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ABSTRACT In recent years, the popularity of depth sensors and 3D scanners has led to a rapid development
of 3D point clouds. Semantic segmentation of point cloud, as a key step in understanding 3D scenes,
has attracted extensive attention of researchers. Recent advances in this topic are dominantly led by
deep learning-based methods. In this paper, we provide a survey covering various aspects ranging from
indirect segmentation to direct segmentation. Firstly, we review methods of indirect segmentation based on
multi-views and voxel grids, as well as direct segmentation methods from different perspectives including
point ordering, multi-scale, feature fusion and fusion of graph convolutional neural network (GCNN). Then,
the common datasets for point cloud segmentation are exposed to help researchers choose which one is
the most suitable for their tasks. Following that, we devote a part of the paper to analyze the quantitative
results of these methods. Finally, the development trend of point cloud semantic segmentation technology is
prospected.

INDEX TERMS 3D point clouds, deep learning, feature fusion, graph convolutional neural network,
semantic segmentation.

I. INTRODUCTION
Semantic segmentation, as one of themost important research
technologies for computer vision, was first put forward in
the 1970s, and aims at classifying every pixel or point in
the scene into several regions with specific semantic cate-
gories [1]. Nowadays, semantic segmentation is the basis of
three-dimensional scene understanding and achieves several
gratifying performances in the fields of mapping geographic
information, navigation and positioning, computer vision,
pattern recognition [2], etc., which has important research
significance and broad application prospect.

Semantic segmentation based on two-dimensional images
has made great progress in recent years. However, due to
the limitations of two-dimensional data in occlusion and
other aspects, the performance on segmentation is unsatis-
factory. Therefore, researchers gradually turn their attention
to three-dimensional data, like 3D voxel grids or 3D point
clouds. Compared with traditional measurement technology,
non-contact technology that is widely used for collecting
point cloud data has the superiority of rapidity, penetration,
real-time, dynamic, high density and high efficiency. Besides,
three-dimensional data such as point clouds not only makes
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up for the issues of illumination and posture encountered
in two-dimensional images, but also provides rich spatial
information for complex scenes. Therefore, point cloud has
become the research emphasis of three-dimensional data,
and makes a lot of contributions to indoor navigation [3],
unmanned driving [4], analysis of urban morphology, protec-
tion of digital cultural heritage and other aspects, and also
changes people’s lifestyle dramatically.

In this paper, we provide a comprehensive deep learning-
based point cloud semantic segmentation methods. The goal
of our review is to summary various kinds of approaches
related to this topic, ranging from indirect ways to direct
ways. Apart from reviewing the existing point cloud semantic
segmentation based on deep learning, we introduce several
primary datasets for point cloud (S3DIS, ScanNet, Seman-
tic3D to name a few). Finally, we make an analysis of the
results of point cloud semantic segmentation and point out its
future development direction.

A. CHALLENGES OF POINT CLOUD SEMANTIC
SEGMENTATION
Point cloud composed of a series of points is a point
set with significant geometric data representation struc-
ture. Compared with two-dimensional data, there are many
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FIGURE 1. A brief chronology of point cloud semantic segmentation.

advantages with point cloud, but its characteristics of sparsity,
randomness and non-structure make the semantic segmenta-
tion based on point cloud full of challenges. Nevertheless,
many researchers are interested in the semantic segmentation
of point cloud, because of its effective application prospect.

With the emergence of new technologies such as deep
learning and convolutional neural networks in recent years,
point cloud semantic segmentation has enjoyed a continu-
ous development [5]–[8]. Although deep learning has been
widely used in the processing of two-dimensional images, it is
still difficult to perform convolution operations on irregular
and disordered 3D point clouds directly. In order to make
convolutional neural networks suitable for the point clouds,
researchers convert such data into a regular structure (i.e.,
multi-view, voxel grids, point cloud) and then input it into
the network for processing to achieve the segmentation.

This paper concentrates on concluding the existing
approaches based on indirect segmentation and direct seg-
mentation. Such classifications solve the problem that con-
volution operations are hardly applied to irregular 3D point
clouds directly. A more in-depth classification of our paper is
summarized in section II.

B. RELATED PREVIOUS WORKS
The development of 3D data capturing devices, for instance,
LiDAR and Microsoft Kinect, makes the acquisition of
point cloud data become ever more convenient. Tradition-
ally, point cloud segmentation algorithms mainly include:
methods based on attribute clustering [9], [10], methods
based on model fitting [11], [12], methods based on region
growth [13]–[15], methods based on graph-cut [16]–[18]
and methods based on edge [19]–[21]. However, those
approaches adopt handcrafted features from geometric con-
straints and several are limited by the assumed prior
knowledge. Also, parameter adjustment is difficult and the
segmentation results are uncontrollable.

Point cloud semantic segmentation has been put forward to
understand the 3D scenes sufficiently. Different from other
computer vision tasks, point cloud semantic segmentation
goes through a short history and can be traced back to
the pioneer works in [22]. Originally, researchers adopted
the methods based on machine learning, such as Maximum
Likelihood classifiers based on Gaussian Mixture Models,
Support Vector Machines [23], Conditional Random

Fields [24], Markov Random Fields [25], etc. to realize the
task.

Along with the popularity of deep learning, deep neural
networks have greatly promoted the progress of computer
vision technology. And more and more models using deep
neural networks (Convolutional neural networks [26]–[28],
Recurrent neural networks [29]–[31], Deep belief net-
works [32], [33], etc.) have been springing up to extract
distinguished features to realize the point cloud semantic
segmentation. However, due to the irregularity and non-
structure of point clouds, the application of deep network
of 3D data still faces enormous challenges. At first, to cir-
cumvent this barrier, researchers transform point cloud into
a regular structure (i.e., multi-views and voxel grids) suit-
able for convolutional neural networks to process. But these
methods [34], [35] can cause problems such as information
loss and computational complexity. Recently, PointNet [36],
which directly works on point cloud, not only accelerates the
speed of computation but improves the performance of the
segmentation. Nowadays, there are many methods based on
PointNet [37], [38] having been proposed. While, different
methods operating on raw point cloudmay use diverse knowl-
edge and models during training. Especially, some point
cloud semantic segmentation models further add the image
processing algorithm to increase the accuracy of semantic
segmentation. A brief chronology is shown in Figure 1.

Different from previous point cloud semantic segmen-
tation technologies, in this paper, we divide those deep
learning-based methods into two categories: indirect and
direct point cloud segmentation methods. Indirect methods
converting the point cloud into the regular structure are
based on multi-views and voxel grids, and direct methods
work directly on point cloud, which are composed of four
categories: point ordering based methods, multi-scale based
methods, feature fusion based methods and fusion of graph
convolutional neural network (GCNN) based methods. For a
review, Figure 2 is a summary of relevant methods that are
involved in this paper.

C. OUR CONTRIBUTIONS
Our contributions in this paper are concluded as follows:

1) A comprehensive review of point cloud semantic seg-
mentation models based on deep learning. We clas-
sify and summarize the existing semantic segmentation
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FIGURE 2. Visual representation of point cloud semantic segmentation method.

models according to different representations of 3D
point clouds. The purpose is tomake people have a deep
understanding of the semantic segmentation model of
point cloud based on deep learning.

2) Various datasets related to point cloud segmentation.
We describe in the collection and composition of sev-
eral common datasets used for point cloud, as well as
the number of training and testing sets in deep network
construction.

3) Analysis of the experimental results. According to
some evaluation indicators, we summarize the results
of point cloud semantic segmentation using different
models on different datasets.

4) Discussion regarding the disadvantages of existing
methods and future directions. We thoroughly analyze
several problems for model design, which need to
improve for future research.

The remainder of this paper is organized as following.
Section II introduces the semantic segmentation models of
point cloud based on deep learning. Section III describes
common datasets widely used for point cloud. Next, section
IV performs a quantitative evaluation on different indicators.
Section V presents a brief discussion of the described models
and predicts research directions in this field. Finally, section
VI concludes the paper.

II. POINT CLOUD SEMANTIC SEGMENTATION MODEL
BASED ON DEEP LEARNING
With the advent of deep learning techniques, point cloud
semantic segmentation achieves a tremendous improvement.
In recent years, a large number of models using thesemethods
have been proposed to process the point cloud. Compared
with traditional algorithms, models based on deep learning
techniques have superior performance and reach a higher
benchmark.

Based on the irregularity of point cloud, we classify point
cloud semantic segmentation models based on deep learning
into two categories: indirect ways and direct ways. In the rest
of this section, we will introduce the specific models in these
two categories comprehensively.

A. INDIRECT WAYS FOR POINT CLOUD SEMANTIC
SEGMENTATION
We will briefly analyze the deep learning methods based on
the transformation of point cloud for semantic segmentation
in this section. So far, there are two kinds of 3D representa-
tions (i.e., multi-views and voxel grids), which convert the
point cloud into a regular structure to realize the segmen-
tation. However, those models have several drawbacks that
need to be strengthened. Unfortunately, not many articles
have used these transformation approaches to realize the
segmentation and we will make a brief introduction.

1) MULTI-VIEW BASED METHODS [34], [45], [47]
Deep networks have been popular to process 2D data with a
regular structure. Owing to the irregularity of point cloud, 2D
networks cannot be directly extended to 3D applications on
point clouds. Hence, a simple way is tantamount to transform
3D data into 2D views and then apply existing knowledge to
extract features for point cloud processing.

a: MVCNN
Guided by 2D images, Su et al. [34] propose a multi-view
convolutional neural network (MVCNN) based on images
in 2015, which promote the development of 3D data process-
ing. On the one hand, it successfully applies CNN to unstruc-
tured data like point cloud. On the other hand, it effectively
completes the tasks such as classification and segmentation
of point cloud. The main idea of this method is to project 3D
point cloud into some 2D images from multiple perspectives,
and employ CNN to extract features for each view using the
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FIGURE 3. The framework of multi-view convolutional neural network
(MVCNN [34]) Figure extracted from [34].

methods of image processing, and then aggregate features
that extracted from different perspectives through the view
pooling layer. Finally, aggregated features are input into CNN
for processing, thus receiving the results of classification
and segmentation. From the description, MVCNN is suit-
able for the segmentation of individual objects, rather than
complex scenes, because it ignores the spatial relationship
between objects. Figure 3 is the illustration of this network
framework.

b: SnapNet
Projection, which means 3D point clouds are transformed
into several 2D images from multiple perspectives, results
in the problem of losing information, in order to address
that, SnapNet [46] selects some snapshots of the point cloud
to generate pairs of RGB and depth images. Then, using
fully convolutional networks labels each pair of 2D images
pixel by pixel. Finally, this model projects the marked points
into 3D space to achieve the task. Although it adds depth
information to assist the realization of semantic segmenta-
tion, there are also some problems that affect the accuracy of
segmentation.

c: SnapNet-R
SnapNet addresses the problem of information loss, but it
encounters problems in the process of image generation.
Therefore, SnapNet-R [47] is put forward on the basis of
SnapNet. It directly processes multiple views to obtain dense
3D point markers to further enhance the result of segmenta-
tion. The process of generating a marked point cloud can be
divided into the following two steps: 2D labeling of RGB-D
images obtained from stereo images and 3D labeling using
SnapNet. The model has an algorithm that makes it easy to
realize, however, its segmentation accuracy on object bound-
aries is still required to be strengthened.

From those, we can make a conclusion that compared
with the traditional methods based on artificial features,
the method of point cloud segmentation based on multiple
views has achieved excellent results, but the projection of 3D
point clouds will lead to the loss of a large number of impor-
tant geometric spatial information, which finally affects the
accuracy of point cloud segmentation, and it is also seriously
influenced by the angle of projection.

2) VOLUMETRIC METHODS [35], [56], [57]
Voxelization of point cloud [48], [49] refers to transforming
unstructured point clouds and making it into the regular vol-
umetric occupancy grid, then learning its features by using
neural networks to achieve the semantic segmentation of
point cloud.

a: VoxNet
VoxNet [35] that using volumetric methods is to convert
unstructured geometric data to a regular 3D grid over which
standard CNN operations can be applied, and then use a 3D
CNN to predict a class label directly from the occupancy
grid. The method solves the problem of point clouds’ non-
structure, but it also has shortcomings like low efficiency of
voxel grid arrangement caused by the sparsity of point clouds,
large memory occupied during the computing process, long
time for training and the problem of information loss, etc.
With respect to the aforementioned problems, researchers
have made many improvements to address them.

b: SEGCloud
Considering the sparsity of point cloud, B. Graham designs
a sparse convolution network [50] and applies it to the 3D
segmentation task [51]. Li et al. attempt to sample sparse 3D
data and then input it into network to process, which reduces
the computational cost [52]. In order to overcome the problem
of spatial resolution of voxel grids, literature [53]–[55] intro-
duce the methods of spatial partition, such as K-d tree [54]
or octree [55]. However, the drawback of such methods is
that it only depends on the voxel boundary and does not
pay attention to the geometric structure of the local region.
SEGCloud [56] subdivides the large point cloud into voxel
grids by using a 3D fully convolutional neural network
(3D-FCNN), and then exploits a trilinear interpolation layer
to interpolate class score to 3D points. Finally, conditional
random field (CRF) is used to combine original 3D point
features with interpolation scores for post-processing to get
fine-grained class distributions. This model effectively com-
bines machine learning with deep learning to achieve specific
tasks, and performs well in the field of semantic segmenta-
tion. Figure 4 shows the overall framework of this semantic
segmentation network.

c: PointGrid
PointGrid [57] is a 3D convolutional network integrated by
points and grids. In the mixed model, it employs 3D CNN
to learn the grid cells with fixed points to obtain the details
of local geometry. The model uses the same transformation
method as VoxNet, but it can better express the change of
scale, avoid information loss, and occupy a small memory.
In addition, Hua et al. [58] also propose a three-dimensional
convolution operator based on the unified grid kernel for point
cloud semantic segmentation and target recognition. Com-
pared to the state-of-the-art methods, PointGrid is simpler and
faster in training and testing.
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FIGURE 4. The overall architecture of SEGCloud [56] for semantic
segmentation Figure extracted from [56].

The above-mentioned methods have solved the problem of
non-structured point cloud and improved the disadvantages
of voxel grids in various degrees, nevertheless, there are no
specific approaches to deal with the quantitative artifacts that
caused in the conversion process, and the calculation cost
increased after transformation.

Indirect ways, which transform point cloud into regular
views and voxel grids to reach the task of semantic segmen-
tation, have solved the problem that CNN cannot be applied
to point cloud and achieved excellent segmentation result.
Unfortunately, it also has problems such as loss of informa-
tion, complex computation and large memory occupation to
be improved.

B. DIRECTLY WAYS FOR POINT CLOUD SEMANTIC
SEGMENTATION
A number of shortcomings of the point cloud semantic seg-
mentation model based on the indirect approach (that is,
the transformation of the point cloud) are listed in the previ-
ous section. Therefore, themodel based on raw point clouds is
gradually proposed to make full use of the characteristics of
point cloud data and reduces the computational complexity
of the network. PointNet [36], proposed by Qi et al. is a
pioneering network architecture that directly applies deep
learning on the unstructured point cloud to deal with the
classification and segmentation of point cloud, and its model
is shown in Figure 5. This framework mainly addresses the
problem of sparsity, permutation invariance and transfor-
mation invariance of point clouds. Considering the sparsity
of point clouds, researchers who design the PointNet do
not convert point clouds into multi-view or voxel grids, but
process the points directly. For the permutation invariance,
multi-layer perceptron (MLP) is employed to extract features
for each point independently, and then the information of
all points is aggregated to obtain global features by using
the maximum pooling layer. Besides, in order to solve the
problem of transformation invariance, this framework also
adds the transformation network [59], which constructs the
transformation matrix to spatially align the input point clouds
and features. Although PointNet has a beneficial effect on
point cloud classification and segmentation, it fails to take the
relationship between points and local neighborhood informa-
tion into account. Therefore, when dealing with point clouds
in large scenes, it leads to the loss of critical information and
reaches a bad segmentation result.

FIGURE 5. The framework of PointNet [36] for point cloud classification
and segmentation Figure extracted from [36].

Aiming at improving the results of point cloud semantic
segmentation, researchers begin to take actions to improve the
algorithm on the basis of PointNet. The following section pri-
marily summarizes the semantic segmentationmethods based
on raw point cloud in recent years from these four categories:
methods of point ordering [38], [60], [61] methods of multi-
scale [37], [62], [63]methods of feature fusion [43], [43], [67]
and methods of fusing GCNN [45], [69], [70], [72].

1) METHODS OF POINT ORDERING [38], [60], [61]
The difficulty of point cloud semantic segmentation based on
neural networks primarily lies in the irregularity and disorder
of point cloud. Nowadays, there are a lot of network models
designed to deal with such problems and those are paying off
in point cloud semantic segmentation.

a: PointCNN
With respect to the disorder of point clouds, Li et al. [38]
propose PointCNN, which performs quite well both in some
complex datasets and challenging tasks. The key to the
PointCNN model is the X-Conv operator. X transform is a
group of weight X learned from the input points, and it can
be used to re-weight and arrange the associated features of
each point. SinceX transform is learned from the input points,
its weight may change with the order of the input points.
Because the proposed model avoids the change of features
with the order of input points, it almost remains unchangeable
to the X-transformed features. The advantage of PointCNN
is that convolution applying on the X-transformed features
can greatly improve the utilization of convolution kernels
and enhance the ability of convolution operations for extract-
ing features on unordered data. The deficiency is that the
X-transformation learnt from this network is not perfect and
influences the point cloud segmentation. As is shown in Fig-
ure 6, (a) illustrates the application of hierarchical convolu-
tion on a regular grid and a point cloud; (b) is the structure
of PointCNN for segmentation which is constructed by using
the X-Conv operator.

b: RSNet
Huang et al. [60] propose a novel framework for 3D seg-
mentation (RSNet), and Figure 6 is the overall structure of
the network model. As is shown in the figure, it mainly
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FIGURE 6. (a) Hierarchical convolution and (b) the framework of
PointCNN [38] for semantic segmentation Figure extracted from [38].

consists of the slice pooling layer, the RNN layer and the slice
de-pooling layer. The slice pooling layer is used to project
irregular point features into feature vectors with regular order
that apply to RNN. The RNN can be implemented to simulate
the relevance between feature vectors. In addition, the slice
de-pooling layer assigns features that in the sequence to the
points to achieve the task of point cloud segmentation. The
characteristic of this model is to extract the feature vectors
of XYZ respectively, and output ordered feature sequence
for post-processing. According to the description, this model
relieves the influence of point cloud irregularity and achieves
a better performance in point cloud semantic segmentation.

c: SO-Net
SO-Net [61] is a model possessing the characteristic of per-
mutation invariance, which is used to simulate the spatial
distribution of point clouds by constructing self-organizing
mapping to fix the position of points and realize the efficient
segmentation of point cloud. Moreover, to improve the net-
work performance in various tasks, it proposes a point cloud
auto-encoder as pre-training. However, because of the huge
amount of point cloud data included in the large scene and
the great complexity of the scene, there are a lot of limitations
when the network is used to process point clouds. Figure 8 is
a network structure of point cloud classification and segmen-
tation formed by a self-organizing mapping (SOM).

Models that proposed based on point ordering, compare
with the previous methods, can solve the disorder of point
cloud and accelerate the speed of processing, and make larger
contributions to the point cloud semantic segmentation. How-
ever, those methods may run into problems in other aspects,
for example, the encoder is not powerful enough to capture
fine-grained structures.

2) METHODS BASED ON MULTI-SCALE [37], [62], [63]
With the development of deep learning, researchers often
use convolutional neural networks to extract the features of
objects. Meanwhile, the receptive field becomes more and
more crucial for the task of segmentation. If the receptive field
is too small, only local features can be obtained. Otherwise,
if the receptive field is too large, it contains much invalid
information affecting the result. Therefore, researchers have

FIGURE 7. The overall framework of RSNet [60] for point cloud semantic
segmentation Figure extracted from [60].

FIGURE 8. The point cloud semantic segmentation network of
SO-Net [61] formed by SOM Figure extracted from [61].

been designing various multi-scale model architectures to get
features to solve the problem.

a: PointNet++
Qi et al. [37], for the sake of improving the results of point
cloud segmentation, introduce an upgraded version, which
is called PointNet++. PointNet++ is made up of sampling
layer, grouping layer and PointNet layer. The model firstly
selects several points from input points as the centroid of the
local areas by using FPS, then adds a local region grouping
module based on the original network to construct local
regions. Finally, PointNet is recursively used to extract local
features. The framework of this network is shown in Figure 9.
Although the model effectively solves the problem of extract-
ing local features and enhances the results of segmentation,
it still independently processes the points in the point set
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FIGURE 9. The architecture of PointNet++ [37] for point cloud
classification and segmentation Figure extracted from [37].

and does not take into consideration the relationship between
points, such as distance and direction.

b: 3DMAX-Net
3DMAX-Net [62] adopts the idea of multi-scale. Its structure
is very simple and consists of two core parts (MS-FLB and
LGAB). In this model, it firstly fuses the features learned at
multiple scales, and then aggregates the local features and
global features that merge to improve the accuracy of seg-
mentation. MLP ultimately computes the score of each point
to realize the task. Figure 10 is the network of 3DMAX-Net
for semantic segmentation, in whichMS-FLB is a multi-scale
feature learning block, and LGAB is a block that aggregates
the local features and the global features. The model can
aggregate features learnt for different scales and reach a better
performance.

c: 3P-RNN
Most methods are used to fuse the feature maps from the front
and back layers, and it fails to fully obtain the spatial infor-
mation, thus the result is not particularly well. To improve the
performance of point cloud semantic segmentation compre-
hensively, Ye et al. [63] propose a pointwise pyramid pooling
module, which can be utilized to aggregate the features of
local neighborhoods at different scales. Meanwhile, the hier-
archical two-direction recurrent neural networks (RNNs) are
used to learn spatial context information to achieve the fusion
of semantic features with multiple levels. Figure 11 shows the
structure of this network. Besides, different from others, this
method takes into account the spatial information and shows
high accuracy in segmentation both on challenging indoor
and outdoor 3D datasets.

Methods based on multi-scale are motivated by the knowl-
edge of two-dimensional image processing, they can adjust
the receptive field to extract the feature according to the scale
of objects. Thus, no matter the size of the target object, it can
be accurately segmented and capture fine features. Mean-
while, there are still some drawbacks that need researchers
to be improved.

3) METHODS OF FEATURE FUSION [43], [43], [67]
Feature fusion [64]–[66], an important technology for seman-
tic segmentation, combines the global features with local

FIGURE 10. The network of 3D-MAXNet [62] for point cloud semantic
segmentation (MS-FLB: Multi-scale feature learning block, LGAB: Local
and global feature aggregation block) Figure extracted from [62].

FIGURE 11. The framework of 3P-RNN [63] for point cloud semantic
segmentation Figure extracted from [63].

features acquired from the network to improve the perfor-
mance of point cloud semantic segmentation. The model
of PointNet, however, only extracts the global features of
point cloud to achieve the semantic segmentation, without
considering the characteristics of its local regions. In view of
this deficiency, researchers have made many improvements.

a: PointNet
From the above analysis, we know that both PointNet and
PointNet++ directly use the raw point clouds to extract
feature, in order to achieve the understanding of 3D scenes.
However, the description of shape features in point clouds
also plays a crucial role in improving the results of point cloud
segmentation. Inspired by the Scale-invariant Feature Trans-
form (SIFT) used in 2D images, Jiang et al. [43] design the
PointSIFTmodule, which can be embedded in the underlying
network. This module encodes the information of eight main
directions into a direction coding unit, and then stacks several
direction coding units to get different features. In Figure 12,
(a) is the structure of the PointSIFT module, and (b) is the
overall network structure by embedding the PointSIFT mod-
ule into the network to reach the semantic segmentation of
point cloud. The model effectively introduces the knowledge
of 2D image processing into 3D point cloud and obtains the
local feature of the scene to reach the segmentation task.

b: A-CNN
A-CNN [43] which applies to the newly designed annular
convolution in a hierarchical neural network is to achieve the
semantic segmentation of large scenes. The function of that
annular convolution is to extract the geometric features of the
local neighborhood around each point. In addition, inspired
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FIGURE 12. The mode of PointSIFT [43] ((a) the architecture of PointSIFT
model and (b) the whole architecture of PointSIFT for point cloud
segmentation) Figure extracted from [43].

by dilated convolution, the annular convolution proposed in
the model also adopts the form of dilated rings to better
capture the details of the object. And in the following step
of processing the point cloud, the method of feature fusion is
used to combine the global features with the local features to
improve the result of segmentation.

c: SpiderCNN
Many methods based on feature fusion have also been pro-
posed to process large-scale point cloud scenes, such as Spi-
derCNN [67], in addition to the models described above. This
model consists of a unit called SpiderConv, which extends
convolution operations on regular grids to embeddable irreg-
ular sets of points by parameterizing a series of convolution
filters. Furthermore, it can effectively extract geometric fea-
tures from point clouds in the scene.

According to the models that proposed by using feature
fusion, we make a conclusion that the method of deep learn-
ing can get local and global features of different scenes,
then fuse them to improve the result of segmentation. This
method solves the problems caused by indirect methods and
has significant advantages over the traditional method based
on artificial features.

4) METHODS OF FUSING GCNN [45], [69], [70], [72]
Graph is a type of structured data composed of a series of
nodes and edges. Nowadays, graph convolutional neural net-
work [68] (GCNN) is commonly used in the field of computer
vision, which operates directly on the graph structure and

can capture the dependencies of graph by transferring the
information between the nodes.

a: DGCNN
Wang et al. [69] first applied GCNN to the process of point
cloud and combined it with PointNet to realize the semantic
segmentation of point cloud. DGCNN is inspired by graph
CNN, however, the most significant difference is that the
graph constructed is dynamic and updates after each layer of
the network. In [69], an edge convolution operation is mainly
designed to extract the feature of center points. Meanwhile,
it can obtain the edge vector of the center points and the K
nearest neighbor (KNN) points. Not only that, the architec-
ture of this network is almost similar to PointNet, DGCNN
only replaces the multi-layer perceptions that stacked with
edge convolution. This algorithm searches the neighborhoods
in Euclidean space, as well as clusters analogous features in
the feature space, so it has a significant effect in the task of
point cloud classification and segmentation.

b: LDGCNN
In the model DGCNN, introducing a space-transformed net-
work increases the complexity of the network, and the param-
eters for training in the network also increase accordingly.
On the basis of DGCNN, Zhang et al. [70] adopted the
network structure of DenseNet [71] to modify the original
model and proposed LDGCNN to deal with the aforemen-
tioned problems. The basic idea of this model is to connect
the hierarchical features extracted from different dynamic
graphs, and replace the transformation network with MLP.
This method effectively avoids the problem of gradient dis-
appearance, reduces the size of the network, and achieves a
superior semantic segmentation result on the representative
dataset of the point cloud. Figure 13 shows the network
structure of LDGCNN for point cloud classification and seg-
mentation.

c: RGCNN
Another way to achieve the point cloud segmentation by
using GCNN is RGCNN [72]. This network is composed
of three regular graph convolutional layers, each of which
contains graph construction, graph convolution and feature
filtering. The purpose of adaptively capturing the dynamic
graph structure is achieved by designing the graph Laplacian
matrix describing the inter-layer feature relationships. At the
same time, the matrix will be updated continuously according
to the relevant features that learned. The model fusing GCNN
not only addresses the problem of permutation invariance
of point clouds, but also has strong robustness to noise and
density in point clouds.

d: GAPNet
The problem that how to properly use visual information to
process resources, and obtain more suitable results for human
perception has become an active research topic. To overcome
that, researchers proposed an attention mechanism which has
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FIGURE 13. The network structure diagram of LDGCNN [70] for point
cloud semantic segmentation Figure extracted from [70].

two essential aspects: selecting a specific part of the visual
area as input; focusing on and allocating limited resources
for processing the information to critical areas. Nowadays,
this technology is gradually mature and it is combined with
GCNN for the segmentation of point cloud. GAPNet [45]
is a new neural network of point cloud, which embeds a
graphical attention mechanism into multi-layer perceptions
that stacked to learn the local geometric information. The
structure of this network is shown in Figure 14 and it is similar
to PointNet. The crucial distinction is that the GAPLayer is
introduced to learn the attention characteristics of each point
by highlighting the different attention weight in the neighbor-
hood. Moreover, in order to provide sufficient features for the
model, the multi-head mechanism is added to aggregate the
features acquired from different GAPLayers. In the picture,
the numbers belowGAPLayers represent the number of heads
and coding feature channels respectively. Finally, to achieve
the effective segmentation of point cloud, GAPNet applies
the stacked MLP layer in the attention feature and the local
signature to fully extract the information of local geometry.
The model firstly adds the attention mechanism in the human
visual system to the point cloud segmentation and segments
the scene well.

GCNN is now widely used in the point cloud to accom-
plish the semantic segmentation, and achieves several won-
derful segmentation results. Methods based on GCNN, com-
pared with other methods, not only examine the relationship
between points, but also get the boundary feature. Therefore,
it has numerous advantages in point cloud segmentation, but
there aremany aspects of other tasks that need to be improved.

So far, researchers have proposed many kinds of models
based on raw point cloud for understanding 3D scenes, espe-
cially the emergence of deep learning. Although this segmen-
tation method processing the point cloud directly has reached
a better result for the segmentation of point clouds, it needs
a large amount of data for training and the requirement for
GPU’s computing ability is higher.

III. RELATED DATASETS OF POINT CLOUD SEMANTIC
SEGMENTATION
To verify the effect of the algorithms that are proposed on
the semantic segmentation of point cloud, a valid dataset is

FIGURE 14. The network framework of GAPNet [45] for point cloud
semantic segmentation Figure extracted from [45].

especially critical. Owing to the rise of deep learning,
we often construct a deep neural network and train the net-
work to accomplish some tasks. Then, if the network model
is deeper and more complex, huge training data is required to
make the model effective, so the dataset plays an indispens-
able role during the model training. The dataset should not
only be effective, but also contains rich and varied data. Only
in that way, the model can be well trained, thus guaranteeing
the results for subsequent processing. However, creating a
large and efficient dataset demands a lot of manpower, mate-
rial and financial resources. Some research institutions have
provided several reliable open datasets, such as: ShapeNet,
S3DIS, ScanNet, etc., to promote the study of point cloud
semantic segmentation. In the next section, we will briefly
describe the datasets which are commonly used for the seg-
mentation of point cloud.
• PartNet [73]: PartNet is a large 3D dataset annotated with

fine-grained, instance-level and part of 3D hierarchical infor-
mation. It contains 573,585 partial instances of 24 different
object categories and approximately 26,671 3D models. This
dataset can be applied to many tasks such as shape synthesis,
dynamic modeling of the 3D scene and feasibility analysis.
• UWA Dataset [74]: The dataset which possesses 50 dif-

ferent scenes scanned by Minolta scanner is mainly used
in the target recognition and segmentation of chaotic scene
based on a 3D model, and each scene contains 4 to 5 objects
that randomly placed. In addition, it can be obtained from
Point Cloud Library (PCL) or 3D key point detection bench-
marks.
• ShapeNet Part [75]: It is a large scale of 3D shape

dataset with rich annotations and often used for 3D object
part segmentation. This dataset contains 16881 shapes from
16 categories, with a total of 50 parts that labeled, where each
object typically has 2 to 5 markers.
• S3DIS [76]: The Stanford Large-scale 3D Indoor Spaces

Dataset (S3DIS) that obtained by the Matterport scanner is
a widely used dataset, which contains 272 3D room scenes
in 6 regions for semantic segmentation, where each point in
the scene is represented by a semantic label in one of the
13 categories (chair, table, wall, etc.). As shown in Figure 15,
there are some scenes in this dataset and different color
annotations in those pictures indicate different categories.
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FIGURE 15. Point cloud scene and semantic segmentation diagram in
S3DIS [76] dataset Figure extracted from [76].

FIGURE 16. Annotated indoor scene map in ScanNet [77] dataset Figure
extracted from [77].

FIGURE 17. Pictures related to Semantic3D [78] dataset ((a) Point cloud
scene, (b) intensity diagram and (c) semantic segmentation diagram)
Figure extracted from [78].

• ScanNet [77]: ScanNet that is a RGB-D video dataset
possesses 2.5 million views scanned from 1,513 3D indoor
scenes with a total of 21 semantic categories. Further-
more, the dataset contains the information of XYZ and
label, but lacks the information of color. It is common to
divide this dataset into two categories: 1201 scenes are
used for training and 312 scenes are used for testing. Fig-
ure 16 is the result of several indoor scenes marked in this
dataset.
• Semantic3D [78]: This is currently the largest available

Lidar dataset that consists of eight semantic categories covers
a wide range of urban outdoor scenes: churches, streets,
railway, squares, villages, football fields and castles with
more than 3 billion points. Each point in the scene has RGB
and the value of intensity. Then, fifteen scenarios in this
dataset are used for training, the remaining fifteen scenarios
are for testing. In Figure 17, we respectively show a point
cloud scene, its intensity diagram and the result of semantic
segmentation in Semantic3D.
• vKITTI [79]: The vKITTI dataset is a large outdoor

dataset that is simulated from the KITTI dataset having real-
world scenes, which contains 13 semantic categories in the
urban scene. Through projection, researchers can map the
two-dimensional semantic label into the three-dimensional
space to get the annotated point cloud, and the seman-
tic segmentation results of outdoor scenes are presented
in Figure 18.

FIGURE 18. Semantic segmentation results of outdoor scenes in
vKITTI [79] dataset Figure extracted from [79].

TABLE 1. Common datasets of point cloud segmentation.

• KITTI Raw [80]: This dataset collected by Velo-
dyne Lidar is a sparse and colorless point cloud, which
is commonly applied in the domain of mobile robots and
autonomous driving. KITTI Raw cannot be used for super-
vised training, because its semantic label lacks authenticity.
However, its density is consistent with that of vKITTI, and
it can be used for generalized verification of experiments.
In addition, researchers also implement their requirements by
manually labeling datasets, in order to implement this dataset
to semantic segmentation successfully. Zhang et al. [81]
annotate 252 images into 10 object categories, of which 140
images are used for training and 112 are for testing. While,
Ros et al. [82] mark 216 images of 11 categories (170 training
images and 46 testing images).

Table 1 shows the common datasets for point cloud seg-
mentation and provides the number of categories and the
number of training/validation/testing datasets. Furthermore,
this paper pays more attention to the results of point cloud
semantic segmentation on S3DIS, ShapeNet, ScanNet and
other datasets.

IV. ANALYSIS OF EXPERIMENTAL RESULTS
In the previous section, this paper starting from the represen-
tation of 3D datamainly reviews themethods of semantic seg-
mentation based on raw point cloud, which does not take any
quantitative results into account. Tomake a significant contri-
bution to the semantic segmentation, the performance of the
designed model must be quantitatively evaluated. Besides, in
order to fully reflect the fairness of the assessment and the
effectiveness of the model, it is necessary to use a variety
of standards from different aspects and some well-known
evaluation indicators for evaluation. In this section, we ana-
lyze the existing methods according to the result data. Firstly,
the performance of the existing semantic segmentation
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FIGURE 19. Forward time of different network models.

models is measured by the evaluation indicators of execution
time, space complexity and accuracy. Furthermore, the above
metrics which are obtained from the segmentation results
using different models on the most representative datasets
(S3DIS, ScanNet, ShapeNet, etc.) are collected. Finally,
we make a summary of the segmentation results and draw
conclusions.

A. EXECUTION TIME
Execution time is an important and valuable measurement
index that is used to evaluate the performance of the model,
and especially with the development of deep learning and
convolutional neural networks, it becomes more and more
important. The processing performance of the network can be
effectively judged by the training time of the model, but this
indicator is heavily dependent on the hardware, and some-
times it makes no sense for comparison. However, in order
to help researchers to explore in-depth, the hardware of the
execution system needs to be set out in detail. If it is properly
utilized, the performance of the model can be effectively
detected, and the training time of the model with different
segmentation methods can be fairly compared under the same
condition of hardware, and the training speed can also be
tested. Owning to the different equipment used during train-
ing, it is hard to analyze them comprehensively. Figure 19 is
the forward time estimated under four different models based
on the computing power of an NVIDIA GPU with the same
type.

B. SPACE COMPLEXITY
Space complexity is a measurement index, which refers to the
storage space temporarily occupied by an algorithm during
the running process of the procedure. This indicator, when
used to test the performance of the deep learning model,
means the quantity of parameters that the model needs.
We always hope that the parameters of the model are fewer
when building a model to accomplish different tasks. In an
algorithm, its time complexity and space complexity often
interact. If we pursue a better time complexity blindly, the
performance of spatial complexity must be degraded, which
means it may result in occupying more storage space; and
vice versa. Therefore, when we design the model, both

FIGURE 20. Network parameters of different semantic segmentation
models.

the time and space complexity should be taken into con-
sideration, after that the optimal model can be designed.
Figure 20 summarizes the number of parameters of different
point cloud semantic segmentation models (other models are
not introduced here in some detail because the original paper
does not compare the quantity of parameters).

C. ACCURACY
Nowadays, many evaluation criteria are proposed to evalu-
ate the accuracy of segmentation for different semantic seg-
mentation models. Among them, the mean Intersection over
Union (mIoU) and overall accuracy (OA) are the two most
important indicators for evaluating the result of point cloud
semantic segmentation.
• mIoU: mIoU is an effective indicator for checking the

accuracy of segmentation. The IoUmainly calculates the ratio
between the intersection and the union of two sets, which in
the segmentation refers to the overlap ratio between the real
area and the predicted area. While the mIoU is the calculation
of the IoU based on each category and then takes the average.
IoU can be calculated by the following equation:

IoU =
TP

T + P− TP

TP: the number of true positives; T: the number of ground
true positive samples; P: the number of predicted positives
belonging to that class.
• OA: It is one of the simplest metrics, simply calculating

the probability that the semantic annotation result of each
random sample is consistent with the annotation type of real
data.

Table 2, Table 3, Table 4, Table 5 and Table 6 illustrate
the performance of point cloud semantic segmentation based
on deep learning in many representative datasets. Since the
original paper, which the model selected in this paper, does
not conduct a comprehensive experiment on the accuracy and
mIoU of the following five datasets, and some articles’ codes
are not open source, we only summarize the experimental
results obtained from the original paper in those tables. Then,
we conduct an in-depth comparative analysis of experimental
results based on the same dataset, according to the different
properties between datasets.
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TABLE 2. Segmentation results of different models on ShapeNet part dataset.

TABLE 3. Segmentation results of different models on S3DIS dataset.

TABLE 4. Segmentation results of different models on ScanNet dataset.

TABLE 5. Segmentation results of different models on Semantic3D dataset.

TABLE 6. Segmentation results of different models on vKITTI dataset.

In Table 2, we collect the segmentation results of dif-
ferent models on ShapeNet Part dataset. This dataset is
commonly applied to object part segmentation and contains
many shapes. Furthermore, due to its specification, lots of
papers just evaluate the value of mIoU. According to the
results, we see that O-CNN+CRF outperform other models,
because it combines deep learning methods with traditional
methods, and processes the point cloud directly without
transformation.

In the above two tables, we list the experimental results
of two indoor scene datasets (S3DIS and Scannet) on dif-
ferent models. Semantic segmentation of indoor scenes is

challenging, because indoor scenes contain more objects and
some of them attaching to each other (like board and wall)
are difficult to segment. Thus, when we segment such scenes,
we must consider the relationship between adjacent objects
and the overall properties of the scene. Common global fea-
tures include color features, texture features and shape fea-
tures, while those features are not suitable to image aliasing
and occlusion. We need to take into account the features
extracted from the local area of the image to achieve better
semantic segmentation results. From two tables, PointSIFT
fusing local features and global features shows strong perfor-
mance and even better than state-of-the-art. We can conclude
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that methods of feature fusion are popular with indoor com-
plex scene datasets.

For outdoor scenes, similar to indoor scenes, there are
many things in the scene, but those are complex and vari-
able. In addition, the forms of point cloud collected by
different methods also make the implementation of point
cloud semantic segmentation difficult. Therefore, researchers
seldom experiment on outdoor datasets and the experimen-
tal results are not rich. The following two tables are the
results obtained on the two outdoor datasets Semantic3D
and vKITTI. From the statistics in those tables, we know
that methods based on multi-scale are outstanding for point
cloud semantic segmentation, because they not only take into
account low-level semantic information but also high-level
semantic information, meanwhile, solving the problem of
information loss.

The analysis of execution time, space complexity and accu-
racy of point cloud semantic segmentation shows that differ-
ent methods have their own advantages and disadvantages.
Although the improved model based on PointNet performs
well in the segmentation, its network model is complex,
resulting in long execution time. For the space complexity,
compared with the semantic segmentation methods based on
multi-view and voxel, the semantic segmentationmodel using
the raw point clouds has fewer parameters and reaches a
better result. Moreover, with the continuous improvement of
algorithms and network models, the accuracy of point cloud
segmentation on different datasets is also getting increasingly
higher.

V. DISCUSSION
The understanding and analysis of 3D scenes is the key to
the research of unmanned driving, smart cities, smart medical
treatment and other fields [92]–[94]. Semantic segmentation,
as the basis of 3D scene understanding, is the core of future
research. With the continuous development of deep learning,
this technology has been extensively used in 3D point clouds.
And the semantic segmentation based on 3D point clouds
takes significant advantages of its rich data. But, there are
also some challenges to the semantic segmentation of point
cloud now. These challenges range from problems based on
the point clouds itself to challenging issues resulting from
the task of semantic segmentation. This paper analyzes and
summarizes the 3D point cloud semantic segmentation tech-
nology in recent years and the following aspects need some
further research:

(1) Given the disorder and irregularity of point clouds,
when using the neural network to achieve the point cloud
semantic segmentation, researchers need to transform it at
first, such as the performance of voxel and multi-view.
However, this kind of method that transforms the data into
a regular structure inevitably increases the calculation of the
algorithm, and leads to the loss of some valid information at
the same time. To improve the accuracy of point cloud seman-
tic segmentation, constructing a semantic segmentation
model based on the raw point cloud by using the technology

of deep learning is an important research direction in the
future.

(2) Although the semantic segmentation of point cloud
based on deep learning has achieved an excellent result,
it requires a large amount of data when training the model.
However, the collection of datasets consumes not only a huge
number of human resources, but also strong funds. Therefore,
collecting a dataset with abundant and efficient data is the
primary condition for semantic segmentation.

(3) There are rich and complicated things contained in
the outdoor scene, thus it is necessary to consider vari-
ous factors when using neural networks for segmentation.
Therefore, most of the network models that proposed at
present are used to solve the problem of semantic segmen-
tation of indoor scenes, rarely involving the segmentation
of outdoor scenes. So, future research on the semantic seg-
mentation of point cloud should pay more attention to con-
structing a network model suitable for processing outdoor
scenes.

(4) Instance segmentation is one of the challenging tasks in
computer vision, which is a combination of target detection
and semantic segmentation. Nowadays, the model of point
cloud semantic segmentation that proposed is mostly used
to segment the same kind of objects, and rarely to separate
different individuals in the same category. In the future, with
the development of unmanned driving, environmental aware-
ness and other fields, how to design a deep learning model
to achieve instance segmentation of point cloud has broad
prospects for development.

(5) To the best of our knowledge, the current semantic
segmentation methods of point cloud are only based on 3D
data. While, the semantic segmentation of two-dimensional
images has been quite mature and is easy to be realized.
Therefore, the fusion of 2D image and 3D point cloud is the
general trend in the future, which can improve the effect of
semantic segmentation.

VI. CONCLUSION
This paper, focus on deep learning technology, presents
a comprehensive survey of existing point cloud seman-
tic segmentation methods. Firstly, we review the deep
learning-based point cloud semantic segmentation models
from two perspectives: indirect way and direct way. More-
over, several special models among two categories are intro-
duced carefully. We then describe popular datasets for point
clouds, and analyze the results of different models. In the
end, we discuss the challenges of existing point cloud seman-
tic segmentation using deep learning methods, and provide
insight for future research directions.

In conclusion, point cloud semantic segmentation has
been approached with many superior performances thanks
to the development of deep learning techniques, but it still
remains problems for improvement. We expect our paper
to present a detailed summary to understand state-of-the-
arts and, insights for future research in point cloud semantic
segmentation.
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