and computes the public key
pk∗ = A · sk∗. Then algorithm A runs the forger F on input
the parameter x and the target public key pk∗ by simulating
the random oracle queries and signing queries as follows.

Hash Function Queries. To simulate random ora-
cle queries, the algorithm A initializes associated lists
L0 [·] , L1 [·] ,L2 [·] to store answered values for random
oracle queries on H0, H1, H2 respectively, and the associated
list L3 [·] to store different public keys by using the unique
indices 0 6 i 6 (qH + qS )`max . Let L3

[
pk∗

]
←−0, which

means the public key of the honest signer is identified by
index 0. The algorithmA also prepares two counters ctr0 and
ctr1 (initially zero) to record the number of queries of H0 and
H2 respectively.
• When a query H0(pk,pki) is asked, the algorithm

A checks the content of L3
[
pki
]
at first. If it has not

been defined yet, A puts pki in to the list L3
[
pki
]
.

Then the algorithm A parses the set of public keys pk as{
pk1,pk2, · · · ,pk`

}
and checks whether each public key in

pk has been defined in the list L3. For each pkj ∈ pk (1 6
j 6 `), after ensuring that L3

[
pkj
]
is defined, the algorithmA

checks the content of L0
[
pk,pkj

]
. If it has not been defined

before, A assigns L0
(
pk,pkj

)
according to the following

three types:
(1) pkj = pk∗ and pk∗ ∈ pk.
(2) pkj 6= pk∗ and pk∗ ∈ pk.
(3) pk∗ /∈ pk.
The algorithmA increases ctr0 and assigns L0

[
pk,pkj

]
=

λ0,ctr0 in type (1). As for type (2) and (3), A assigns random
elements selected from Dn32 to L0

[
pk,pkj

]
. After assigning

L0
(
pk,pkj

)
for 1 6 j 6 `, A computes the aggregated

public key apk. If the forger F already made any random
oracle query H2 (apk, ·, ·) or signing query which contains
apk, then the event bad1 occurred and A aborts the protocol
by returning ⊥. Otherwise, if pki ∈ pk then the algorithm
A returns L0

[
pk,pki

]
to the forger F , else it returns a

random element selected from Dn32 and updates L0
[
pk,pki

]
accordingly.
•When a query H1(ri,j) is asked, the algorithm A checks

the content of L1
[
ri,j
]
. If L1

[
ri,j
]
has not been defined before,

A selects a random polynomial from Rq uniformly and sets
it to L1

[
ri,j
]
. Finally, A returns L1

[
ri,j
]
to the forger F .

• When a query H2
(
apk, rf ,m

)
is asked, the algorithm

A checks the content of L2
[
apk, rf ,m

]
. If it has not been

defined before, A increases ctr1 and sets L2
[
apk, rf ,m

]
=

λ2,ctr1 . Then, A returns L2
[
apk, rf ,m

]
to the forger F .

Signing Queries. During the simulation, when the forger
F requests a multisignature on the messagemwith public key
set pk, A answers as follows.
In the first round of MSign, the algorithm A checks

whether pk∗ ∈ pk at first. If it is not the case, A out-
puts ⊥, else parses pk =

{
pk∗ = pk1,pk2, . . . ,pk`

}
. Let

α > `

log
1(

1− 2048
2θd+1

)2n . Then the algorithm A computes

the aggregated public key apk =
∑`

i=1 ui · pki mod q
by querying H0

(
pk,pki

)
to obtain ui = L0

[
pk,pki

]
for

1 6 j 6 `. Subsequently, the algorithm A chooses z1,j
$
←−

Rq
αd−1024 × Rq

αd−1024 and cj = λ2,ctr1+j, and computes
r1,j = Az1,j − cj · u1 · pk1, then queries t1,j = H1

(
r1,j
)
and

for 1 6 j 6 α. At last, the algorithm A sets ctr1 = ctr1 + α
and sends t1,1, t1,2, . . . , t1,α to other signers.

In the second round of MSign, after receiving tk,1,
tk,2, . . . , tk,α from the signer k for 2 6 k 6 `, the algo-
rithm A checks the content of L1

[
rk,j
]
for each tk,j. If any

tk,j can not be found in L1
[
rk,j
]
for 2 6 k 6 ` and

1 6 j 6 α, A sets the flag alter to be true and sends
another tuples of r1,1, r1,2, . . . , r1,α which are chosen uni-
formly at random from Rq to other signers. If the associated
list L1 contains more than one tk,j such that H1

(
rk,j
)
=

H1
(
rk,j′

)
= tk,j for rk,j 6= rk,j′, the event bad2 occured and

A stops the protocol by returning ⊥. Otherwise,A computes
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rk,f =
(
rk,1 rk,2 . . . rk,α

)
· [f ]α2 for 1 6 k 6 ` and

1 6 f 6 2α , and rf =
∑`

k=1 rk,f mod q. Then, the algorithm
A computes cf = (c1 c2 . . . cα) · [f ]α2 mod q and puts cf in
L2
[
apk, rf ,m

]
for 1 6 f 6 2α . Subsequently, the algorithm

A computes z1,f =
(
z1,1 z1,2 . . . z1,α

)
· [f ]α2 for 1 6 f 6 2α

and puts the appropriate tuple of subscript f into the set S1.
Finally, A broadcasts r1,1, r1,2, . . . , r1,α to other signers.
In the third round of MSign, after receiving

rk,1 rk,2 . . . rk,α from the signer k for 2 6 k 6 `, A
checks whether tk,j = H1

(
rk,j
)
. If there is any rk,j such that

H1
(
rk,j
)
6= tk,j, A aborts the protocol by returning ⊥. If all

rk,j are satisfied H1
(
rk,j
)
= tk,j for 2 6 k 6 `, 1 6 j 6 2α

and alter = true, the event bad3 occurred and A aborts the
protocol by returning ⊥. Otherwise, the algorithm A sends
S1 to other signers.

In the fourth round of MSign, after receiving all sets
S2, S3, . . . , S` from all other signers, A computes the inter-
section of all sets S1, S2, . . . , S`. If the intersection is not
empty, A chooses the smallest index f̄ and broadcasts z1,f̄
to other signers. Otherwise, it restarts the signing protocol.

After receiving all z2,f̄ , z3,f̄ , . . . , z`,f̄ from other signers,
A computes zf̄ =

∑`
k=1 zk,f̄mod q and returns the multisig-

nature σ =
(
zf̄ , cf̄

)
.

If F returns ⊥,A outputs ⊥ as well. Otherwise, the forger
F outputs a multisignature σ = (z, c) on message m
under the public key set pk. The algorithm A parses pk
as
{
pk1 = pk∗,pk2, . . . ,pk`

}
, queries H0

(
pk,pki

)
= ui

and computes the aggregated public key apk =
∑`

i=1 ui ·
pki mod q. Then, A computes r = Az − c · apk and checks
whether ‖z‖∞ 6 ` · (αd − 1024) and H2 (apk, r,m) = c.
Let i denote the index such that H0

(
pk,pk∗

)
= λ0,i and

assume that the equation H2 (apk, r,m) = c occurred in the
j-th query. If the forgery σ = (z, c) is valid, the algorithm A
returns (j, (i, z, c, r, apk,pk,u1, . . .u`)). If not,A halts with
outputs (0, ε).

Now we consider the accepting probability of A as
defined in the general forking lemma [6]. When these event
badi (1 6 i 6 3) and AKColl4 do not occur, the simulation
of A is indistinguishable from the real environment, then

acc (A) = Pr [ the forgery is valid ]

−

3∑
i=1

Pr [badi]− Pr [AKColl]

Subsequently, we give explanations about the meanings of
above four events andmethods to calculate these probabilities
as follows:

bad1: F has known the aggregated public key apk before
the assignment L0

[
pk,pki

]
finished. Let `∗ denote the occur-

rences of pk∗ in pk. In the i-th set of L0 assignments,
the aggregated public key apk is computed by apk =
|`∗| λ0,i · pk∗ +

∑
pki∈pk,pki 6=pk

∗ ui · pki mod q, where λ0,i

4If the forger is able to find two different multisets of public keys pk and
pk′ which correspond the same aggregated public key apk, the eventAKColl
occured andA aborts the protocol by returning ⊥.

and ui are uniformly random in Dn32. Hence, apk is uni-
formly at random in a set of qn vectors. Since there are at
most (qH + `max · qS · 2α) defined entries in L2 and at most
(qH + `max · qS · 2α) sets of assignments, the event happens
with probability (qH + `max · qS · 2α)2 /qn.
bad2: there is at least one collision occurred in H1 such

that H1
(
rk,j
)
= H1

(
rk,j′

)
= tk,j. All responses of H1 are

chosen uniformly at random from Rq and there are at most
qH+`max ·qS ·α queries toH1, so the event bad2 happens with
probability

(qH+`max ·qS ·α
2

)
/qn 6 (qH + `max · qS · α)2 /qn.

bad3: F obtains at least one value of H1
(
ri,j
)
for 1 6 i 6

` and 1 6 j 6 α just by predicting rather than querying.
The output of H1

(
ri,j
)
is uniformly at random in a set of qn

vectors. Therefore, the event bad3 happens with probability
`max · qS · α/qn.
AKColl: in the i-th query, the forger F obtains a same

aggregated public key apk from two different public key
multisets pk and pk′ such that

∑`
i=1 ui ·pki =

∑`
i=1 ui

′
·pki

′.
Since each aggregated public key apk is uniform in a set
of qn ring elements and independent from other aggregated
public keys, the event happens with the probability at most
(qH + `max · qS)2 /qn.
Therefore, the accepting probability of the algorithm A is

acc (A) > δ −
(
qH + `max · qS · 2α

)2
/qn

− (qH + `max · qS · α)2 /qn

− `max · qS · α/qn

− (qH + `max · qS)2 /qn

Now we construct a polynomial algorithm B on input(
x, λ0,1, . . . , λ0,qH , ρB

)
, where λ0,1, . . . , λ0,qH corresponds

the random oracle responses ofH0 and ρB is the random coin
of the algorithm B, runs the general forking algorithm GFA
to obtain the output (

j, out; j′, out ′
)
,

such that j = j′,out = (i, z, c, r, apk,pk,u1, . . . ,u`),
and out ′ =

(
i′, z′, c′, r′, apk′,pk′,u′1, . . . ,u

′

`′

)
In both exe-

cutions of GFA, the forking point is located in the j-th
H2 (apk, r,m). This means that up to this point, the envi-
ronments simulated by the algorithm A are identical in the
first and second execution. Therefore, all these arguments in
the query H2 are identical in both executions, which implies
that apk = apk′, r = r′ and m = m′. The step of querying
H0
(
pk,pki

)
occurred before the forking point, so the public

key sets and the responses of H0
(
pk,pki

)
are identical in

both executions. Hence, i = i′, ` = `′, pk = pk′ and uj = u′j
for 1 6 j 6 `. According to the output ofGFA, we can obtain
Az− c · apk = Az′ − c′ · apk′, which implies that

A
(
z− z′

)
+
(
c′ − c

)
· apk = 0 (1)

Then the algorithm B outputs (i, ot) such that ot =(
z, z′, c, c′, apk,pk,u1, . . . ,u`

)
. The accepting probability
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of the algorithm B is

acc (B) > acc (A) ·
(
acc (A)
qT

−
1∣∣DH2

∣∣
)

Now we construct an algorithm D on input x, runs the
forking algorithm GFB to obtain the output(

i, ot; ĩ, õt
)

such that i = ĩ, ot =
(
z, z′, c, c′, apk,pk,u1, . . . ,u`

)
, and

õt =
(
z̃, z̃′, c̃, c̃′, ˜apk, p̃k, ũ1, . . . , ũ`

)
. In both executions

of GFB, the forking point is located in the i-th query of
H0
(
pk,pk∗

)
. This means that up to this point, the envi-

ronments simulated by the algorithm A are identical in
both executions. Therefore, all these arguments in the query
H0
(
pk,pk∗

)
are identical, which implies that pk = p̃k and

pk∗ = ˜pk∗. Furthermore, each H0(pk,pkj) (pkj 6= pk∗) is
assigned the same value in both executions, according the
description of the algorithm A. Hence, we have ui = ũi
for pki 6= pk∗ and ui 6= ũi for pki = pk∗. So apk 6=
˜apk. According to the output of the algorithm GFB, we can

obtain two equations about the aggregated public key apk =∑`
i=1 ui · pki mod q and ˜apk =

∑`
i=1 ũi · ˜pki mod q. Let `

∗

denote the times of occurrences of pk∗ in pk. Combining the
equation 1 , we obtain the following equations

A

[
z− z′ +

(
c′ − c

) ∑̀
i=1

ui · ski

]
= 0 (2)

A

[
z̃− z̃′ +

(
c̃′ − c̃

) ∑̀
i=1

ũi · ski

]
= 0 (3)

Through elimination, we obtian

A
[
ZC̃− Z̃C+

∣∣`∗∣∣ · sk∗CC̃U] = 0 (4)

such that Z = z − z′, C = c′ − c, Z̃ = z̃ − z̃′, C̃ =
c̃′ − c̃, and U = u1 − ũ1. Due to ‖z‖∞,

∥∥z′∥∥
∞
,
∥∥z̃∥∥
∞
,∥∥z̃′∥∥

∞
6 ` · (αd − 1024), we have

∥∥z− z′
∥∥
∞
,
∥∥z̃− z̃′

∥∥
∞

6
2` · (αd − 1024). Therefore, we obtain∥∥∥ZC̃− Z̃C+

∣∣`∗∣∣ · sk∗CC̃U∥∥∥
∞

6 256l · (αd − 1024)+
∣∣`∗∣∣ · 643

Now we proceed to show that

ZC̃− Z̃C+
∣∣`∗∣∣ · sk∗CC̃U 6= 0

Following the idea introduced in [17], we use sk′ with slightly
larger coefficients (so that there exists another sk′′ such that
A · sk′ = A · sk′′). If

ZC̃− Z̃C+
∣∣`∗∣∣ · sk∗CC̃U = 0

then there exists another sk′′ such that

ZC̃− Z̃C+
∣∣`∗∣∣ · sk∗CC̃U 6= 0

Since we never use the private key to generate signatures
during the simulation, the forger does not know whether we

know a secret key like sk′ or like sk′′. So, we will get a
non-zero answer with probability at least 1

2 , since each key
has an equal probability of being chosen. Therefore, this
solves Ring-SIS2n,q,β for β 6 256`·(αd − 1024)+|`∗|·643,
which is assumed to be hard.

Finally, the accepting probability of the algorithm D is

acc (D) > acc (B) ·
(
acc (B)
qT

−
1∣∣DH0

∣∣
)
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